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Abstract Without specifying the structure of a time series, we model the distribution of a mul-

tivariate Markov process in discrete time by the corresponding multivariate Markov family and

the one-dimensional flows of marginal distributions. Such models tackle simultaneously temporal

dependence and contemporaneous dependence between time series. A specific parametric form

of stationary copula, namely skew-t copula, is assumed. Skew-t copulas are capable of model-

ing asymmetry, skewness, and heavy tails. An empirical study with unfiltered daily returns for

three stock indices shows that the skew-t copula Markov model provides a better fit than the

skew-Normal copula Markov or t-copula Markov model, and the skew-t copula model without

Markov property.
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1. Introduction

We study the estimation of a multivariate Markov process X ∈ Rp in continuous state space

based on the underlying Markov family of copulas, extending in particular the work of [1–3].

Considering (X1, . . . ,Xn) - a p-variate Markov process X observed at discrete time t =

1, . . . , n, we assume that the process is stationary, i.e., the distribution of (Xt−1,Xt) does not

depend on t. In addition we assume that (1) the dependence function of this 2p dimensional

distribution is a skew-t copula, and (2) each of the marginal distributions of Xt is independent of

time and can be estimated by a nonparametric method before the copula parameter estimation

stage.

General frameworks for modeling the dependence in a p-dimensional Markov Chain through

copulas were presented in [1–3]. In these frameworks, a copula model is assumed to be a member

of some specific parametric families determined by a parameter vector, such as meta-elliptical

copulas [4] or skew-elliptical copulas [5].

Abegaz & Naik-Nimbalkar [1] assumes parametric models for the marginal distributions and

presents two stage parametric pseudo-maximum likelihood estimation (2SPMLE) procedure for

copula-based stationary Markov type models. In the first stage the marginal parameters are

estimated by maximizing the marginal likelihood function, and in the second stage a pseudo-

maximum likelihood estimation of the copula parameter is obtained after fixing the marginal
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parameters at the values obtained from the first stage. The consistency and asymptotic normality

of the marginal and copula parameter estimators from the 2SPMLE procedure is established.

For a bivariate stationary first-order Markov chains, Yi & Liao [2] assumes parametric models

for the marginal distributions, a parametric copula model for temporal dependence in each

univariate time series, and a parametric copula model for contemporaneous dependence between

the two time series. A three stage parametric pseudo-maximum likelihood estimation (3SPMLE)

procedure is presented for copula-based stationary Markov type models. In the first stage the

marginal parameters are estimated by maximizing the marginal likelihood function. In the second

stage a pseudo-maximum likelihood estimation of the temporal copula parameters is obtained

after fixing the marginal parameters at the values obtained from the first stage. In the third

stage, a pseudo-maximum likelihood estimation of the contemporaneous copula parameters is

obtained after fixing the marginal parameters at the values obtained from the first stage and the

temporal copula parameters obtained from the second stage. The consistency and asymptotic

normality of the marginal, the temporal, and the contemporaneous copula parameter estimators

from the 3SPMLE procedure is established. The 2SPMLE or 3SPMLE is a kind of estimators

obtained by maximization by parts proposed by Song et. al. in [6]. The maximization by parts

estimation method has recently been applied to integer-valued GARCH time series model [7].

Remillard et. al. [3] estimates a marginal distribution nonparametrically by its empirical CDF

before the copula parameter estimation stage. Then the copula parameter is estimated by the

maximum pseudo likelihood method. Under the Markovian models with meta-elliptic copulas,

the conditional copulas are shown to be again meta-elliptic copulas. Under the Markovian models

with Archimedean copulas, the conditional copulas are shown to be again Archimedean copulas.

The consistency and asymptotic normality of the copula parameter estimators from this two

stage semiparametric pseudo-maximum likelihood estimation procedure is established.

The main contribution of this article is to extend the skew-t copula to stationary Markov

processes. The transition density of a skew-t copula Markov chain is derived, which is essential

to the random number generation from the underlying stochastic processes and the calculation of

the pseudo likelihood function. The computational difficulties for parameter estimation arising

out of the model specification are addressed.

The rest of this paper is organized as follows. The skew-t copula model is defined in Section

2. The skew-t copula Markov model is presented in Section 3. Section 4 describes the computa-

tional difficulties for estimating the parameters of the skew-t copula Markov model by MLE and

shows how to overcome them. Section 5 confirms by Monte-Carlo simulation that the nonlinear

constrained MLE implemented by interior point algorithm works well. Section 6 applies the

model to unfiltered daily returns of three stock indices: Nikkei225, S&P500 and DAX. Finally,

Section 7 concludes the paper.

2. Skew-t copulas

Yoshiba [8] demonstrated that skew-t copulas provided good fit to data with heavy tail de-
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pendence and tail asymmetry, and discussed their maximum likelihood estimation by overcoming

the inherent numerical difficulties in the underlying optimization problem. The copula model

in [8] only took the contemporaneous dependence between multiple time series into account.

Our work here extends the skew-t copulas to Markov model - taking into account not only the

contemporaneous dependence but also the temporal dependence between multiple time series.

The details of one of the three types of skew-t copulas - namely, the Azzalini and Capitanio

(AC) [9] skew-t copula - are given in [8]. For completeness, we repeat some basic facts of an AC

skew-t copula here.

The AC skew-t copula represents the dependence structure implicit in a d-variate AC skew-t

distribution with the location vector, ξT = (ξ1, . . . , ξd) = (0, . . . , 0) = 0T
d and the scale vector,

σT = (σ1, . . . , σd) = (1, . . . , 1). AC skew-t distribution is a special case of an extended skew-

t distribution, where the extension parameter τ in equation (1) of [10] is 0. The conditional

distribution of extended skew-t random vectors is derived in [10]. The skew-t copula-based

Markov model in this paper needs to utilize the conditional distribution of skew-t random vectors

- for this reason, the notation and formulas for the AC skew-t distribution in this paper follow

those in [10].

Definition 2.1 (Skew-t) The d-dimensional random vector Y of a skew-t distribution, denoted

by STd(ξ,Ω,λ, ν), has the following joint density function at y ∈ Rd:

g(y; ξ,Ω,λ, ν) = 2td(y; ξ,Ω, ν)T1

(
λTy

√
ν + d

ν +Q(z)
; ν + d

)
, (2.1)

where z = ω−1(y − ξ), Q(z) = zT Ω̄−1z, λ ∈ Rd is the shape parameter,

td(y; ξ,Ω, ν) =
Γ((ν + d)/2)

(πν)d/2Γ(ν/2)|Ω|1/2
(1 +

Q(z)

ν
)−(ν+d)/2

denotes the usual d-dimensional Student-t density with location ξ ∈ Rd, positive definite d × d

dispersion matrix Ω, with d × d scale matrix ω = diag(Ω)1/2 and correlation matrices Ω̄ =

ω−1Ωω−1, and the degrees of freedom ν > 0. The T1(y; ν) is the univariate standard Student-

t cumulative distribution function with degrees of freedom ν > 0. The d dimensional skew-t

distribution function is denoted as STd(y; ξ,Ω,λ, ν).

For a Markov time series, we will model the joint distribution of the observation random

vector at discrete time (t − 1) and the random vector at discrete time t by a skew-t copula.

The marginal distribution of the observation random vector at the start of the Markov time

series t = 1, and the conditional distribution of the observation random vector at time t given

the random vector at time (t − 1) are needed to compute the likelihood function of the time

series. An extended skew-t distribution (EST) introduced in [10] generalizes a skew-t distribution

by adding the scalar extension parameter τ . A d-dimensional EST-with the location ξ, the

dispersion matrix Ω, the shape parameter λ, the degrees of freedom ν, the extension parameter

τ - is denoted as ESTd(ξ,Ω,λ, ν, τ). Its distribution theory is presented in [10]. By setting the

extension parameter τ in the EST to 0 in [10, Propositions 3 and 4], we obtain the marginal and
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conditional distribution of skew-t respectively as the following.

Proposition 2.2 (Marginal distribution of skew-t) Let Y ∼ STd(ξ,Ω,λ, ν). Consider the

partition YT = (YT
1 ,Y

T
2 ) with dim(Y1) = d1, dim(y2) = d2, d1+d2 = d, and the corresponding

partition of the parameters (ξ,Ω,λ). Then

Y1 ∼ STd1(ξ1,Ω11,λ1(2), ν),

where

λ1(2) =
λ1 + Ω̄−1

11 Ω̄12λ2√
1 + λT

2 Ω̃22·1λ2

, Ω̃22·1 = Ω̄22 − Ω̄21Ω̄
−1
11 Ω̄12.

Proposition 2.3 (Conditional distribution of skew-t) Let Y ∼ STd(ξ,Ω,λ, ν). Consider the

partition YT = (YT
1 ,Y

T
2 ) with dim(Y1) = d1, dim(y2) = d2, d1+d2 = d, and the corresponding

partition of the parameters (ξ,Ω,λ). Then

(Y2|Y1 = y1) ∼ ESTd2(ξ2·1, α1Ω22·1,λ2·1, ν2·1, τ
∗
2·1),

where

ξ2·1 = ξ2 +Ω21Ω
−1
11 (y1 − ξ1), Q1(z1) = zT1 Ω̄

−1
11 z1,

z1 = ω−1
1 (y1 − ξ1), Ω22·1 = Ω22 − Ω21Ω

−1
11 Ω12,

λ2·1 = ω2·1ω
−1
2 λ2, ω2 = diag(Ω22)

1/2,

ω2·1 = diag(Ω22·1)
1/2, ν2·1 = ν + d1,

τ2·1 = (λT
2 Ω̄21Ω̄

−1
11 + λT

1 )z1, τ∗2·1 = τ2·1/
√
α1,

α1 = (ν +Q1(z1))/(ν + d1).

Unlike the marginal distribution of Y2, Arellano-Valle & Genton [10, section 2.2] note that

the conditional distribution of a skew-t distribution is no longer a skew-t distribution - rather it

is an extended skew-t distribution with an extension parameter τ∗2·1 ̸= 0 in general.

ST distribution can be expressed as a scale mixture of the skew-normal distribution:

Y = ξ + ωV −1/2Z̃,

where V ∼ Γ(ν/2, ν/2) and is independent of the d-variate skew-Normal random vector Z̃ which

is constructed as

Z̃ =

{
Z, if Z0 ≥ 0,

−Z, if Z0 < 0.

The (1 + d)-dimensional random vector (Z0,Z
T )T has the (1 + d)-variate Normal distribution

N1+d(0, R). The extended correlation matrix R is defined by

R =

[
1 δT

δ Ω̄

]
,

using the original correlation matrix Ω̄ and the skewness vector δ = (δ1, δ2, . . . , δd)
T . The shape
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parameter λ appearing in the ST density (2.1) is given as

λ =
Ω̄−1δ√

1− δT Ω̄−1δ

using the skewness vector δ and the original correlation matrix Ω̄. The vector δ - and conse-

quently λ - are constrained so that R is positive semi-definite.

As Azzalini & Capitanio [9, Section 4.2.3], Capitanio et al. [11, Eq. (10)] and Joe [12, p. 40]

indicate, the ith univariate marginal distribution of STd(ξ,Ω,λ, ν) is ST1(ξi, σ
2
i , ζi, ν) with den-

sity

g1(yi; ξi, σ
2
i , ζi, ν) = 2t1(yi; ξi, σ

2
i , ν)T1

(
ζiyi

√
ν + 1

ν + z2i
; ν + 1

)
, yi ∈ R,

where zi = (yi − ξi)/σi, t1(·; ξi, σ2
i , ν) is the univariate Student-t density with location ξi, scale

σi, degrees of freedom ν, and ζi is defined as

ζi = δi/
√
1− δ2i ,

using the original skewness parameter δi.

Hence, applying Sklar’s theorem, we obtain the skew-t copula distribution function at u =

(u1, . . . , ud)
T ∈ [0, 1]d:

C(u; Ω̄,λ, ν) = STd(y;0d, Ω̄,λ, ν).

where y = (y1, . . . , yd)
T with its element defined by

yi = ST−1
1 (ui; 0, 1, ζi, ν). (2.2)

In words, yi is the inverse probability integral transform of ui, i.e., the (100ui)-th quantile - or

equivalently, ui is the probability integral transform of yi - for the ith marginal distribution of

STd(0d, Ω̄,λ, ν).

The density function of this skew-t copula is given as

c(u; Ω̄,λ, ν) =
g(y;0d, Ω̄,λ, ν)∏d
i=1 g1(yi; 0, 1, ζi, ν)

. (2.3)

3. Skew-t copulas for Markov models

We assume that the dependence structure of a p-variate time series with Markov property

follows a skew-t copula.

Denoting by F the transformation

xt = (xt1, . . . , xtp)
T 7→ F(xt) = (F1(xt1), . . . , Fp(xtp))

T = (ut1, . . . , utp)
T = ut,

one can then define Ut = F(Xt). Assuming a skew-t copula model:

(Xt−1,Xt) ∼ H(xt−1,xt) = C(ut−1,ut; Ω̃, λ̃, ν)

where

Ω̃ =

[
Ω11 Ω12

Ω21 Ω22

]
, and λ̃ =

(
λ1

λ2

)
(3.1)
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with Ω11 = Ω22, δ1 = δ2, where δ̃ = (δT1 , δ
T
2 )

T is the skewness vector corresponding to the shape

parameter λ̃. We note that Ω11 = Ω22 encodes the contemporaneous correlation. The Ω12 = ΩT
21

encodes the lag-1 cross-correlation [13, Section 8.1] - a specific temporal correlation - between

time series. Under this joint skew-t copula model of (Xt−1,Xt), the copula of Xt−1 must be the

same as the copula of Xt, which is another skew-t copula specified as:

C(u,1p; Ω̃, λ̃, ν) = C(1p,u; Ω̃, λ̃, ν) = C(u; Ω11,λ1(2), ν)

where

λ1(2) =
λ1 +Ω−1

11 Ω12λ2√
1 + λT

2 Ω22·1λ2

, Ω22·1 = Ω22 − Ω21Ω
−1
11 Ω12

according to Proposition 2.2 (Marginal distribution of skew-t).

Now under the AC skew-t copula Markov model

(Ut−1,Ut) ∼ C(ut−1,ut; Ω̃, λ̃, ν), (3.2)

we derive that

Ut ∼ C(ut; Ω11,λ1(2), ν).

To simulate observations for the Markov process Ut, one needs to compute the conditional

distribution of Ut given Ut−1, which is readily available as following based on the Proposition

2.3 (Conditional distribution of skew-t):

Proposition 3.1 (Transition density of the Markov Chain) The conditional density of Ut given

Ut−1 = ut−1 is:

c(ut|ut−1; Ω̃, λ̃, ν) =
c(ut−1,ut; Ω̃, λ̃, ν)

c(ut−1; Ω11,λ1(2), ν)

=
g(yt−1,yt; Ω̃, λ̃, ν)

g(yt−1; Ω11,λ1(2), ν)
∏p

i=1 g1(yit; 0, 1, ζ̃i, ν)

=
gEST (yt; ξ

(t)
2·1, αtΩ22·1,λ2·1, ν2·1, τ

∗(t)
2·1 )∏p

i=1 g1(yit; 0, 1, ζ̃i, ν)
,

where

ξ
(t)
2·1 = Ω21Ω

−1
11 yt−1, Ω22·1 = Ω22 − Ω21Ω

−1
11 Ω12,

λ2·1 = ω2·1λ2, ω2·1 = diag(Ω22·1)
1/2,

ν2·1 = ν + p, τ
(t)
2·1 = (λT

2 Ω21Ω
−1
11 + λT

1 )yt−1,

τ
∗(t)
2·1 = τ

(t)
2·1/

√
αt, αt = (ν + yT

t−1Ω
−1
11 yt−1)/(ν + p), (3.3)

ut = FST (yt,0p,Ω11,λ1(2), ν),

and the ith element of FST (yt,0p,Ω11,λ1(2), ν) is the probability integral transform of yit -

where the transform function is the ith marginal distribution of STp(0p,Ω11,λ1(2), ν). The ζ̃i

dependent on Ω11, λ1(2) is the shape parameter of this i-th marginal distribution.

Using the distribution for Ut and Proposition 3.1, one can now propose an algorithm to

simulate a Markovian time series with a joint skew-t copula.
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Algorithm. To generate a Markov chainU1, . . . ,Un with stationary distribution C(Ω11,λ1(2), ν)

and joint distribution (Ut−1,Ut) ∼ C(Ω̃, λ̃, ν), proceed as follows:

(1) Generate Y1 ∼ STp(0p,Ω11,λ1(2), ν), set U1 = FST (Y1;0p,Ω11,λ1(2), ν).

(2) For t = 2, . . . , n,

(a) Update τ
∗(t)
2·1 according to Eq. (3.3)

(b) Generate Yt according to (Yt|Yt−1 = yt−1) ∼ ESTp(ξ
(t)
2·1, αtΩ22·1,λ2·1, ν2·1, τ

∗(t)
2·1 ). Set

Ut = FST (Yt;0p,Ω11,λ1(2), ν).

4. Estimation by the maximum pseudo likelihood method

Given a time series of p-dimensional vectors xt = (xt1, . . . , xtp)
T with t = 1, . . . , n for which

the copula associated with (Xt−1,Xt) is C(ut−1,ut; Ω̃, λ̃, ν), we wish to estimate model param-

eters (Ω11,Ω12, δ1, ν) without assuming any parametric models for the marginal distributions.

We take the usual approach to estimate a marginal distribution Fi(xi) by an appropriate

parametric estimator, or a nonparametric estimator - such as a kernel estimator [14], a local

linear estimator [15], or the classical and simple empirical cumulative distributional function

(ECDF). In the case of ECDF, the uit = Fi(xit) is estimated by the normalized rank of xit

among xi1, . . . , xin, that is ût = rank(xt)/(n+ 1).

As an extension of the maximum pseudo likelihood method [16] to the Markovian case, the

maximum pseudo likelihood estimator of (Ω̃, δ̃, ν) is defined by the maximizer of the pseudo

log-likelihood function:

l(Ω̃, δ̃, ν; û1, . . . , ûn) = log c(û1; Ω11,λ1(2), ν) +
n∑

t=2

log c(ût|ût−1; Ω̃, λ̃, ν). (4.1)

When maximizing this pseudo log-likelihood function, we face the same two problems as

stated in [8, Section 3.1]. First, computing the log-likelihood function given in Eq. (4.1) requires

computing univariate ST quantile functions, as shown in Eq. (2.2). The brute force computation

of the (100ûit)th quantile of the i-th marginal distribution of STp(0p,Ω11,λ1(2), ν) is to carry out

the inverse probability integral transform for each ûit with i = 1, . . . , p and t = 1, . . . , n, resulting

in p × n inverse probability integral transforms in total. If implemented without resorting to a

fast algorithm such as a monotone interpolator as in [8], each of these p× n inverse probability

integral transforms needs to numerically solve a root finding problem involving integral equation -

which is time consuming. The second problem is that the correlation matrix Ω̃ in Eq. (3.1) should

be positive semi-definite and numerical optimization which directly enforces such constraints can

be complicated.

To overcome the first problem - computational burden in finding quantiles, Azzalini and Cap-

itanio [9] used a monotone interpolator implemented by a piecewise cubic Hermite interpolating

polynomial. Note that the ith variate of the pseudo sample has the values of (ûi1, . . . , ûin). Let

pi1 = min
t=1,...,n

ûit and pim = max
t=1,...,n

ûit.

For the given set of p-variate ST parameters (Ω11, λ1(2), ν), for its i-th marginal distribution
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ST1(0, 1, ζ̃i, ν), we obtain the (100pi1)-th and (100pim)-th quantiles

ỹi1 = ST−1
1 (pi1; 0, 1, ζ̃i, ν) and ỹim = ST−1

1 (pim; 0, 1, ζ̃i, ν)

by numerical root finding algorithm such as Newton-Raphson iterations to solve for y for given

p = pi1 and p = pim in the problem ST1(y; 0, 1, ζ̃i, ν)− p = 0, respectively. We then choose the

interpolating quantiles ỹik’s by m equally spaced points in [ỹi1, ỹim]:

ỹik = ỹi1 +
k − 1

m− 1
(ỹim − ỹi1), k = 1, . . . ,m,

and calculate their corresponding probability integral transform

p̃ik = ST1(ỹik; 0, 1, ζ̃i, ν), k = 1, . . . ,m.

Numerical experiments show that the monotone interpolator computes the quantiles efficient-

ly and accurately.

To overcome the second problem - complexity in ensuring positive semi-definiteness of the

correlation matrix, Yoshiba [8] used the hyperspherical reparameterization of its Cholesky fac-

tor [17–20]. For a normal or a multivariate Student-t distribution model, the consistency and

asymptotic normality of the maximum likelihood estimators of the hyperspherical coordinates

or angles for a structured correlation matrix were established in [20]. This reparameterization

method is adopted here for the AC skew-t Markov model parameter estimation.

4.1. A monotone interpolator for fast computing of univariate ST quantiles

The pseudo log-likelihood function in terms of Eq. (4.1) can be expressed as

l(Ω̃, δ̃, ν; û1, . . . , ûn)

=
n∑

t=2

log
g(yt−1,yt; Ω̃, λ̃, ν)

g(yt−1; Ω11,λ1(2), ν)
∏p

i=1 g1(yit; 0, 1, ζ̃i, ν)

=

n∑
t=2

{
log g(yt−1,yt; Ω̃, λ̃, ν)− log g(yt−1; Ω11,λ1(2), ν)−

p∑
i=1

log g1(yit; 0, 1, ζ̃i, ν)
}
.

For this formulation, only the set of quantiles {yt, t = 1, . . . , n} of the univariate marginal dis-

tributions of STp(Ω11,λ1(2), ν) are needed, for which the monotone interpolator can be used to

compute them.

4.2. Hyperspherical reparameterization of the Cholesky factor of the extended cor-

relation matrix

Let R̃ denote the extended correlation matrix of the AC skew-t Markov model (3.2):

R̃ =

[
1 δ̃T

δ̃ Ω̃

]
.

Its symmetry and positive semi-definiteness allow a Cholesky decomposition: R̃ = LLT , where
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L is a lower triangular matrix with all elements in [−1, 1], given as

L =



1 0 0 . . . 0

l21 l22 0 . . . 0

l31 l32 l33 . . . 0

l41 l42 l43 . . . 0
...

...
... . . .

...

l2p+1,1 l2p+1,2 l2p+1,3 . . . l2p+1,2p+1


.

The hyperspherical reparameterization of L in matrix form is

L =



1 0 0 . . . 0

cos θ21 sin θ21 0 . . . 0

cos θ31 cos θ32 sin θ31 sin θ32 sin θ31 . . . 0

cos θ41 cos θ42 sin θ41 cos θ43 sin θ42 sin θ41 . . . 0
...

...
... . . .

...

cos θ2p+1,1 cos θ2p+1,2 sin2p+1,2 cos θ2p+1,3 sin θ2p+1,2 sin θ2p+1,1 . . .

2p∏
k=1

sin θ2p+1,k


.

The angles θij measured in radians for i > j are required to be restricted to the range (0, π) so

that the R̃ has positive diagonal entries and hence its Cholesky factor L is unique [19].

4.3. Constrained maximum pseudo log-likelihood estimator

The AC Skew-t Markov model imposes the constraints Ω11 = Ω22, δ1 = δ2 on the model

parameters (Ω̃, δ̃, ν) due to the Markov property. But to ensure the positive semi-definiteness of

the extended correlation matrix R̃, the hyperspherical reparameterization of its Cholesky factor

L is utilized. The original model parameter Ω̃ and δ̃ are nonlinear functions of the hyperspherical

coordinates θ = (θij , 1 ≤ j < i ≤ (2p + 1)). Therefore the constraints Ω11 = Ω22, δ1 = δ2 are

nonlinear in terms of θ.

The maximum pseudo log-likelihood estimator θ̂ and ν̂ in constrained parameter spaces

maximizes the pseudo log-likelihood

l(θ, ν; û1, . . . , ûn)

=
n∑

t=2

{
log g(yt−1,yt; Ω̃, λ̃, ν)− log g(yt−1; Ω11,λ1(2), ν)−

p∑
i=1

log g1(yit; 0, 1, ζ̃i, ν)
}

Subject to

0 < θij < π, for 1 ≤ j < i ≤ (2p+ 1),

Ω11 = Ω22, δ1 = δ2, ν > 0.

This nonlinear constrained optimization problem can be solved by the interior point algorithm

[21]. MATLAB optimization toolbox’s fmincon() function with interior point algorithm option

[22] is called to solve the above problem.
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5. Monte-Carlo simulation

The benchmark parameters in a trivariate AC skew-t copula Markov Model for Monte-Carlo

simulation listed in Table 1 is based on the estimated parameters for the empirical data analysis

in the next section. The Nikkei225, S&P500 and DAX daily return data {x1, . . . ,xn} from 1 April

2010 to 31 March 2015 are used to estimate the pseudo observations {u1, . . . ,un}. The pseudo

observations {uj1, . . . , ujn} (j = 1, 2, 3) are estimated by the normalized ranks of {xj1, . . . , xjn}.

Σ11 Σ12 δ ν 1 0.48 0.40

0.48 1 0.62

0.40 0.62 1


−0.04 −0.04 0.01

0.14 −0.09 −0.04

0.28 0.16 0.01


−0.21

0.03

−0.15

 4.34

Table 1 Benchmark parameters in a trivariate AC skew-t copula Markov model

n
RMSE of the lower

RMSE of Σ̂12 RMSE of δ̂ RMSE of ν̂
triangular matrix of Σ̂11

500

[
0.0392

0.0433 0.0309

] 0.0598 0.0501 0.0565

0.0478 0.0506 0.0516

0.0457 0.0490 0.0580


0.14350.1365

0.1427

 0.4638

2000

[
0.0198

0.0225 0.0151

] 0.0296 0.0250 0.0279

0.0253 0.0241 0.0258

0.0251 0.0244 0.0292


0.06960.0704

0.0731

 0.2332

Table 2 Root mean squared errors of the parameter estimates displayed in the shape of their

corresponding parameters for the AC skew-t copula Markov model

Two different sample sizes n = 500, 2000 are considered. In one replication of the simu-

lation, for the benchmark parameters at the given sample size, we generate the pseudo sample

{u1, . . . ,un} using the Algorithm discussed in Section 3. The initial value for Ω̃ is the identity

matrix. The initial value for δ̃ is the zero vector. The initial value for ν is 8. For each sample

size setting, we replicate the experiment 500 times. The quality of a copula parameter estimate,

say ν̂, of the true copula parameter, say ν, is measured by the root mean squared error:

RMSE(ν̂) =

√√√√ 1

500

500∑
i=1

(
ν̂(i) − ν

)2
,

where ν̂(i) is the parameter estimate for the ith replication of the simulation. In Table 2, the

RMSE of the parameter estimates decreases as the sample size n increases - which is expected.

The RMSE of the skewness parameter estimator δ̂ are larger than those of the correlation pa-

rameter estimators ρ̂ij , especially for n = 500, but they follow the general pattern of decreasing

with increasing sample size.
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6. Empirical data analysis

We apply the proposed method to estimate the trivariate AC skew-t copula parameter for

Nikkei225, S&P500 and DAX daily return data under Markov Model. For unfiltered returns we

compare the fits of the AC skew-t copula, skew-Normal copula [23] and t-copula under Markov

Model with the AC skew-t copula under iid assumption.

Table 3 shows the Log-likelihood, AIC and BIC of the 4 models for unfiltered five-year daily

returns from 1 April 2005 to 31 March 2015 (sample size n = 1188). The corresponding Table 4

is for unfiltered 10-year daily returns from 1 April 2005 to 31 March 2015 (n = 2367). In both

Tables 3 and 4, the AC skew-t copula Markov model attains the lowest AIC or BIC values among

the 4 copula models, thus is the best model among them in terms of AIC or BIC.

Skew-t Skew-Normal Student-t Skew-t

Markov Markov Markov iid

Log-likelihood 696.5 595.5 683.6 526.9

AIC -1361.0 -1161.0 -1341.2 -1043.8

BIC -1279.7 -1084.8 -1275.2 -1018.4

Table 3 Copula Model fit comparison for daily return data from 1 April 2010 to 31 March 2015

Skew-t Skew-Normal Student-t Skew-t

Markov Markov Markov iid

Log-likelihood 1626.7 1203.1 1596.8 1108.8

AIC -3221.3 -2376.2 -3167.7 -2207.6

BIC -3129.0 -2289.6 -3092.7 -2178.7

Table 4 Copula Model fit comparison for daily return data from 1 April 2005 to 31 March 2015

7. Conclusion

This paper extends the skew-t copula model in [8] to a multivariate Markov process in

continuous state space [3]. In the empirical study with unfiltered daily returns for the three

stock indices - Nikkei225, S&P500 and DAX - we show that the AC skew-t copula Markov model

provides a better fit than the skew-Normal copula Markov or t-copula Markov model, and AC

skew-t copula model without Markov property.

Recently, D’Amico and Petroni [24] applied copula based multivariate semi-Markov models

to high-frequency finance. In particular, they used the Gumbel copula to preserve the cross-

correlation between time series. It would be interesting to apply the skew-t copula Markov

model proposed in this article to high-frequency finance.
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