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1. Introduction

Denote by I' a finite connected undirected graph with vertex set VI' and edge set ET.
For a positive integer s, an s-arc of T' is an (s + 1)-tuple (vg,v1,...,vs) of vertices such that
(vi—1,v;) € ET for 1 < i < s and v;—1 # viq1 for 1 < i < s—1. Let Autl’ denote the full
automorphism group of I'. If G < Autl’ is transitive on VI' and on the set of s-arcs of I', then I"
is called a (@, s)-arc-transitive graph. Further, if G < Autl is transitive on VT and regular on
the set of s-arcs of T, then T is called a (G, s)-arc-regular graph. In particular, if G itself is the
full automorphism group, then a (G, s)-arc-regular is simply called an s-arc-regular graph.

The class of s-arc-regular graphs is closely connected to some important classes of combi-
natorial constructions, such as regular Mobius maps, near-polygonal graphs, and half-transitive
graphs. There is a remarkable observation that, if a graph acts s-arc transitively on a graph for
s > 2, the vertex stabilizer is 2-transitive on the neighbors of that vertex. Thus the problems
of classifying all finite 2-arc-transitive graphs, in particular, the graphs with square-free order,
are highly attractive, and they have received considerable attentions [1-7]. In particular, the
cases of 2-arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are
classified in 1999 (see [3,4]). And we have got some symmetric results on graphs with square-free
order [8-12].

This paper aims to get a classification of (G, 2)-arc-regular graphs with square-free order

where G is an almost simple group. The following is our main result.

Theorem 1.1 Let I' be a (G, 2)-arc-regular graph of square-free order, and G is an almost
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simple group. Then the graph is isomorphic to one of the Coset graphs Cos(G,Gqs,Go9Gy)

where G and G, are listed as follows

G Gao IT'(a)| | VT Remarks
Ji 23:7 8 |[3x5x11x19
M, 32 Qg 9 | 2x5x11
PSL(2, q) A, PR CE) g==+3 (mod 8) and ¢>5
PSL(2,q) | (Z4: Z4-1) X Zyg—1 q %1 q=p? where p is odd prime
PSL(3,q) Zgz: Zy2q q? @?+q+1 q=p? where p is odd prime

Table 1 Two-arc-regular graphs admitting almost simple group

This paper is organized as follows. Section 2 collects several preliminary results relating to
this paper. In Section 3, we prove the main theorem by working out the corresponding soc(G), G,

and constructing the corresponding graphs I' = Cos(G, Gy, GogG,) which are 2-arc-regular.

2. Preliminaries

In this section, we collect some notations and results which will be used later. For an
abstract group G, a subgroup H < G is said to be core free if no non-trivial normal subgroups
of GG is contained in H. For a subset S C G and a core free subgroup H of GG, the coset graph
I' = Cos(G, H,HSH) is defined as the digraph with vertex set VI' := [G : H] = {Hz|z € G}
such that Hz is adjacent to Hy if and only if yz=! € HSH. It easily follows that each element
g € G induces an automorphism of I' acting by right multiplication, this is for all x € G,

g:Hx— Hxg.

In the coset action, G is faithful on VT', and so we may assume that G < Autl’. The following

two lemmas collect some properties about coset graphs.

Lemma 2.1 ([13, P303, Theorem 11.1]) Let G be a finite group with a core-free subgroup H and
a 2-element g. Then the graph I = Cos(G, H, HgH) is a finite, connected, (G, 2)-arc-transitive
graph with G transitive on vertices (acting by right multiplication) if and only if

g¢ Ng(H),g° € H,(H,g) =G,

and the action of H on [H : H N HY| by right multiplication is 2-transitive.

Given a vertex a € VT, the stabilizer G,, induces an action on the neighborhood I'(«). Let
GE(O‘) be the group induced by G,.

Lemma 2.2 ([13, P297, Lemma 9.4]) Suppose that the graph I is G-vertex-transitive and let
a € VI'. Then T is (G, 2)-arc-transitive if and only if GE(‘*) is 2-transitive.
To classify the (G, 2)-arc-regular graphs of square-free order, where G is an almost simple

group, we also need two lemmas regarding finite non-abelian simple groups.
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Lemma 2.3 ([14, P485, Theorem|) If G is a nonabelian simple group with abelian Sylow
2-subgroup, then one of the following holds.

(1) @G is isomorphic to PSL(2,q),q > 3,q = 3,5 (mod 8), or ¢ = 2™;

(2) @G is isomorphic to Jy;

(3) G is of Ree type.

The 2-rank mo(X) of X is the maximum rank of an abelian 2-subgroup A of X (the rank
of A is by definition the number of factors in a direct product decomposition of A into cyclic

subgroups).

Lemma 2.4 ([15, P72, Theorem 1.86]) If G is a simple group of 2-rank at most 2, then
G = PSL(2,q) with ¢ > 5 is odd, PSL(3, q) with q is odd, Us(q) with q is odd, Us(4), A7 or Mi;.

3. The proof of the main Theorem

Let I" be a (G, 2)-arc-regular graph of square-free order, where G is an almost simple group
and Let L = soc(G). From Lemma 2.2, it follows that G, is a sharply 2-transitive permutation
group on I'(a). Then G, < AGL(d,p) where p is a prime and d > 1. Further G, = N : H,
where N = Zf,l, and H = G for some 3 € I'(a) and |H| = p? — 1. We split the proof in two
cases.

Case 1. p=2.

Let P be a Sylow 2-subgroup of G. Then P is isomorphic to Z¢ or Z¢.Z,, since |G : G| is
square-free. There are two subcases. At first, we assume |P : N| = 1. That is, P is elementary
abelian. It follows that by Lemma 2.3, L is isomorphic to PSL(2,q) with ¢ > 3 and ¢ = £3
(mod 8), PSL(2,2™), J; or Ree(3%). We shall analyze these candidates in the following,.

Suppose that L = PSL(2, ¢) where ¢ > 3 and ¢ = +3 (mod 8). Let ¢ = p’d for a prime p’ and
p’ # 2, dis odd. Since L < G < Aut(L) and a Sylow 2-subgroup of L is isomorphic to Z2 while a
Sylow 2-subgroup of Aut(L) is isomorphic to a dihedral group of order 8, it follows that P & Z3
and G, = Ay. Let G = PSL(2,¢).Z; where f|d. Since |G : G| = W is square-free, we
have f = 1 and ¢ = p’ is prime. That is G = PSL(2,p’) where p’ > 3 and p’ = £+3 (mod 8) is
prime and G, = A4. We can construct an infinite family of (G, 2)-arc-regular graphs of square-
free order. Let G; = PSL(2,¢;) where ¢; > 3 and ¢; = 3,5 (mod 8) are primes, and let H; be a
subgroup of G; with H; = A4. Then there exists a 2-element g; € G; such that G; = (H;, g;) and
H; N H;% = Z3. Note that, for each 4, the triple G;, H;, g; satisfies the conditions of Lemma 2.1,
and hence the graph I'(i) = Cos(G;, H;, H;g; H;) is connected, G;-vertex-transitive, and (G, 2)-
arc-transitive of valency 4. Moreover, G, is 2-transitive on I'(«), and the order of G, is 12, thus

q(g+1)(g—1)
51— is square-free,

the graph we constructed is (G;,2)-arc-regular. Moreover, when n =
we constructed a class of (G, 2)-arc-regular graphs of square-free order.

Suppose that L = PSL(2,2™). Since L < G < Aut(L), it follows that P & ZJ* and G, =
Z3" . H where |H| = 2™ — 1. We shall prove there is no (G, 2)-arc-regular graph corresponding
to this kind of group.

We assume G = L.Zy, then f|(m,2"™ —1). Further we can assume f is prime, otherwise
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there is a prime f’ such that f’|f and f'|(m,2™ — 1).

Suppose fi*1 || 2™ — 1 (where ¥ || n means the power of [ dividing n is at most k), and
2m — 1 = kf*! where (k, f) = 1. Then

H = (Zy x Zs:).Zy = ((a) x (b).(c) = (a) x (bc)
where o(a) = k, o(b) = f* and o(c) = f. Since o(bc) = fi*! and H centralises no elements of
ZPANA1}, Go =2 Z : H= ZT : ({(a) x (be)) and
Nir(H) < Np({a)) = Np({(Zk)) = Da@m_1).
Let g € N (H) be an involution,
g:a—a ' b—b L

Then consider the induced action of g on Ny ({a))/{a) and Np({a))/(a) x (b), denoted by g and
g, respectively. Then
g: Nr({(a))/(a) — Nir({a))/(a),
bec — (be)*
and
9" : Ni.({a))/{a) x (b) — Ni((a))/(a) x (b),

d — ().

(=l

Since o(c) = f, we have t = 1 (mod f). If t = 1, then b&’ = b9¢9 = b=1¢ = be. Thus b~! =
b= b"!, which is impossible. So let t = [f + 1, then

(be)t = (be)/* = (be)!/ - (be).

)

Since o(b) = f,
b= T 1< i< fo 1.

To simplify, we omit the symbol ‘-’. That is
(be)" = (be)T+ = (be)'T - (be)

and
b =p T 1< i< fo 1.

Then it follows that
(be)? = bebe™'e? = b b1 2,

(be)® = beb? " 1B = b pIHI T DFAHIF T B,

(be)! = b BT T DF I T e (g

If we let 2z := 14 5f*!, then

(be)f = presie s s
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21

o -
Thus (be)/+1 = b= "+1e = b1, that is b==1 "t = b=, Then

[(L+f7HF —1l==2jf"" (mod f7),

which is impossible, since f?|[(147f""*)f — 1]l but f? | jf*~'. Thus there is no (G, 2)-arc-regular
graph corresponding to this kind of group.

Suppose L = J;. Then by Atlas [16], we have G = J; and G, < M where M is a maximal
subgroup of J;. Since |G| = 2¢(2% — 1) for some d > 1, it follows that G, = Z2.Z3 or
Go = Z3:Z7. For the former case, G, < PSL(2,11) and Gop = Zz. Then there exists
no element g € Ng(Gap) \ No(Go) and g? € Zs. For the latter case, there is an involution
g € Ng(Gap) = Z7: Zg such that < Go,g >= G and G, acts 2-regularly on |I'(a)|. So the
corresponding graph I' = Cos(G, G4, Ga9Ga) is (G,2)-arc-regular graph of square-free order.
Further, the graph is given in line 2 of our main Theorem 1.1.

Suppose that L = Ree(3?™*1) for some integer m. Then |L| = ¢3(¢* + 1)(¢ — 1), so 3°||L|.
Therefore, |G : G| is not square-free. Thus there is no (G, 2)-arc-regular graph of square-free
order for this case.

Now we assume that P = Z¢.7, = Q.Z, where Q = Z¢, we shall analyze two conditions
based on d = 2 and d > 3. For these cases, there is no corresponding (G, 2)-arc-regular graphs
of square-free order.

If d = 2, then L = soc(G) has 2-rank 2, then by Lemma 2.4, L = PSL(2,q) (g is odd, and
q > 5), PSL(3,q) or Us(q) (q is odd), Us(4), A7 , or My;. As an example, we prove the case
L = Us(q) only, the others can be proved by similar arguments and checking by Atlas [16]. If
L 22 U;(q) where q = r¢ for an odd prime r, it is obvious that 23||G : G, | if ¢ = 3, and ¢3||G : G|
if ¢ > 3, that is, there is no corresponding (G, 2)-arc-regular graph.

If d > 3, let X = Ng(Q), then G,, P < X, and |G : X| is odd square-free. Let Y3 and
Y1 be the subgroups of G such that X <Y, < Y; < G, and soc(Ys) # soc(Y7) = soc(G) = L.
Furthermore, Y3 is maximal in Y, that is Y] acts faithfully and primitively on [Y; : Y3]. Thus
we can read out some information about Y7 from [17]. Suppose there exists a (G, 2)-arc-regular
graph for corresponding group G, we can get that the following three conditions with respect to
the four tables in [17] must be satisfied.

(1) n is odd square-free.

(2) It G =Y, = L, then |G4 : G4 is even square free, where G is the stabilizers in the four
tables.

(3) It G=L.01,Y1 = L.Os, and G, < Lg where 1 < Oy < Oy, then |Ls : G| is even square
free.

Using the above three conditions and carefully computing the orders of the groups occurring
in Tables [17] one by one, we can get that for all these groups, there exists no corresponding
(G, 2)-arc-transitive graph.

Case 2. p # 2.

Let P be a Sylow 2-subgroup of G. Then P = Q).Z5, where @ is a Sylow 2-subgroup of H.

Since H has only one involution by the structure of sharply 2-transitive graphs in [18], it follows
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that P has at most 2-rank-2. By Lemma 2.4, L = soc(G) is isomorphic to PSL(2, q), where ¢
is odd and ¢ > 5, PSL(3,q) or Us(q) with ¢ is odd, Us(4), A7, or M7;. We shall analyse these
candidates one by one in the following.

Suppose that L = PSL(2,q) with ¢ = r¢ and r is an odd prime number. Now G, = Zg :
H. Suppose e > 1. Then r||Gql, hence Go = (Z%: Zya_y) X Zya_y. Suppose e = 1. Then
|G|lq(qg + 1)(g — 1), and p%(p? — 1)|g(q + 1)(q — 1), since p and ¢ are two odd prime numbers,
d=1,g=p,and Gy = (Z,: Zp—1) X Zp_1. In both cases, we get Go = (Z: Zg—1) X Zg_1.
There is an involution g in Z,_; satisfying the conditions in Lemma 2.1, so the corresponding
graph T' = Cos(G, Gy, GogGy) is (G, 2)-arc-regular graph, which occurs in line 5 of of our main
Theorem 1.1.

In order to analyze the following two cases, we need to use Zsigmondy Theorem [19]. If
a > b > 0 are coprime numbers, then for any natural number n > 1, there is a prime number p
that divides a” —b™ and does not divide a¥ —b* for any k < n, with two exceptions: (1)a =2,b=1
and n = 6; or (2) a+ b is a power of two, and n = 2.

Suppose that L = PSL(3, ¢) where ¢ = 7¢ and r is an odd prime number. Then L, < M for
a maximal subgroup of G. If L, < Py = [¢*].GL(2,q)/Z(3,4-1), then

Go < ([¢°)-GL(2,9)/Z(3,4-1))-0,0 < Zo.Ze.Z(3 4—1).-
Since G = Z% : H where |H| = p® — 1, it follows that

Pl = Dl (g+1)(g—1)2 x 2 x e

3(g+1)(qg—1)*x2xe
and T
p? = p3¢ = ¢, s0 p?—1 = ¢®—1, which does not divide |G/, this is not possible. Thus d = 3e—1.

is square-free, then p|q®, that is plg = r¢, d > 3e — 1. If d = 3e, then

If e > 2, then p? = p?¢~1, ¢ = p?*!. By Zsigmondy Theorem, there exists a prime [ such that
I| pt —1 but I { p? —1, it follows that 12 | |G : G|, that is |G : G4 is not square-free.
Therefore, e = 1. That is L = L3(q) with ¢ prime. Then

Ga S ([qz]GL(2,q)/Z(3,q_1))0,0 S ZQ.Z(qu_l).

By straightforward computation, it follows that |G.| = ¢*(¢> — 1). So (Ga)y < GL(2,q) or
(Ga)g < GL(2,9)/Z(3,4q-1)-Z(3,4—1)- For the former case,

(Ga)q’ = Zq2717Ga = Zq2 : Zqul-

In this case, there is an involution g in Z,2_; satisfying the conditions in Lemma 2.1, so the
corresponding graph I' = Cos(G, Gy, GagG.) is (G, 2)-arc-regular graph, which occurs in line
6 of our main Theorem 1.1. For the latter case, (3,q — 1) = 3, then we can get 32||G : G/,
contrary to that |G : G| is square-free.

As examples, we prove the cases L = A; and L = Mj; only, the others can be proved by
similar arguments and checking by Atlas or GAP software.

Suppose L = A7. Then G = A7 or S;. And G, < M for a maximal subgroup of G. Since
|G| = p¥(p? — 1) for some prime p # 2 and |M : G,| is square-free. However, by Atlas [16]
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there is no maximal subgroup of G which contains such a subgroup. It follows that there is no
(G, 2)-arc-regular graph of square-free order for this group.

Suppose L = My;. Then by Atlas [16], we have G = My, and G, < M for a maximal
subgroup of My;. Since |G| = 24(2¢—1) for some d > 1, it follows that Gy, = Z2 : Qs, Gap = Qs.
There is an involution g € Ng(Gag) = Qs.2 such that (G4, g9) = G and G, acts 2-regularly on
IT'(c)|. So the corresponding graph I' = Cos(G, G4, Go9Ga) is (G, 2)-arc-regular graph of square-

free order which is given in line 3 of our main Theorem 1.1. O
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