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Abstract In this paper, we give an explicit and systematic study on the double constructions
of Frobenius Hom-algebras and introduce the close relations between O-operators and Hom-
dendriform algebras. Furthermore, we study the double constructions of Connes cocycles in
terms of Hom-dendriform algebras. Finally, we give a clear analogy between antisymmetric
infinitesimal Hom-bialgebras and Hom-dendriform D-bialgebras.

Keywords Frobenius Hom-algebras; Hom-dendriform algebras; O-operators; antisymmetric
infinitesimal Hom-bialgebras; Hom-dendriform D-bialgebras

MR(2010) Subject Classification 16T05; 17A30; 17B62

1.Introduction

The Hom-algebra structures arose first in quasi-deformation of Lie algebras of vector fields.
Discrete modifications of vector fields via twisted derivations lead to Hom-Lie and quasi-Hom-
Lie structures in which the Jacobi condition is twisted. The first examples of g-deformations, in
which the derivations are replaced by o-derivations, concerned the Witt and Virasoro algebras,
the readers can see [1]. A general study and construction of Hom-Lie algebras and a more
general framework bordering color and Lie superalgebras were considered in [2]. In the subclass
of Hom-Lie algebras skewsymmetry is untwisted, whereas the Jacobi identity is twisted by a
single linear map and contains three terms as in Lie algebras, reducing to ordinary Lie algebras
when the twisting linear map is the identity map. The notion of Hom-associative algebras
generalizing associative algebras to a situation where associativity law is twisted by a linear map
was introduced in [3]. It turns out that the commutator bracket multiplication defined using the
multiplication of a Hom-associative algebra leads naturally to a Hom-Lie algebra. This provided
a different way of constructing Hom-Lie algebras. This paper [4] led to the development of the
theory of Hom-Lie algebras. In recent years, Hom-associative algebras and Hom-Lie algebras

have been investigated by some scholars in [3,4] and [7-16].
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In [5], Bai considered the double construction of Frobenius algebra and the double construc-
tion of Connes cocycle, which is interpreted in terms of dendriform algebras. Both of them are
equivalent to a kind of bialgebras, namely, antisymmetric infinitesimal bialgebras and dendrifor-
m D-bialgebras, respectively, and he showed that an antisymmetric solution of the associative
Yang-Baxter equation corresponds to the antisymmetric part of a certain operator called O-
operator which gives a double construction of a Frobenius algebra, whereas a symmetric solution
of the D-equation corresponds to the symmetric part of an O-operator which gives a double
construction of the Connes cocycle.

The Rota-Baxter operator has appeared in a wide range of areas both in mathematics and
physics. Bai also introduced the extended O-operator and studied the relation between the
extended O-operator and the associative Yang-Baxter equation in [6]. In [7], Makhlouf introduced
Rota-Baxter Hom-operators and studied the relation between Hom-dendriform algebras and
Rota-Baxter Hom-operators. Recently, As a generalization of Rota-Baxter Hom-operators, Hom-
O-operator also has a close relation with the associative Hom-Yang-Baxter equation, which we
can refer to [8].

In [9], Yau introduced the definition of an infinitesimal Hom-bialgebra and studied the rela-
tionship between infinitesimal Hom-bialgebras and Hom-Lie bialgebras introduced by [10]. The
main purpose of this paper is to investigate the above mentioned objects in the sense of Hom-
setting. The paper is organized as follows. In Section 3, we give some related definitions of
Home-associative algebras. Then we give an explicit and systematic study on the double construc-
tions of Frobenius Hom-algebras. In Section 4, we malnly discuss the close relations between
O-operators and Hom-dendriform algebras. In Section 5, we study the double constructions of
Connes cocycles in terms of Hom-dendriform algebras. In Section 6, we give a clear analogy

between antisymmetric infinitesimal Hom-bialgebras and Hom-dendriform D-bialgebras.

2. Preliminary

Throughout this paper we work over field k£ unless otherwise specified and all algebras are
finite-dimensional. In this section, we will recall from [3] and [11] the basic definitions and results

on Hom-associative algebras.

Definition 2.1 A Hom-associative algebra is a triple (A, p,a) where a« : A — A and p :
A® A — A are linear maps, with notation u(a ® b) = ab such that for any a,b,c € A,

alab) = ala)a(b), ala)(be) = (ab)a(c).

A linear map f : (A, pa,aa) — (B, up,ap) is called a homomorphism of Hom-algebra if
apf = faa and fua = ps(f® f).

Definition 2.2 A bilinear form B( , ) on a Hom-associative algebra (A, «) is invariant if

B(zy,a(z)) = B(a(z),yz), for any z,y,z € A.
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Let (A, o) be an algebra with a bilinear operation o: A® A — A.

(a) Let Lo(z) and Ro(z) denote the left and right multiplication operator respectively, that
is, Lo(2)y = Ro(y)x = x oy for any x,y € A. We also simply denote them by L(x) and R(x)
respectively without confusion.

(b) Let r=>,2;®y, € A® A. Set

7"1222%‘@%@1, TISZin®1®yi7 7“23:21(8351'@%7

where 1 is the unit, if (A, o) is unital or a symbol playing a similar role to the unit for the

non-unital cases. The operation between two rs is given in an obvious way. For example,

r127T13 = E T;ioT; QY; ®Yj, T13T23 = E i ® x; QYo yj,
%, @,

23712 = Zwi @ xjoy; QY;-
4,
(¢) Let 0: A® A — A® A be the exchanging operator defined by
oclz®y)=y®z, Vr,yce A

(d) Let Aj, Ay be two vector spaces and T : A; — Aj be a linear map. Denote the dual
(linear) map by 7% : A5 — A} defined by

(21, T*(25)) = (T(x1),23), Va1 € Ay, 25 € Aj.

3. The double constructions of Frobenius Hom-algebras

In this section, we give some definitions of bimodules of Hom-associative algebras, matched
pairs of Hom-associative algebras, Frobenius Hom-algebras and antisymmetric infinitesimal Hom-
bialgebras. We give an explicit and systematic study on the double constructions of Frobenius

Hom-algebras.

Definition 3.1 Let (A,a) be a Hom-associative algebra and (V,u) a vector space. Let l,r :
A — gl(V) be two linear maps, (I,r,V, ) is called a bimodule of (A, «) if

p(l(z) = la(z)) o p, p(r(z)) =r(a(@))op,
l(zy) o p=Ua(z)) o l(y), r(zy)op=rla(z))or(y),
l(z) or(y) = r(y) o l(x),

for all x,y € A andv € V.
It is easy to check that (1,7, V, ) is a bimodule of (A, «) if and only if the direct sum A @V

of vector spaces is turned into a Hom-associative algebra by defining multiplication as follows
(1 +v1) * (X2 + v2) = zr22 + (I(21)V2 + 7(22)V71),

for all x1,z2 € A and vy,v2 € V. We denote it by A x V.
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Let (I,r, V, u) be a bimodule of a Hom-associative algebra (A, o), define by I*, r* : A — gl(V™)
(I*(z)u*, vy = = (u*, l(z)v), (r*(z)u*,v) =—(u* r(x)v),

for any z € A,u* € V¥ v e V.
(I*,r*,V*, 1*) is not a bimodule of (A, a) on V* with respect to A* in general. Follow the
approach of [15], we have

Lemma 3.2 (1) Let (1,7, V, i) be a bimodule of a Hom-associative algebra (A, «), if the following

conditions hold:
lz)o = polla(a)), r(x)op=por(afz)),
pol(zy) =U(z) o l(a(y)), wor(zy) =r(z)or(aly)),
l(z)or(y) = r(y) o l(x).
Then (I*,r*,V*, u*) is a bimodule of (A, «).
(2) (1,0,V), (0,7, V), (r*,0,V*) and (0,1*,V*) are bimodules of (A, o).

Theorem 3.3 Let (A,-,«) and (B,o,3) be two Hom-associative algebras. If there are linear
maps la,ra : A — gl(B) and lg,rg : B — gl(A) such that (Ia,74) is a bimodule of (A, «) and
(Ig,rB) is a bimodule of (B, ) and they satisfy the following equations

Bla(x)b) = la(a(2))B(D), B(ra(b)z) = ra(e(z))5(b), (3.1)

a(lp(b)z) = Ip(B(b))a(z), a(rp(b)r) =rp(B(b))a(z), (3-2)

la(a(z))(aob) = (la(x)a) o B(b) + La(rp(a)z)5(b), (3-3)

ra(a(z))(acb) = B(a) o (ra(x)b) +ra(ls(b)z)s(a), (3-4)

Ip(B(a))(x-y) = (Is(a)r) - aly) + Ip(ra(z)a)a(y), (3.5)

ra(B(a))(z - y) = a(z) - (ra(a)y) + re(la(y)a)a(z), (3.6)

la(lp(a)x)B(b) + (ra(x)a) o f(b) — ra(rp(b)x)B(a) — B(a) o (La(x)b) =0, (3.7)

Ip(la(z)a)aly) + (re(a)z) - aly) — ra(ra(y)a)o(r) — a(z) - (Is(a)y) = 0, (3.8)

for any x,y € A, a,b € B. Then there exists a Hom-associative algebra structure “*” on the
vector space (A @ B,a+ f3) given by

(z+a) (y+b) = -y +Ip@)y+rp®)z+aob+La@b+ra@)a, (3.9)

(a+B)(z +a) = a(z) + f(a), (3.10)

for any x,y € A and a,b € B. It is denoted by (A< B,a+ 3). Moreover, every Hom-associative
algebra which is the direct sum of the underlying vector spaces of two Hom-subalgebras can be

obtained from the above way.

Proof For any z,y,z € A and a,b,c € B, we get

(a+B8)((z+a)*(y+b)=(a+B)(z-y+igla)y+red)z+acb+la(z)b+ra(y)a)
=a(z-y+lilgla)y+red)z)+ Blacb+ls(x)b+ra(y)a)
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= a(z-y) +1p(B(a))a(y) + re(B(b))a(z) + Bla o b)+
La(a(x))B(b) +ra(a(y))B(a)
=(a+pB)(z+a)*(a+B)(y+Dd).

In order to check that (A<t B, + ) is a Hom-associative algebra, we have to check that
(a4 B)(x+a)x[(y+b)*(z+c)] =[(x+a)* (y+b)] x (a+ B)(z+c).
In fact, we have

(a+ B)(x +a)*[(y +b) * (2 +c)]

=(a+B)(z+a)y-z+1p(b)z+r5(c)y +boc+laly)c+ra(2)b]

= (afz)+ Ba))y-z+ 1)z +rp(c)y+boc+1la(y)c+ra(2)b]

=a(z) - (y-2) +1s(B(a))(y - 2+ 1a(b)z + r(c)y) + pa(boc+ la(y)et
ra(z)b)a(x) + B(a) o (boc+1la(y)c+ra(2)b) + la(a(x))(boc+
la(y)e +1a(2)b) +ra(y -z +1p(b)z +7rp(c)y)B(a)

=(z-y+ipla)y+rpd)z) a(z)+iglacb+Ila(x)b+1a(y)a)a(z)+
La(B(e))(@ oy +ip(a)y +7p(b)x) + (acb+la(z)b+ra(y)a) o flc)+
la(z -y +ip(a)y +rpd)z)B(c) + ra(a(z))(aob+la(z)b+ra(y)a)

=(x-y+igla)y+rpd)x+aob+ia(z)b+ra(y)a)* (a(z) + 5(c))

= [(x+a)* (y+b)] * (a+ B) (2 +¢).

And this proof is completed. O

Definition 3.4 Let (A,-,«) and (B,o,) be two Hom-associative algebras. Suppose that
there are linear maps la,ra : A — gl(B) and lg,rg : B — gl(A) such that (I4,74) is a
bimodule of (A,«) and (Ig,rg) is a bimodule of (B, ). If Eqgs.(3.1)—(3.8) are satisfied, then

(A, B,la,ra,lp,mB,0, ) Is called a matched pair of Hom-associative algebras.

Definition 3.5 A Frobenius Hom-algebra (A, B, «) is a Hom-associative algebra (A,«) with
a nondegenerate invariant bilinear form B. Furthermore, a Frobenius Hom-algebra (A, B, «) is

symmetric if B is symmetric.

Definition 3.6 We call (A, B, «) a double construction of Frobenius Hom-algebra if it satisfies
the following conditions

(1) A= A; ® A} as the direct sum of vector spaces;

(2) (A, «) is a Hom-associative algebra and (A1, ), (AT, o*) are Hom-associative subalgebras
of (A, a);

(3) B is the natural symmetric bilinear form on A; @ A} given by
B(z+a*,y+b*) = {(x,b*) + (a”,y), for any x,y € A1,a™,b" € A]. (3.11)

According to [15], a bimodule (1,7, V, 1) of a Hom-associative algebra (A, «) is called admis-
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sible if (I*,r*, V* u*) is a bimodule of (A, ).

Let (A, -, ) be an admissible Hom-associative algebra. Suppose that there is an admissible
Hom-associative algebra structure “o” on its dual space A*. We construct a Hom-associative
algebra structure on the direct sum A @ A* of the underlying vector spaces of A and A* such
that (A,-,«) and (A*, o,a™) are Hom-associative subalgebras and the symmetric bilinear form
on A® A* given by Eq.(3.11) is invariant. That is, (A® A*, B, a + «*) is a symmetric Frobenius
Hom-algebra. Such a construction is called a double construction of Frobenius Hom-algebra

associated to (4, -, a) and (A%, 0,a*) and we denote it by (A > A*, B, a + a*).

Theorem 3.7 Let (A,-,«) be an admissible Hom-associative algebra. Suppose that there is

an admissible Hom-associative algebra structure “ o” on its dual space A*. Then there is a

double construction of Frobenius Hom-algebra associated to (A, -, ) and (A*, o, a*) if and only
if (A, A*, R*, L* R%, L «,a") is a matched pair of Hom-associative algebras.
Proof 1If (A, A* R* L* R: L% a,a*) is a matched pair of Hom-associative algebras, for any
x,y,z € A and a*,b*, c* € A*, using Eq. (3.9), we have
B((x + a®)(y +b%), a(z) + " (c"))

— Bz y+ R (@) + L0 )y + a” ob* + RE@ + Li(y)a",a(s) + a* ()

=(z-y+ Ri(a")y+ LI (b")y,a"(c")) + (a” o b* + RE(x)b" + Li(y)a”, a(2))

= (a(z),b" o c™ + Ri(y)c" + Lo(2)b") + (™ (a”),y - z + RI(b")z + L7 (c")y)

= B(a(z) + a”(a%), (y + b")(z + "))

So B is invariant. Conversely, we set

*

zxa* =la(v)a* +ra-(a®)z, a*xx=1s(a")x+71a(x)0",
for any z € A and a* € A*. Since
(la(z)a”, aly)) = (ra(y)a®, a(z)) = (y - z,a"(a")),
(La- (b%)z,0%(a%)) = (ra-(a”)z, " (b%)) = (a* 0 b", a(x)),
for any z,y € A and a*,b* € A*. Hence, Iy = R*;ry = L* la» = R:,ra~ = L%. Then

(A, A* R* L* R%, L% «,a") is a matched pair of Hom-associative algebras. O

Proposition 3.8 Let (A, -, a) be an admissible Hom-associative algebra. Suppose that there is
an admissible Hom-associative algebra structure “o” on its dual space A*. Then (A, A*, R*, L*, R,
LY, a,*) is a matched pair of Hom-associative algebras if and only if for any x € A and
a*,b* € A*,

o (R (x)b) = R (a(x))a™(b), o (L¥(b)x) = L (a(z))a™(b), (3.12)
a(L(b)x) = L (a*(b))a(z), a(Lg(b)z) = Lo(a”(b))a(x), (3.13)
R (a(z))(a* o b™) = RI(Li(a™)x)a™ (b*) + (R (z)a™) o ™ (b"), (3.14)
R (Ri(a")x)a™ (b") + LI (x)a™ o a™(b") = LT (L;(b")z)a" (a*) + o™ (a™) (R (z)b"). (3.15)
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Proof Takels = R*, ra =L lg =14~ = R}, r5 = ra~ =1}, then Eq. (3.1) is just Eq. (3.12),
Eq. (3.2) is just Eq. (3.13), Eq. (3.3) is just Eq.(3.14) and Eq. (3.7) is just Eq. (3.15). By Lem-
ma 3.2, it is easy to show that Eq.(3.3)< Eq.(3.4) & Eq.(3.5) & Eq.(3.6) and Eq. (3.7)&
Eq.(3.8). O
Let (A, @) be a Hom-associative algebra. We can make (A ® A, o ® a) into a bimodule of

(A, ). For example, (&« ® La, Rae ® ) is a bimodule of (A, o) with

(@@ La)(z)(a®b) = (o @ L(a(z)))(a @b) = a(a) @ a(z)b,

(Ra @ a)(z)(a @ b) = (R(a()) ® a)(a ®@b) = ba(x) ® a(b).
Similarly, (La ® o, a ® Ra) is also a bimodule of (A, a). Define A: A - A® A by

A(ab) = (L(a(a)) ® a)A(b) + (a ® R(a(b)))A(a), Va,be A (3.16)

which gives the notion of infinitesimal Hom-bialgebras [9].

Theorem 3.9 Let (A,-,«) be an admissible Hom-associative algebra. Suppose that there is

(b

an admissible Hom-associative algebra structure “o” on its dual space A* given by a linear map
A* A" @ A* — A*. Then (A, A*,R*,L*, R}, L, a,a*) is a matched pair of Hom-associative
algebras if and only if A : A — A ® A satisfies

o (R (2)b) = R*(a(x))a” (b), o (L7(b)z) = L*(a(x))a”(b), (
a(L(b)x) = LT (a" (b))a(z), a(Li(b)x) = Li(a”(b))a(z), (3.18
Az -y) = (@ ® L((2)))Ay) + (R.(a(y)) © @) A(x), (
(L.(a(y) ® a —a® R.(a(y))A(z) + o[(L.(a(z) @ a —a @ R.(a(z)))A(y)] = 0. (
Proof Clearly, Egs. (3.12) and (3.13) correspond to Egs. (3.17) and (3.18). Let ej,...,e, be

a basis of A and ej, ..., e} its dual basis. Take e;-¢; = > 1_; c”ek and €] o e = Zk 1 kek

Thus, we have A(ex) = Y _p_ flie; ® e; and

)
(

n n
Ri(e)e; = > chier, Li(e)e] =D clei,
k=1 k=1
n ) n .
Ri(ei)e; = Zflgielw Li(ei)ej = firer:

>
Il
—
>
Il

1
Let a(e;) = >i_; pses, aler) = 37— wje; and afe,) = > p_; qrex. Hence the coefficient of
e; @ e in Eq. (3.19) gives the following relation

n
Zcinl jk — Z PsWw; k;bfls +Qkp] kéflu7
=1

5,5kl

which is precisely the relation given by the coefficient of e}, in

Ri(afei))(ef oe) = R (Lg(ej)es)a™(ex) + (BRI (ei)e) o ™ (ef)-

Similarly, Eq. (3.20) corresponds to Eq. (3.15). O
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Definition 3.10 Let (A,-,«a) be an admissible Hom-associative algebra. An antisymmetric
infinitesimal Hom-bialgebra structure on A is a linear map A : A — A ® A such that

(i) A*: A*® A* — A* defines a Hom-associative algebra structure on (A*,a*);

(ii) A satisfies Egs. (3.19) and (3.20).

We denote it by (A, A,«a) or (A, A*, a).

Combining Theorems 3.7 and 3.9, we have the following conclusion.

Theorem 3.11 Let (A,-,«) and (A*,o,a*) be two admissible Hom-associative algebras. Then
the following conditions are equivalent:

(1) There is a double construction of Frobenius Hom-algebra associated to (A,-,a) and
(A* o, a™);

(2) (A, A*,R*,L*,R:, L%, o, *) is a matched pair of Hom-associative algebras;

(3) (A, A, ) is an antisymmetric infinitesimal Hom-bialgebra.

Definition 3.12 Let (4,A4,a4) and (B,Ap,ap) be two antisymmetric infinitesimal Hom-
bialgebras. A homomorphism of antisymmetric infinitesimal Hom-bialgebras ¢ : A — B is a

homomorphism of Hom-associative algebras such that

(p®@p)Aa(x) = Ap(p(x)), for any z € A.

An isomorphism of antisymmetric infinitesimal Hom-bialgebras is an invertible homomorphism

of antisymmetric infinitesimal Hom-bialgebras.

Definition 3.13 Let (A; X A}, By, a1 +«af) and (A x A5, B, as + o) be two double construc-
tions of admissible Frobenius Hom-algebras. They are isomorphic if and only if there exists an

isomorphism of admissible Hom-associative algebras ¢ : Ay x A} — Ag x A} such that

(A1) = Az, (A7) = A3, (a2 + a3)p = (a1 +aj),
Bi(z,y) = Ba(p(x), (y)), for any z,y € Ay x A].

Proposition 3.14 Two double constructions of admissible Frobenius Hom-algebras are isomor-
phic if and only if their corresponding antisymmetric infinitesimal Hom-bialgebras are isomorphic.
Proof Similar to [5]. O

Example 3.15 Let (A,a) be an admissible Hom-associative algebra. If the Hom-associative
algebra structure on A* is trivial, then (A,0) is an antisymmetric infinitesimal Hom-bialgebra.
Dually, if (A, ) is a trivial Hom-associative algebra, then the antisymmetric infinitesimal Hom-
bialgebra structures on A are in one-to-one correspondence with the Hom-associative algebra

structures on A*.

4. O-operators and Hom-dendriform algebras

In this section, we recall the definition and properties of Hom-dendriform algebras from
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[7]. Then we introduce the notion of an O-operator and discuss the close relations between
O-operators and Hom-dendriform algebras. Furthermore we give the notion of bimodules of
Hom-dendriform algebras, and discuss under which conditions a vector space can construct the
bimodule of Hom-dendriform algebras and under which conditions the direct sum of two Hom-

dendriform algebras can construct a Hom-dendriform algebra.

Definition 4.1 ([7]) A Hom-dendriform algebra A is a vector space equipped with three bilinear

operations (<, =, «) satistying the following equations:

a(z <y) =a(z) < a(y),
a(z - y) = a(z) = a(y),
(x =y) <az) = afx) < (y*2),
(= y) <afz) = a(z) - (y < 2),
(@ xy) = az) = a(z) = (y = 2),

where xxy =x < y+x >y, for any z,y, z € A.

Let (A,<,>,a) be a Hom-dendriform algebra. For any = € A, let L, (z), Ry (z) and
L. (2), R, (z) denote the left and right multiplication operators of (4, <,«) and (4, >, a), re-
spectively, that is,

L}(Z)(y) =T > Y, R>.(x)(y) =Y - &€,
Li(z)(y) =z <y, R<(z)(y)=y=<uz,
for any y € A.
Let (A, <,>,a) be a Hom-dendriform algebra. Recall from [7] that we can define a Hom-

associative algebra by

rxy=x<y+ax>y, Vr,yeA (4.1)

We call (A, *, a) an associated Hom-associative algebra of (4, >, <, «) and (4, >, <, a) is called
a compatible Hom-dendriform algebra structure on the Hom-associative algebra (A, *, a). More-

over, (L., R<) is a bimodule of the associated Hom-associative algebra (A4, *, a).

Proposition 4.2 ([7]) Let (A,*,a) be a Hom-associative algebra and “~,<” two bilinear
products on A. Then (A, >, <, «) is a Hom-dendriform algebra if and only if Eq. (4.1) holds.
Moreover, (L., R<) is a bimodule of (A, *, a).

Definition 4.3 Let (A, -, «) be a Hom-associative algebra and (I,r,V, u) a bimodule of (A, a).
A linear map T : V — A is called an O-operator associated to (I,r,V,u) if T satisfies

aT =Tu, T(u) -Tw)=TUT(uw)v+r(T(v)u)),
for any u,v € V.

Example 4.4 Let (A4,-,a) be a Hom-associative algebra. Then the identity map id is an O-
operator associated to the bimodule (L,0) and (0, R).
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Example 4.5 Let (A,-, ) be a Hom-associative algebra. A linear map R : A — A is called a

Rota-Baxter operator on A of weight zero if R satisfies
aR = Ra, R(z) -R(y)=R(R(z) -y+x-R(y)),
for any x,y € A. Then a Rota-Baxter operator on A is just an O-operator associated to the

bimodule (L, R).

Theorem 4.6 LetT : V — A be an O-operator of a Hom-associative algebra (A, , o) associated

to a bimodule (I,r,V, u). Then there exists a Hom-dendriform algebra structure on V given by
ur=v=I0Tw)v, u<v=rT))u,

for any u,v € V. Therefore, there exists an associated Hom-associative algebra structure on V
given by Eq. (4.1) and T is a homomorphism of Hom-associative algebras. Moreover, T(V) =
{T'(v)|v € V} C A is a Hom-associative subalgebra of A and there is an induced Hom-dendriform

algebra structure on T'(V') given by
T(u) = Tw)=T(u>v), T(u)<Tw)=T(u=<v),

for any u,v € V. Its corresponding associated Hom-associative algebra structure on T(V') given
by Eq. (4.1) is just the Hom-associative subalgebra structure of A and T is a homomorphism of

Hom-dendriform algebras.

Proof For any u,v,w € V, by the definition of “ <, > " and (I,r,V, 1) is a bimodule, we have
(u = 0) = pu(w) = r(T(a(w))) (u < ©) = (T (u(w))r(T(v))u
=r(T(w)T(v))p(u) = r(TUT (w))v + r(T(v)w)))u(u)
= p(u) < (v >=w)+ plu) < (v < w).

Similar arguments can be applied to verify other axioms for a Hom-dendriform algebra. O

Corollary 4.7 ([7]) Let (A, *,«) be a Hom-associative algebra and R a Rota-Baxter operator

of weight zero on A. Then there exists a Hom-dendriform algebra structure on A given by
r-y=R(@)xy, z<y=uzxR(y),

for any x,y € A.

Corollary 4.8 Let (A,*,«a) be a Hom-associative algebra. There is a compatible Hom-

dendriform algebra structure (-, <) on (A, x, «) if and only if there exists an invertible O-operator
of (A, x, ).

Proof If T is an invertible O-operator associated to the bimodule (I,r,V, 1), it is easy to check
that (A, <, >, «) is a Hom-dendriform algebra structure given by
v =y =TUx)T"(y), ==<y=T(r(y)T " (x)),

for any x,y € A. Conversely, let (A, <,>,a) be a Hom-dendriform algebra and (A, x, «) the

associated Hom-associative algebra. Then the identity map id is an O-operator associated to the



Double constructions of Frobenius Hom-algebras and connes cocycles 587
bimodule (Ly, R<) of (A,*,a). O

Definition 4.9 Let (A,>,<,a) be a Hom-dendriform algebra, (V,u) a vector space and
loyro,lo,r4 + A — gl(V) four linear maps. Then (l.,r.,ls,7<,V,u) is called a bimodule
of (A, -, =<, ) if the following equations hold,
u(l<(z)v) = I<(a(z)u(v), pl-(z)v) =1 (a(z))p(v),
u(r<(@)o) = r<(a(@))u(), wp(r-(z)v) = re(a(z))u(),
<y =lz(a(@)l(y), r<(yxz)p=r<(a(@))r(y),
(x) =r<(@)l<(y), <@ = y)p=1l-(a(z))l(y),
< w)p=r<(a(@))r-(y), I-(y)r<(@) =r<(@)l-(y),
*y)p =l ()l (y), r-(y = 2)p =r-(a(z))r(y),
L-(y)rs () = r(2)l(y),

wherex xy=x =y+z <y, l, =1+, re =7 + 1<, for any z,y € A.

l<$

-y

[

(
I<(y)r
€
(

Proposition 4.10 Let (A, >, <, «) be a Hom-dendriform algebra and (V, ) a vector space. Then
(loyre,ls <,V ) is a bimodule of (A, >, <,«a) if and only if there exists a Hom-dendriform

algebra structure on the direct sum A ® V given by
(a+ p)(@ +u) = a(z) + p(u),
(x+u)» (y+v)=z=y+1l(x)v+7r(y)u,
(@+u) < (y+v)=v<y+I@v+ry)u,

for all z,y € A and u,v € V. We denote it by A x;_, V.

[
Proof =) For any z,y,z € A and u,v,w € V, we have

(a+ @@ +u) = (y +v)] = (a+p)(@ =y + - (2)v + 1 (y)u)
= a(z = y) + pu(l-(z)v + 1 (y)u)
= a(z) = a(y) + - (a(2) u(v) + r-(a(y) u(w)
= (a+p)(@+u) - (a+ p)(y +v),

and

[(z +u) < (y+v)] < (a(w) + pu(2))
= [z <y +iz@v+r<(y)u] < (a(w) + p(z))
=(z =y) <a(z) +z(z < y)p(u) + re(e(w)) (< (2)v +r<(y)u)
a(z) < (y*2) + I« (af@))l<(y)u + I« (@) r< (w)v + r<(y * 2) p(u)
=a(z) < (y*2) +I<(a(2)) (< (y)u + r<(w)v) + r<(y * 2)p(u)
= (a(z) + p(w) < ((y +v) * (z + w)).

Similar arguments can be applied to verify other axioms for the Hom-dendriform algebra.
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<. Clearly obtain by Definitions 4.1 and 4.9. O

Example 4.11 Let (4, >, <, a) be a Hom-dendriform algebra. Then
(loyre, iz, r<, Ay @), (12,0,0,r5, A @), (Ie +14,0,0,7<5 + 7o, A @)
are bimodules of (4, >, <, a).
Theorem 4.12 Let (A, >4, <4, ) and (B, >p,<pg, 3) be two Hom-dendriform algebras. Sup-
pose there are linear maps ly ,,re ,,l<,,7<, : A — gl(B) and l. ,,re <5, 7<, : B — gl(A)

such that (I ,,r~ ,,l<,,7<,) is a bimodule of (A, 4,<4,a) and (I ,,r«,l<5, 7<) is a bi-

module of (B, >p,~<p, ) and they satisfy the following conditions

L i N
© 0 NS ot e W o

rea(a(@))(axp b) = 7o (I 5 (0)2)5(a) + B(a) = (r-, (2)D),
( T4 (15 (0)2)B(a) = I, (I5(a)7) B(b) + (ra(z)a) =5 B(b),
l-a((@))(a =p b) = (la(x)a) > B(b) + 1~ . (rp(a)r)B(b),
Bla))(z <ay) =<5 (la(y)a)a(z) + a(z) <4 (rp(a)y),

—A

<5 (B(a))( 4.14
l<p(l<a(@)a)aly) + (r<p(a)r) <a Bly) = ( ) <8 (Is(a)y) +r<p(ra(y)a)o(z), 4.15
zp(B(a)) (@ xay) = (I (a)r) <a aly) + 1<, (r<, (2)a)aly), 4.16
<5 (B(a))(

< (s (w)a)aly) + (-5 (a)2) <4 aly) = 4.18

( ) =a (<p(a)y) + 755 (r<, (Y)a)a(z),
b (B(a) (@ <4 y) = (-5 (a)2) <a aly) + < (-4 (2)a)aly),
=5 (B(a) (x4 y) = 1o (I, (y)a)o(z) + a(z) =4 (15 (a)y),

T ) 4.20
(@) =a (-5 (a)y) + 7o 5 (r-, (Y)a)a(x) = I 5 (la(z)a)aly) + (re(a)r) =a aly), 4.21
I 5 (B(a)) 4.22

(
(
(
(
(
(
~<n (
z-ay) =repl<s(y)a)a(z) + al@) -a (r<;(a)y), (4.17
az (
(
(
(
(
(

(=4 y) = (IB(a)z) =4 aly) + l- 5 (ra(z)a)aly),
<a(a(@))(a <p b) = B(a) <p (ra(z)b) + <, (I(b)x)5(a),

forany z,y € A,a,b€ Bandly =1, ,+ls,,ra=71e ,+7r<,,lp=loy+lcp, rB=1ep+7<5.

<

Then there is a Hom-dendriform algebra structure on the direct sum A ® B given by

(z+a)=(y+b)=(@ray+r-,0)z+1,(a)y) + (-, (2)b+ -, (y)at+arpb),
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(2 40) < (y+b) = (¥ <4 y+ =, ()7 + 1 ()y) + (1<, (@)b+ 7=, (y)a+a <5 b),

l>A77“>Aal<Aﬂ“<A
l>B7T>B’l<B7T<B

for any x,y € A,a,b € B. We denote it by A <
Proof Similar to Theorem 3.3. O

Definition 4.13 Let (A, >4, <4, «) and (B, >p,<p,3) be two Hom-dendriform algebras. Sup-
pose there are linear maps Iy ,, re ,, l<,, 7<=, : A—gl(B) and l. ., 7, <y, <, : B — gl(A)
such that (. ,,re ,,l<,,7<,) is a bimodule of (A, =4,<a,a) and (lv 5, 7w ;,l<,, 7<) IS @ bi-
module of (B, =g, <pg, ). If Egs. (4.2)—(4.23) are satisfied, then (A, B, I« ,, 7e 4, l<,, T<as e s

Tep, lzy, T<p, @, B) is called a matched pair of Hom-dendriform algebras.

Corollary 4.14 Let (A, Bl ,re 4, <y "<4slopsTepnyl<s, P<p, @, B) be a matched pair of
Hom-dendriform algebras. Then (A, B,le, + 1<, 7o, + 7<) lop +lcp,rep +7<5,0,0) Is a

matched pair of the associated Hom-associative algebras (A, *4,«) and (B, xp, 3).

Proof Let (A,%4,a) and (B,xp,[) be two associated Hom-associative algebras. For any
z,y € A and a,b € B. Define

(@+a)*(y+b)=z*ay+ipla)y+rpd)z+axpb+la(@)b+ra(ya,
(@ +P)(z +a) = az) + B(a)

where [4 =1, +l<,,ra =1, +r<,lg =1, +1<,, 786 =7y +7r<,. By Theorem 3.3,
we can obtain (A <1 B,x,« + () is a Hom-associative algebras. By Definition 3.4, we know
that (A, B,le , 1, 7oy +7r<4slop +lzp, Ty +7<5, @, 8) is a matched pair of the associated

Hom-associative algebras (4, *4,a) and (B, *p, ). O

5. The double constructions of Connes cocycles

In this section, we introduce the definition of a nondegenerate Connes cocycle on a Hom-
associative algebra (A, a) and get that there exists a compatible Hom-dendriform algebra struc-
ture on (A, o). Moreover, we mainly discuss the double constructions of Connes cocycles in terms

of Hom-dendriform algebras.

Definition 5.1 An antisymmetric bilinear form w( , ) on a Hom-associative algebra (A, a) is a

cyclic 2-cocycle in the sense of Connes if
w(zy, a(z)) + wlyz, a(z)) + wlzz, a(y)) = 0, (5.1)
for any x,y,z € A. We also call w a Connes cocycle.

Theorem 5.2 Let (A, %, «) be a Hom-associative algebra and w a nondegenerate Connes cocycle.

Then there exists a compatible Hom-dendriform algebra structure “ >, <" on (A, x, &) given by
w(@ =y, a(2)) =wla(y),z xz), wl@=<y,a(z)) =w(a(@),yx*=2), (5.2)

for any z,y,z € A.
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Proof For any z,y € A, define a linear map T : A — A* such that Ta = o*T by (T'(x),y) =
w(z,y). Then T is invertible and T~ is an O-operator of the Hom-associative algebra (A4, x, «)
associated to the bimodule (R%, L%). By Corollary 4.8. there is a compatible Hom-dendriform

algebra structure “ >, <7 on (A, *, ), which is given by
x-y=T'Ri(x)T(y), = =<y=T "Li(yT(z),
for any z,y € A. O

Definition 5.3 We call (A,w,a) a double construction of Connes cocycle if it satisfies the
following conditions

(1) A= A; @ A7 as the direct sum of vector spaces;

(2) (A,«) is an admissible Hom-associative algebra and (A1, «), (A}, «*) are an admissible
Hom-associative subalgebras of (A, a);

(3) w is the natural antisymmetric bilinear form on A; @ A given by
w(x+a*,y+0b*)=—{(x,b*) + (a*,y), for any x,y € Ay,a*,b* € A], (5.3)

and w is a Connes cocycle of (A, a).
Let (A,*4,a) be an admissible Hom-associative algebra and suppose that there is an ad-

2

missible Hom-associative algebra structure “*4. ” on its dual space A*. We construct a Hom-
associative algebra structure on A @& A* of the underlying vector spaces of A and A* such that
both A and A* are subalgebras and the antisymmetric bilinear form on A ® A* given by Eq.(5.3)
is a Connes cocycle on A @ A*. Such a construction is called a double construction of Connes

cocycle associated to (A, x4, a) and (A*, x4+, ™), we denote it by (T'(A) = A A* w, a + a*).

Corollary 5.4 Let (T(A) = A A*,w,a + o*) be a double construction of Connes cocycle.
Then there exists a compatible Hom-dendriform algebra structure “ >, < ” on T'(A) given by
Eq. (4.2).

Definition 5.5 Let (T(A1) = Ay <1 A}, wi, a1 +aF) and (T'(Az) = Az 1 AS,wa, ag+ad) be two
double constructions of Connes cocycles. They are isomorphic if there exists an isomorphism of

Hom-associative algebras ¢ : T(A1) — T(As) satisfying the conditions
p(A1) = Az, @(A7) = A3, wi(z,y) = wale(x), ¢(y)), (5.4)
for any x,y € A;.

Proposition 5.6 Two double constructions of Connes cocycles (T'(A1) = Ay b1 A}, w1, a1 +af)
and (T'(Ag) = Ag 1 A%, wa, ap + o) are isomorphic if and only if there exists a Hom-dendriform
algebra isomorphism ¢ : T(A1) — T(As) satisfying Eq. (5.3), where the Hom-dendriform algebra
structures on T(A;) and T(As) are given by Eq. (5.2), respectively.

Proof Straightforward. O

Theorem 5.7 Let (A,>4,<4,«) be an admissible Hom-dendriform algebra and (A, 4, )
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the associated admissible Hom-associative algebra. Suppose that there is an admissible Hom-

b

dendriform algebra structure “ =4+, <+ ” on its dual space A* and (A*,*4+) is the associated

admissible Hom-associative algebra. Then there exists a double construction of Connes cocycle
associated to (A, xa,a) and (A, *a~,a*) if and only if (A, A*, R, LT ,R% ,LL  ,«,a%)isa

—Ax)

matched pair of Hom-associative algebras.

Proof «. If (4,A4*, RY ,, Lt ,RZ ., ’;A*,a,a*) is a matched pair of Hom-associative alge-
bras, for any z,y,z € A and a*,b*, c* € A*, using Eq. (5.2), we have
w((z +a”)(y +0%),a(z) +a*(c"))
=w(e-y+ RL, (a")y+ LT, (0%)y+
a®ob"+ RZL  (2)b" + LT . (y)a”, a(z) +a™(c"))
= —{z-y+RZ,(a")y + LT, (b%)y, o™ (c")+
(@ ob™ + R, (2)b" + LT . (y)a", a(2))
= —{a(z),0" 0" + R% | (y)c" + L>A*( 2)b")+
(@"(a),y-z+ R%, (b")2 + LT, (c")y).
So we can prove that w satisfies Eq. (5.1). Then there exists a double construction of Connes
cocycle associated to (A, x4, a) and (A, x4+, ™).
=. If there exists a double construction of Connes cocycle associated to (4,*4,«) and
(A, x4+, "), we take
xxa* =la(r)a” +ra-(a®)z, a" xx=Ig-(a")x+ra(z)a”,

for any z € A and a* € A*. Since

(la(@)a®, ay)) = (ra(y)a”, o(x)) = (y - ¥, 0" (a”)),

(La-(0")z, a*(a%)) = (ra-(a”)z, " (b%)) = (a” 0 b", a(x)),
for any z,y € A and a*,b* € A*. Hence, l4 = R% ,, ra =L ,,la- = R,
(A, A* R*

<A >A’

ra» =L .. Then

R% ., LT, ,a,a%) is a matched pair of Hom-associative algebras. O

Theorem 5.8 Let (A,>4,<4,a) be an admissible Hom-dendriform algebra and (A,*4, )

the associated admissible Hom-associative algebra. Suppose that there is an admissible Hom-

R

dendriform algebra structure “ = -, <4+ " on its dual space A* and (A*,*4~) is the associated

L*

admissible Hom-associative algebra. Then (A, A*,R% ,LL , R* N

S s a,a*) is a matched

pair of the Hom-associative algebras if and only if
(A, A", RL + R, —

* *
R>A*+R<A*7 <A*7 —RC ., >A*+L<A*7OZOZ)

*
-<A7 R>-A7 +L>‘A7

is a matched pair of Hom-dendriform algebras.
Proof =. If (A, A* R*<A, L ,RZ ., ’;A*,a,a*) is a matched pair of the Hom-associative

algebras, then (A MR:A’ Z: A*,w,a+ a*) is a double construction of Connes cocycle by The-
A* T A
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orem 5.7. Hence there exists a compatible Hom-dendriform algebra structure given by Eq. (5.2),

for any z € A and a* € A*, other products are given by

x=a”

= (R%, + RL )(x)a* - L%, (a")z,
r=<a = (L%  +
a* >-a:7(RiA* + RL,
a* <= (L%
By a simple and direct computation, we get that

(A A*’R:A—'_R*A*’ <A7 R:‘A7 +L>-A7
R: . +R% ., —L%  —R. L

<ax) k0 e ax

+ L<A*7a’a*)

<a*)
is a matched pair of Hom-dendriform algebras.
<. This follows from Corollary 4.11. O

Theorem 5.9 Let (A, >4,<a4,«) be an admissible Hom-dendriform algebra whose products
are given by two linear maps %, 5% : A® A — A. Suppose that there is an admissible Hom-
dendriform algebra structure “ > a«,<a~ 7 on its dual space A* given by two linear maps
A% AL AT @ AT — A" Then (A A", RY,, LT, R% ., LL . ,a,a") is a matched pair of

the Hom-associative algebras if and only if the following equations hold for any z,y € A and
a*,b* e A*:

Ax(wxay) = (@® L, (@)D= (y) + (Ra(a(y)) ® ) A (), (5.5)
Ar (@ 4 y) = (@ ® La(@(@)Ar (y) + (R=, (a(y) © a)As (), (5.6)
Bu(a* #a- b%) = (0% @ L. (a*(@))B<(b) + (Ra- (@ (b)) @ a*)B<(a”),  (5.7)
Bl %a b) = (0" ® L (" (@) B (") + (Rx . (" (0)) @ a")Be (@), (5.8)

(Lala(z) ® 0 —a® R, (@) A<(y)+
ol(Lx,(a(y)) ® @ —a® Rala(y)))A- (z)] = (5.9)

(La-(a*(a%)) @ a* —a” @ Ry, (a¥(a%)))B<(b7)+

(a

O[(L - (@ (b7)) ©® @" — @ @ Ra- (" (b7))) B (a")] = 0, (5.10)
a*(RZ, (2)b) = RZ  (a(@))a”(b), o (L, (b)r) = LT, (a(x))a” (D), (5.11)
a(RL . (b)x) = R% | (a*(0)a(z), o(LL . (b)x) = LT . (" (b))a(x), (5.12)

where Ly =Ly , +Ls,, Ra= Ry, , + R<,, L~ :L>.z +L<*A, Ry« = R>.*A +R<2.

Proof Clearly Egs. (3. 1) and (3.2) correspond to Egs. (5.11) and (5.12). Let eq,...,e, be a

basis of A and e],..., e} its dual basis. Set

n n
k k
€; =Aej = E a;j€k, € <A €j = E bij€ks
k=1 k=1

n n
* * k _x k _*
€ A€ = E CijCh, €i =Ax €j = E d;jey
k=1

k=1
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Let ae;) = > 0| pses and afe}) = >, weey. Hence the coefficient of e} in
RZ , (afe:))(ef xa- e;) = RZ (L. (ef)ei)a”(ef) + R, (e:)€f *a- a” ()
gives the following relation
D bR+ df) = D [wich bl + wibl (e} + )],
m,s m,t

which is precisely the relation given by the coefficient of ¢; ® e in
B<(ef *ax ep) = (o @ L. (a¥(€))))B<(ex) + (Ra-(a”(e})) ® a™)B<(€]).

So Eq. (3.3) in the case In = RY ,,ra= L%, lp =la = RY ., =ra» =L, isEq. (5.7).

Similarly, we have the following correspondences:
Eq. (34) © Eq.(5.8), Eq.(3.5) & Eq.(5.5), Eq.(3.6) < Eq.(5.6)
Eq. (3.7) © Eq. (5.10), Eq.(3.8) & Eq.(5.9).

Therefore, the conclusion holds. O

Definition 5.10 Let (A,«a) be a vector space. An admissible Hom-dendriform D-bialgebra
structure on A is a set of linear maps (A<, Ay, B<,Bs) such that A, A, ¢ A - A® A,
b=, By : A > A* ® A* and

(1) (A%, AL) : A* ® A* — A* defines an admissible Hom-dendriform algebra structure
(>4, <a+) on A*;

(2) (B%,5L): A® A — A defines a Hom-dendriform algebra structure (>4, <4) on A;

(3) Egs. (5.5)—(5.12) are satisfied.

We denote it by (A, A*).

Theorem 5.11 Let (A, <4, >4,a) and (A*, <4+, =4+, a*) be two admissible Hom-dendriform
algebras. Let (A, *a, ) and (A*, x4+, a*) be the associated admissible Hom-associative algebras,
respectively. Then the following conditions are equivalent:

(1) There is a double construction of Connes cocycle associated to (A, * 4, ) and (A*, * 4, a™);

(2) (A,A*,R% LY R, ., LL,.,a,a%) is a matched pair of the Hom-associative algebras;

(8) (AA" R, + R L% ~Re UL, +LL R+ R.,~L%, ~RL L+
L% .« o) is a matched pair of Hom-dendriform algebras;

(4) (A, A*) is an admissible Hom-dendriform D-bialgebra.

Proof This follows from Theorems 5.7-5.9. O

6. Comparison between antisymmetric infinitesimal Hom-bialgebras
and Hom-dendriform D-bialgebras

In this section, we mainly consider the case that a Hom-dendriform D-bialgebra is an anti-

symmetric infinitesimal Hom-bialgebra.

Theorem 6.1 Let (A, A*, Ay, AL, 8., B<, a, a*) be an admissible Hom-dendriform D-bialgebra.
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Then (A, A*) is an antisymmetric infinitesimal Hom-bialgebra if and only if the following equa-
tions hold:

a*(RZ, (2)b) = RZ , (a(x))a”(b), a*(LL,(b)x) = LT, (a(z))a”(b), (6.1)
a* (R, (2)b) = R, (a(x))a”(b), o*(L%, (b)) = LX , (a(z))a”(b), (6.2)
a(R% . (b)z) = R% (o™ (b))a(z), oLl . (b)x) = LT . (a*(b))a(z), (6.3)
a(RZ . (b)z) = R (" (b))a(z), o(L%,.(b)r) = L . (o (b))a(z), (6.4)
(L%,. *)y Za(@)a®) = (RL . (a®)z, RZ, (y)b"), (6.5)
(L%, 0"y, R, (2)a”) + (L% . (a®)z, BT, (y)b)

<RiA*(b*)w,LiA(y) )+ (R, @)y, LT, (2)b7), (6.6)

for any x,y € A* and a*,b* € A*.
Proof Similar to [5]. O

Example 6.2 Let (A, %4, ) be an admissible Hom-associative algebra and w a Connes cocycle
on (A, *4,a). Then there exists an admissible antisymmetric infinitesimal Hom-bialgebra whose
Home-associative algebra structure on A* is given by a nondegenerate solution r of associative

Hom-Yang-Baxter equation introduced by [9] as follows:
A(z) = (e ® L(a(z)) — R(a(z)) ® a)r,

for all z € A, where r : A* — A is given by w(z,y) = (r~1(x),y). On the other hand, there exists
a compatible Hom-dendriform algebra structure “ > 4, <4” on (A, *4, «) given by Eq. (6.2), that
is,

UJ(.’L’ ~A y,a(z)) = w(a(y), Z*A (E)7 OJ(.T =AY, Oé(Z)) = UJ(O[(JJ),y *A Z)a
for all z,y,z € A. Moreover, there exists a compatible Hom-dendriform algebra structure “» 4« ,
<4+" on the Hom-associative algebra A* given by

a® =+ b* = r_l(r(a*) =a1(DY)), a* <a- b =r"(r(a®) <4 r(b*)),

for all a*,b* € A. Furthermore, it is easy to show that

LT (z)a* = r~(r(a*) %4 x), R (z)a”™ = —r~ Yz <4 r(a¥)),
L% (x)a” = —r_l(r(a*) =ax), R, (x)a” = =Yz xr(a®)),
LL .(a")r=x%47(a"), RL , (a")=—r(a")<az,

L . (a")r=—x =47(a"), R, (a")=r(a")*az,

for all x € A and a* € A*. Therefore, (A, A*) is a Hom-dendriform D-bialgebra if and only if
(A, A" R LT R% . LT ., a,a") is a matched pair of Hom-associative algebras, if and only

if x4 [yxa 2] =0 for any z,y,z € A. In this case, by Eq. (6.2), it is equivalent to

afr) =4 (Y>=az2)=alx) <a (y<az)=a(r) =4 (y <a z) =0,
for all x,y, z € A. Therefore, under these conditions, Egs. (6.5) and (6.6) hold.
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