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1. Introduction

Denote by Γ a finite connected undirected graph with vertex set V Γ and edge set EΓ.

For a positive integer s, an s-arc of Γ is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices such that

(vi−1, vi) ∈ EΓ for 1 ≤ i ≤ s and vi−1 ̸= vi+1 for 1 ≤ i ≤ s− 1. Let AutΓ denote the full

automorphism group of Γ. If G ≤ AutΓ is transitive on V Γ and on the set of s-arcs of Γ, then Γ

is called a (G, s)-arc-transitive graph. Further, if G ≤ AutΓ is transitive on V Γ and regular on

the set of s-arcs of Γ, then Γ is called a (G, s)-arc-regular graph. In particular, if G itself is the

full automorphism group, then a (G, s)-arc-regular is simply called an s-arc-regular graph.

The class of s-arc-regular graphs is closely connected to some important classes of combi-

natorial constructions, such as regular Mobius maps, near-polygonal graphs, and half-transitive

graphs. There is a remarkable observation that, if a graph acts s-arc transitively on a graph for

s ≥ 2, the vertex stabilizer is 2-transitive on the neighbors of that vertex. Thus the problems

of classifying all finite 2-arc-transitive graphs, in particular, the graphs with square-free order,

are highly attractive, and they have received considerable attentions [1–7]. In particular, the

cases of 2-arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are

classified in 1999 (see [3,4]). And we have got some symmetric results on graphs with square-free

order [8–12].

This paper aims to get a classification of (G, 2)-arc-regular graphs with square-free order

where G is an almost simple group. The following is our main result.

Theorem 1.1 Let Γ be a (G, 2)-arc-regular graph of square-free order, and G is an almost
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simple group. Then the graph is isomorphic to one of the Coset graphs Cos(G,Gα, GαgGα)

where G and Gα are listed as follows

G Gα |Γ(α)| |V Γ| Remarks

J1 23 : 7 8 3× 5× 11× 19

M11 32 : Q8 9 2× 5× 11

PSL(2, q) A4 4 q(q2−1)
24 q = ±3 (mod 8) and q ≥ 5

PSL(2, q) (Zq : Zq−1)× Zq−1 q q+1
2 q = pd where p is odd prime

PSL(3, q) Zq2 : Zq2−1 q2 q2 + q + 1 q = pd where p is odd prime

Table 1 Two-arc-regular graphs admitting almost simple group

This paper is organized as follows. Section 2 collects several preliminary results relating to

this paper. In Section 3, we prove the main theorem by working out the corresponding soc(G), Gα

and constructing the corresponding graphs Γ = Cos(G,Gα, GαgGα) which are 2-arc-regular.

2. Preliminaries

In this section, we collect some notations and results which will be used later. For an

abstract group G, a subgroup H ≤ G is said to be core free if no non-trivial normal subgroups

of G is contained in H. For a subset S ⊆ G and a core free subgroup H of G, the coset graph

Γ = Cos(G,H,HSH) is defined as the digraph with vertex set V Γ := [G : H] = {Hx|x ∈ G}
such that Hx is adjacent to Hy if and only if yx−1 ∈ HSH. It easily follows that each element

g ∈ G induces an automorphism of Γ acting by right multiplication, this is for all x ∈ G,

g : Hx 7→ Hxg.

In the coset action, G is faithful on V Γ, and so we may assume that G ≤ AutΓ. The following

two lemmas collect some properties about coset graphs.

Lemma 2.1 ([13, P303, Theorem 11.1]) Let G be a finite group with a core-free subgroupH and

a 2-element g. Then the graph Γ = Cos(G,H,HgH) is a finite, connected, (G, 2)-arc-transitive

graph with G transitive on vertices (acting by right multiplication) if and only if

g /∈ NG(H), g2 ∈ H, ⟨H, g⟩ = G,

and the action of H on [H : H ∩Hg] by right multiplication is 2-transitive.

Given a vertex α ∈ V Γ, the stabilizer Gα induces an action on the neighborhood Γ(α). Let

G
Γ(α)
α be the group induced by Gα.

Lemma 2.2 ( [13, P297, Lemma 9.4]) Suppose that the graph Γ is G-vertex-transitive and let

α ∈ V Γ. Then Γ is (G, 2)-arc-transitive if and only if G
Γ(α)
α is 2-transitive.

To classify the (G, 2)-arc-regular graphs of square-free order, where G is an almost simple

group, we also need two lemmas regarding finite non-abelian simple groups.
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Lemma 2.3 ( [14, P485, Theorem]) If G is a nonabelian simple group with abelian Sylow

2-subgroup, then one of the following holds.

(1) G is isomorphic to PSL(2, q), q ≥ 3, q ≡ 3, 5 (mod 8), or q = 2m;

(2) G is isomorphic to J1;

(3) G is of Ree type.

The 2-rank m2(X) of X is the maximum rank of an abelian 2-subgroup A of X (the rank

of A is by definition the number of factors in a direct product decomposition of A into cyclic

subgroups).

Lemma 2.4 ( [15, P72, Theorem 1.86]) If G is a simple group of 2-rank at most 2, then

G ∼= PSL(2, q) with q ≥ 5 is odd, PSL(3, q) with q is odd, U3(q) with q is odd, U3(4), A7 or M11.

3. The proof of the main Theorem

Let Γ be a (G, 2)-arc-regular graph of square-free order, where G is an almost simple group

and Let L = soc(G). From Lemma 2.2, it follows that Gα is a sharply 2-transitive permutation

group on Γ(α). Then Gα < AGL(d, p) where p is a prime and d ≥ 1. Further Gα = N : H,

where N ∼= Zd
p , and H = Gαβ for some β ∈ Γ(α) and |H| = pd − 1. We split the proof in two

cases.

Case 1. p = 2.

Let P be a Sylow 2-subgroup of G. Then P is isomorphic to Zd
2 or Zd

2 .Z2, since |G : Gα| is
square-free. There are two subcases. At first, we assume |P : N | = 1. That is, P is elementary

abelian. It follows that by Lemma 2.3, L is isomorphic to PSL(2, q) with q ≥ 3 and q ≡ ±3

(mod 8), PSL(2, 2m), J1 or Ree(3e). We shall analyze these candidates in the following.

Suppose that L ∼= PSL(2, q) where q ≥ 3 and q ≡ ±3 (mod 8). Let q = p′
d
for a prime p′ and

p′ ̸= 2, d is odd. Since L ≤ G ≤ Aut(L) and a Sylow 2-subgroup of L is isomorphic to Z2
2 while a

Sylow 2-subgroup of Aut(L) is isomorphic to a dihedral group of order 8, it follows that P ∼= Z2
2

and Gα
∼= A4. Let G = PSL(2, q).Zf where f |d. Since |G : Gα| = q(q+1)(q−1)f

24 is square-free, we

have f = 1 and q = p′ is prime. That is G = PSL(2, p′) where p′ ≥ 3 and p′ ≡ ±3 (mod 8) is

prime and Gα = A4. We can construct an infinite family of (G, 2)-arc-regular graphs of square-

free order. Let Gi = PSL(2, qi) where qi ≥ 3 and qi ≡ 3, 5 (mod 8) are primes, and let Hi be a

subgroup of Gi with Hi
∼= A4. Then there exists a 2-element gi ∈ Gi such that Gi = ⟨Hi, gi⟩ and

Hi ∩Hi
gi ∼= Z3. Note that, for each i, the triple Gi,Hi, gi satisfies the conditions of Lemma 2.1,

and hence the graph Γ(i) = Cos(Gi,Hi,HigiHi) is connected, Gi-vertex-transitive, and (Gi, 2)-

arc-transitive of valency 4. Moreover, Giα is 2-transitive on Γ(α), and the order of Giα is 12, thus

the graph we constructed is (Gi, 2)-arc-regular. Moreover, when n = q(q+1)(q−1)
24 is square-free,

we constructed a class of (Gi, 2)-arc-regular graphs of square-free order.

Suppose that L ∼= PSL(2, 2m). Since L ≤ G ≤ Aut(L), it follows that P ∼= Zm
2 and Gα

∼=
Zm
2 : H where |H| = 2m − 1. We shall prove there is no (G, 2)-arc-regular graph corresponding

to this kind of group.

We assume G = L.Zf , then f |(m, 2m − 1). Further we can assume f is prime, otherwise
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there is a prime f ′ such that f ′|f and f ′|(m, 2m − 1).

Suppose f i+1 ∥ 2m − 1 (where lk ∥ n means the power of l dividing n is at most k), and

2m − 1 = kf i+1 where (k, f) = 1. Then

H = (Zk × Zfi).Zf
∼= (⟨a⟩ × ⟨b⟩).⟨c⟩ ∼= ⟨a⟩ × ⟨bc⟩

where o(a) = k, o(b) = f i and o(c) = f . Since o(bc) = f i+1 and H centralises no elements of

Zm
2 \ {1}, Gα

∼= Zm
2 : H ∼= Zm

2 : (⟨a⟩ × ⟨bc⟩) and

NL(H) ≤ NL(⟨a⟩) ∼= NL(⟨Zk⟩) = D2(2m−1).

Let g ∈ NL(H) be an involution,

g : a −→ a−1, b −→ b−1.

Then consider the induced action of g on NL(⟨a⟩)/⟨a⟩ and NL(⟨a⟩)/⟨a⟩ × ⟨b⟩, denoted by ḡ and

g′, respectively. Then

ḡ : NL(⟨a⟩)/⟨a⟩ −→ NL(⟨a⟩)/⟨a⟩,

b̄c̄ −→ (b̄c̄)t

and

g′ : NL(⟨a⟩)/⟨a⟩ × ⟨b⟩ −→ NL(⟨a⟩)/⟨a⟩ × ⟨b⟩,

c′ −→ (c′)t.

Since o(c) = f , we have t ≡ 1 (mod f). If t = 1, then b̄c̄
ḡ
= b̄ḡ c̄ḡ = b̄−1c̄ = b̄c̄. Thus b̄−1 = b̄,

b = b−1, which is impossible. So let t = lf + 1, then

(b̄c̄)t = (b̄c̄)lf+1 = (b̄c̄)lf · (b̄c̄).

Since o(b) = f i,

b̄c̄
−1

= b̄1+jfi−1

, 1 ≤ j ≤ f − 1.

To simplify, we omit the symbol ‘-’. That is

(bc)t = (bc)lf+1 = (bc)lf · (bc)

and

bc
−1

= b1+jfi−1

, 1 ≤ j ≤ f − 1.

Then it follows that

(bc)2 = bcbc−1c2 = b · b1+jfi−1

c2,

(bc)3 = bcb2+jfi−1

c−1c3 = b · b(1+jfi−1)+(1+jfi−1)2c3,

· · ·

(bc)f = b · b(1+jfi−1)+(1+jfi−1)2+···(1+jfi−1)f−1

.

If we let z := 1 + jf i−1, then

(bc)f = b1+z+z2+···zf−1

= b
zf−1
z−1 .
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Thus (bc)lf+1 = b
zf−1
z−1 ·l+1c = b−1c, that is b

zf−1
z−1 ·l+1 = b−1. Then

[(1 + jf i−1)f − 1]l ≡ −2jf i−1 (mod f i),

which is impossible, since f i|[(1+jf i−1)f −1]l but f i | jf i−1. Thus there is no (G, 2)-arc-regular

graph corresponding to this kind of group.

Suppose L ∼= J1. Then by Atlas [16], we have G = J1 and Gα ≤ M where M is a maximal

subgroup of J1. Since |Gα| = 2d(2d − 1) for some d ≥ 1, it follows that Gα
∼= Z2

2 .Z3 or

Gα
∼= Z3

2 : Z7. For the former case, Gα ≤ PSL(2, 11) and Gαβ
∼= Z3. Then there exists

no element g ∈ NG(Gαβ) \NG(Gα) and g2 ∈ Z3. For the latter case, there is an involution

g ∈ NG(Gαβ) ∼= Z7 : Z6 such that < Gα, g >= G and Gα acts 2-regularly on |Γ(α)|. So the

corresponding graph Γ = Cos(G,Gα, GαgGα) is (G, 2)-arc-regular graph of square-free order.

Further, the graph is given in line 2 of our main Theorem 1.1.

Suppose that L ∼= Ree(32m+1) for some integer m. Then |L| = q3(q3 + 1)(q − 1), so 39||L|.
Therefore, |G : Gα| is not square-free. Thus there is no (G, 2)-arc-regular graph of square-free

order for this case.

Now we assume that P ∼= Zd
2 .Z2

∼= Q.Z2 where Q ∼= Zd
2 , we shall analyze two conditions

based on d = 2 and d ≥ 3. For these cases, there is no corresponding (G, 2)-arc-regular graphs

of square-free order.

If d = 2, then L = soc(G) has 2-rank 2, then by Lemma 2.4, L ∼= PSL(2, q) (q is odd, and

q ≥ 5), PSL(3, q) or U3(q) (q is odd), U3(4), A7 , or M11. As an example, we prove the case

L ∼= U3(q) only, the others can be proved by similar arguments and checking by Atlas [16]. If

L ∼= U3(q) where q = re for an odd prime r, it is obvious that 23||G : Gα| if q = 3, and q3||G : Gα|
if q > 3, that is, there is no corresponding (G, 2)-arc-regular graph.

If d ≥ 3, let X = NG(Q), then Gα, P ≤ X, and |G : X| is odd square-free. Let Y2 and

Y1 be the subgroups of G such that X ≤ Y2 < Y1 ≤ G, and soc(Y2) ̸= soc(Y1) = soc(G) = L.

Furthermore, Y2 is maximal in Y1, that is Y1 acts faithfully and primitively on [Y1 : Y2]. Thus

we can read out some information about Y1 from [17]. Suppose there exists a (G, 2)-arc-regular

graph for corresponding group G, we can get that the following three conditions with respect to

the four tables in [17] must be satisfied.

(1) n is odd square-free.

(2) If G = Y1 = L, then |Gᾱ : Gα| is even square free, where Gᾱ is the stabilizers in the four

tables.

(3) If G = L.O1, Y1 = L.O2, and Gα ≤ Lᾱ where 1 < O2 ≤ O1, then |Lᾱ : Gα| is even square

free.

Using the above three conditions and carefully computing the orders of the groups occurring

in Tables [17] one by one, we can get that for all these groups, there exists no corresponding

(G, 2)-arc-transitive graph.

Case 2. p ̸= 2.

Let P be a Sylow 2-subgroup of G. Then P = Q.Z2, where Q is a Sylow 2-subgroup of H.

Since H has only one involution by the structure of sharply 2-transitive graphs in [18], it follows
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that P has at most 2-rank-2. By Lemma 2.4, L = soc(G) is isomorphic to PSL(2, q), where q

is odd and q ≥ 5, PSL(3, q) or U3(q) with q is odd, U3(4), A7, or M11. We shall analyse these

candidates one by one in the following.

Suppose that L = PSL(2, q) with q = re and r is an odd prime number. Now Gα
∼= Zd

p :

H. Suppose e ≥ 1. Then r||Gα|, hence Gα
∼= (Zd

p : Zpd−1)× Zpd−1. Suppose e = 1. Then

|G||q(q + 1)(q − 1), and pd(pd − 1)|q(q + 1)(q − 1), since p and q are two odd prime numbers,

d = 1, q = p, and Gα
∼= (Zp : Zp−1) × Zp−1. In both cases, we get Gα

∼= (Zq : Zq−1) × Zq−1.

There is an involution g in Zq−1 satisfying the conditions in Lemma 2.1, so the corresponding

graph Γ = Cos(G,Gα, GαgGα) is (G, 2)-arc-regular graph, which occurs in line 5 of of our main

Theorem 1.1.

In order to analyze the following two cases, we need to use Zsigmondy Theorem [19]. If

a > b > 0 are coprime numbers, then for any natural number n > 1, there is a prime number p

that divides an−bn and does not divide ak−bk for any k < n, with two exceptions: (1) a = 2, b = 1

and n = 6; or (2) a+ b is a power of two, and n = 2.

Suppose that L = PSL(3, q) where q = re and r is an odd prime number. Then Lα ≤ M for

a maximal subgroup of G. If Lα ≤ P1
∼= [q2].GL(2, q)/Z(3,q−1), then

Gα ≤ ([q2].GL(2, q)/Z(3,q−1)).O,O ≤ Z2.Ze.Z(3,q−1).

Since Gα
∼= Zd

p : H where |H| = pd − 1, it follows that

pd(pd − 1)|q3(q + 1)(q − 1)2 × 2× e

and q3(q+1)(q−1)2×2×e
pd(pd−1)

is square-free, then pd|q3, that is p|q = re, d ≥ 3e − 1. If d = 3e, then

pd = p3e = q3, so pd−1 = q3−1, which does not divide |Gα|, this is not possible. Thus d = 3e−1.

If e ≥ 2, then pd = p3e−1, q = pd+1. By Zsigmondy Theorem, there exists a prime l such that

l | pd+1 − 1 but l - pd − 1, it follows that l2 | |G : Gα|, that is |G : Gα| is not square-free.

Therefore, e = 1. That is L ∼= L3(q) with q prime. Then

Gα ≤ ([q2].GL(2, q)/Z(3,q−1)).O,O ≤ Z2.Z(3,q−1).

By straightforward computation, it follows that |Gα| = q2(q2 − 1). So (Gα)q′ ≤ GL(2, q) or

(Gα)q′ ≤ GL(2, q)/Z(3,q−1).Z(3,q−1). For the former case,

(Gα)q′ ∼= Zq2−1, Gα
∼= Zq2 : Zq2−1.

In this case, there is an involution g in Zq2−1 satisfying the conditions in Lemma 2.1, so the

corresponding graph Γ = Cos(G,Gα, GαgGα) is (G, 2)-arc-regular graph, which occurs in line

6 of our main Theorem 1.1. For the latter case, (3, q − 1) = 3, then we can get 32||G : Gα|,
contrary to that |G : Gα| is square-free.

As examples, we prove the cases L ∼= A7 and L ∼= M11 only, the others can be proved by

similar arguments and checking by Atlas or GAP software.

Suppose L = A7. Then G = A7 or S7. And Gα ≤ M for a maximal subgroup of G. Since

|Gα| = pd(pd − 1) for some prime p ̸= 2 and |M : Gα| is square-free. However, by Atlas [16]
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there is no maximal subgroup of G which contains such a subgroup. It follows that there is no

(G, 2)-arc-regular graph of square-free order for this group.

Suppose L = M11. Then by Atlas [16], we have G = M11 and Gα ≤ M for a maximal

subgroup ofM11. Since |Gα| = 2d(2d−1) for some d ≥ 1, it follows that Gα
∼= Z2

3 : Q8, Gαβ
∼= Q8.

There is an involution g ∈ NG(Gαβ) ∼= Q8.2 such that ⟨Gα, g⟩ = G and Gα acts 2-regularly on

|Γ(α)|. So the corresponding graph Γ = Cos(G,Gα, GαgGα) is (G, 2)-arc-regular graph of square-

free order which is given in line 3 of our main Theorem 1.1. 2
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