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Abstract In this paper, we obtain a refined non-asymptotic tail bound for the largest singular

value (the soft edge) of sub-Gaussian matrix. As an application, we use the obtained theorem

to compute the tail bound of the Gaussian Toeplitz matrix.
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1. Introduction

Random matrix theory (RMT) has been widely applied in many fields, e.g., multivariate

statistics [1], high-dimensional data analysis [2], the matrix approximation [3], the combinatorial

optimization [4] and the compressed sensing [5]. One main research concern on RMT is to study

the tail behavior of the extreme eigenvalues (or singular values) of random matrices.

In general, there are two types of probabilistic statements on the study of probability the-

ory: asymptotic and non-asymptotic. The former aims to analyze the limit behavior of some

probability terms, e.g., the central limit theorem

1√
n

n∑
i=1

xi
d−→ g, n → ∞ (1.1)

for Bernoulli random variables x1, x2, . . . , xn, . . . , where g is a Gaussian random variable. There

have been many well-known asymptotic results on RMT:

Wigner’s semicircle law [6]: Let An be an n × n symmetric matrix whose entries are in-

dependent Gaussian variables. As dimension n → ∞, the spectrum of the Wigner matrices

Wn = n−1/2An is distributed according to the semicircle law with density:

fsc(x) =
1

2π

√
4− x2, x ∈ [−2, 2]. (1.2)

Marchenko-Pastur law [7]: Let Am,n (m ≥ n) be an m × n random Gaussian matrix. As

the dimensions m,n → ∞ while the aspect ratio n/m converges to a fix number y ∈ (0, 1],

the spectrum of the matrices 1
mA∗A is distributed according to the Marchenko-Pastur law with
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density:

fmp(x) =

{
1

2πxy

√
(b− x)(x− a), a ≤ x ≤ b;

0, otherwise,
(1.3)

where a = (1−√
y)2, b = (1 +

√
y)2 and A∗ stands for the Hermitian adjoint of A.

Bai-Yin’s law [8]: Let Am,n (m ≥ n) be an m × n random matrix whose entries are inde-

pendent copies of a random variable with zero mean, unit variance, and finite fourth moment.

As the dimensions m,n → ∞ with n/m converging to a fix number y ∈ (0, 1], the smin(A) and

smax(A) are subjected to Bai-Yin’s law:

smin(A) =
√
m−

√
n + o(

√
n),

smax(A) =
√
m+

√
n + o(

√
n), almost surely, (1.4)

where the smin(A) and smax(A) represent the smallest and largest singular values of A, respec-

tively.

Although these asymptotic statements can provide a precise limit result when the matrix

dimension or sample number goes to the infinity, they cannot describe in what rate these prob-

ability terms converge to their limits. To handle this issue, there arises the non-asymptotic

viewpoint to study these probability terms. For example, one of the non-asymptotic statement

of the central limit theorem is Hoeffding’s inequality:

P
( 1√

n

n∑
i=1

xi > t
)
≤ 2e−t2/2. (1.5)

There have been many research works on RMT from the non-asymptotic viewpoint. Vershynin [9]

gave non-asymptotic methods about the properties of sub-Gaussian and sub-exponential matrix.

Tropp [10] proposed a user-friendly framework to study the tail behavior of sums of random ma-

trices. Moreover, there are also other methods for developing the matrix concentration inequal-

ities, e.g., exchangeable pairs [11] and Markov chain couplings [12]. To eliminate the dimension

dependence of these tail results for random matrices, the intrinsic dimension (or effective dimen-

sion) was employed to improve them [13,14]. Recently, Zhang et al. [15] applied a diagonalization

method to obtain the dimension-free tail inequalities of largest singular value for sums of random

matrices.

In this paper, we obtain a refined non-asymptotic tail bound for the largest singular value

(the soft edge) of sub-Gaussian matrix. We first give a tail bound for the norm of a sub-Gaussian

matrix by transforming a sub-Gaussian matrix into a sub-Gaussian variable. We also obtain a

tail bound for the norm of a sub-Gaussian matrix by decomposing a sub-Gaussian matrix into a

series of sub-Gaussian matrices. By combining the two resulted tail bounds, we obtain the final

tail results. As an application, we use the resulted tail inequalities to study the tail behavior of

Gaussian Toeplitz matrix.

The rest of this paper is organized as follows. In the next section, we give some preliminary

knowledge on random matrices and sub-Gaussian distributions. In Section 3, we present the

main results. Section 4 presents the application of our results in the study of Gaussian Toeplitz
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matrix, and the last section concludes paper.

2. Notations and preliminaries

In this section, we give some preliminary knowledge on random matrices and sub-Gaussian

distributions.

A random matrix is a matrix whose entries are random variables. Its distribution is charac-

terized by the joint distribution of the entries. The expected value of an m× n random matrix

B is the m× n matrix E(B) whose entries are the expected values of the corresponding entries

of B, assuming that they all exist.

Let Bm×n be a random matrix. Let Sn−1 = {x ∈ Rn : ∥x∥2 = 1} denote the Euclidean

sphere in Rn. The largest singular value of B is by definition

smax(B) = ∥B∥ = sup
x∈Rn\{0}

∥Bx∥2
∥x∥2

= sup
x∈Sn−1

∥Bx∥2. (2.1)

Given an arbitrary matrix B, the Hermitian dilation of B is defined by

H(B) =

[
0 B

B∗ 0

]
. (2.2)

It is true that λmax(H(B)) = ∥H(B)∥ = ∥B∥, where λmax denotes the largest eigenvalue. Given

a Hermitian matrix Hd×d and a real-value function f : R → R, then

f(H) = U · f(Λ) ·U∗ = U


f(λ1)

(λ2)

. . .

(λd)

U∗,

where H = UΛU∗ is a diagonalization of H, U is the unitary matrix and U∗ stands for the

Hermitian adjoint of U. In particular, we define the map on diagonal matrix by applying the

function to each diagonal entry. The relationship for real function f is the transfer rule. If

f(a) ≤ g(a) for a ∈ I, then f(H) ≼ g(H) for the eigenvalues of H lie in I, where the semi-

definite partial order ≼ is defined as follows:

A ≼ H ⇔ H−A is positive semi-definite.

Sub-Gaussian distributions are referring to a large class of probability distributions, e.g.,

normal random variables, Bernoulli and all bounded random variables.

Definition 2.1 A real-valued random variable x is said to be sub-Gaussian if there exists c > 0

such that for every t > 0

P(|x| > t) ≤ 2e−ct2 . (2.3)

Assuming the sub-Gaussian random variable’s mean is zero, the following lemma presents

equivalent conditions.

Lemma 2.2 Let x be a mean zero (centered) random variable. The following statements are
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equivalent: (1) x is sub-Gaussian; and (2) ∃b > 0, ∀θ ∈ R, there holds that

Eeθx ≤ eb
2θ2/2. (2.4)

The Lemma and its proof can be referred to [16, Theorem 3.1].

There are more and more research interests lying in the sub-Gaussian distributions, including

spectral properties of random matrices [17] and tail inequalities of sub-Gaussian random vectors

[18].

3. Main results

In this section, we obtain a refined upper bound for the largest singular value (the norm)

of sub-Gaussian matrix. We first give an upper bound for the norm of sub-Gaussian matrix by

converting into a random sub-Gaussian variable.

Theorem 3.1 Let B be an m×n random sub-Gaussian matrix. That is, its entries xij are i.i.d.

centered random variables, and obey the sub-Gaussian distribution. Then there exists c > 0 such

that for all t ≥ 0,

P{∥B∥ > t} ≤ 2 · 5(m+n) · exp(−ct2), (3.1)

where c does not depend on m, n and t. The proof of Theorem 3.1 is similar to [9, Proposition

2.4], where m = n. Here we give the proof of the general case.

Proof The main idea of the proof of Theorem 3.1 is to convert the random matrix into a random

variable, i.e., ⟨Bx, y⟩ is a sub-Gaussian random variable. We then use the covering number to

complete the proof.

P(∥B∥ > t) ≤P(max
x∈N
y∈M

⟨Bx, y⟩ > t

4
) ≤

∑
x∈N
y∈M

P(⟨Bx, y⟩ > t

4
)

≤|N ||M| · P(⟨Bx, y⟩ > t

4
) ≤ 2 · 5(m+n) · exp(−ct2),

where N , M are 1
2 -nets of Sn−1, Sm−1 respectively, and the bounds on cardinality of the net

are |N | ≤ (1 + 2/ϵ)n and |M| ≤ (1 + 2/ϵ)m. That is to choose ϵ = 1
2 , and the conclusion is

proved. 2
A minor shortcoming of above result is that when the matrix dimension increases, the result

becomes very loose. Another method is to obtain the tail bound for matrix sub-Gaussian series.

We first introduce the matrix sub-Gaussian moment generating function (mgf) bound.

Proposition 3.2 Assume that H is a fixed Hermitian matrix and the random variable x obeys

the centered sub-Gaussian distribution. Then there exists b > 0 such that

E exθH ≼ eθ
2b2H2/2, (3.2)

where b does not depend on t or the dimension of H1. According to the transfer rule, it is easy

to get the proposition. Based on the mgf result (3.2), we develop a tail bound for the matrix

1 The b appearing below is independent of the dimensions of the matrix and t.
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sub-Gaussian series.

Theorem 3.3 Consider a finite sequence {Hk : k = 1, . . . ,K} of fixed Hermitian matrices2 with

dimension d, and {xk : k = 1, . . . ,K} be a finite sequence of independent centered sub-Gaussian

random variables. Compute the variance parameter

ρ := ∥
∑
k

H2
k∥.

Then, for all t ≥ 0,

P
{
λmax

(∑
k

xkHk

)
≥ t

}
≤ d · exp(− t2

2b2ρ
). (3.3)

Proof It follows from Proposition 3.2 that, for any θ > 0,

P
{
λmax

(∑
k

xkHk

)
≥ t

}
≤ e−θt · tr exp

(∑
k

log EeθxkHk

)
≤ e−θt · tr exp

(θ2b2
2

∑
k

H2
k

)
≤ e−θt · d · λmax

(
exp

(θ2b2
2

∑
k

H2
k

))
= d · exp

(
− θt+

θ2b2

2
λmax

(∑
k

H2
k

))
= d · exp(−θt+

θ2b2

2
ρ),

where ρ := ∥
∑

k H
2
k∥, the first inequality follows from [10, Theorem 3.6]. This inequality holds

for any positive θ, so we may take an infimum to complete the proof. The infimum is attained

when θ = t
b2ρ . 2

We apply above result to study the sum of rectangular matrix series by using matrices

Hermitian dilation. The following is the general version of Theorem 3.3.

Corollary 3.4 Consider a finite sequence {Dk : k = 1, . . . ,K} of fixed matrices with dimension

m×n, and {xk : k = 1, . . . ,K} be a finite sequence of independent centered sub-Gaussian random

variables. Compute the variance parameter

ρ := max
{∥∥∥∑

k

DkD
∗
k

∥∥∥∥∥∥∑
k

D∗
kDk

∥∥∥}. (3.4)

Then, for all t ≥ 0,

P
{∥∥∥∑

k

xkDk

∥∥∥ ≥ t
}
≤ (m+ n) · exp(− t2

2b2ρ
). (3.5)

Proof According to Hermitian dilation we know that∥∥∥∑
k

xkDk

∥∥∥ = λmax

(
H
(∑

k

xkDk

))
= λmax

(∑
k

xkH(Dk)
)
.

We invoke Theorem 3.3 to obtain the tail bound for the sum of rectangular matrix series.

The matrix variance parameter ρ satisfies the relation:

ρ =
∥∥∥∑

k

H(Dk)
2
∥∥∥ =

∥∥∥∥∥
∑

k DkD
∗
k 0

0
∑

k D
∗
kDk

∥∥∥∥∥ = max
{∥∥∥∑

k

DkD
∗
k

∥∥∥ ∥∥∥∑
k

D∗
kDk

∥∥∥}
The elements of fixed Hermitian matrices are not random variables, they are fixed. These matrices are also

Hermitian.
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This completes the proof. 2
Based on the general version of tail bound for matrix sub-Gaussian series, we obtain another

tail bound for the norm of the sub-Gaussian matrix.

Theorem 3.5 Under the notations and conditions in Theorem 3.1. Then there holds that for

all t ≥ 0,

P{∥B∥ > t} ≤ (m+ n) · exp
(
− t2

2b2m

)
. (3.6)

Proof In order to use Corollary 3.4, we decompose matrix as a matrix sub-Gaussian series:

B =
∑
ij

xijEij , i = 1, . . . ,m, j = 1, . . . , n.

The matrix Eij has an element one in the (i, j) position and zeros elsewhere. By calculating

ρ = m, the conclusion is established by using Corollary 3.4. 2
The combination of Theorems 3.1 and 3.5 leads to the following refined upper bound for the

largest singular value (the soft edge) of sub-Gaussian matrix.

Theorem 3.6 Follow the notations and conditions in Theorem 3.1. Then there holds that for

all t ≥ 0,

P{∥B∥ > t} ≤

(m+ n) · exp(− t2

2b2m ), 0 < t ≤
√

2b2m
1−2b2mc log

m+n
2·5m+n ;

2 · 5(m+n) · exp(−ct2), t >
√

2b2m
1−2b2mc log

m+n
2·5m+n .

(3.7)

Remark 3.7 It can be known from [19, Definition 1.2 and Lemma 1.3], b2c = 1
2 . Because of

m > 1, it can be guaranteed to be meaningful in the root. In other words, there must be b and

c which make the formula hold.

4. Application: Gaussian Toeplitz matrix

In this section, we use our theoretical findings to compute the tail bound of the Gaussian

Toeplitz matrix. The Gaussian Toeplitz matrix is an example of Gaussian random matrix which

has been widely used in various fields, e.g., differential equations, spline functions, and signal

processing [20]. We consider an unsymmetric Gaussian Toeplitz matrix T ∈ Cd×d in the following

form:

T =



γ0 γ1 γ2 · · · γd−1

γ−1 γ0 γ1 · · · γd−2

γ−2 γ−1 γ0 · · · γd−3

...
...

...
. . .

...

γ−(d−1) γ−(d−2) γ−(d−3) · · · γ0


, (4.1)

where γ−(d−1), . . . , γd−1 are independent standard normal variables. The Gaussian Toeplitz

matrix T can be represented as a matrix Gaussian series:

T = γ0I+
d−1∑
j=1

γjC
j +

d−1∑
j=1

γ−j(C
j)T , (4.2)
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where Cj is the j-th power of C with

C =



0 1

0 1

. . .
. . .

0 1

0


.

Using the Theorem 3.6, we can compute the tail bound of the Gaussian Toeplitz matrix.

First, we calculate

(Cj)(Cj)T =

d−j∑
k=1

Ekk and (Cj)T (Cj) =
d∑

k=j+1

Ekk.

The matrix variance parameter ρ = d can be calculated:

I2 +

d−1∑
j=1

(Cj)(Cj)T +

d−1∑
j=1

(Cj)T (Cj) = dId.

For Gaussian matrix, b = 1, c = 1
2 . Through the application of Theorem 3.6, tail bound of the

Gaussian Toeplitz matrix is presented, for all t ≥ 0,

P{∥T∥ > t} ≤

2d · exp(− t2

2d ), 0 < t ≤
√

2d
1−2d log

2d
2·5d ;

2 · 5d · exp(− t2

2 ), t >
√

2d
1−2d log

2d
2·5d .

(4.3)

5. Conclusion

In this paper, we first present the tail bounds for the largest singular value of sub-Gaussian

matrix and matrix sub-Gaussian series. We then obtain a refined non-asymptotic tail bound for

the largest singular value (the soft edge) of sub-Gaussian matrix. As an application, we finally

compute the tail bound of Gaussian Toeplitz matrix.
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