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Abstract Let G be a non-complete graph such that its complement G is r-partite. In this

paper, properties of the graph G are studied, including the Cohen-Macaulay property and the

sequential Cohen-Macaulay property. For r = 2, 3, some constructions are established for G to

be vertex decomposable and some sufficient conditions are provided for r ≥ 4.
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1. Introduction

Simplicial complexes are classical objects in combinatorial commutative algebra. Every sim-

plicial complex ∆ corresponds to monomial ideals, e.g., the facet ideal I(∆) and the Stanley-

Reisner ideal I∆. If ∆ is pure and vertex decomposable, then ∆ is pure and shellable, and I∆ is

Cohen-Macaulay. The motivation of this research comes from the following established results:

Theorem 1.1 ([1]) Let G be a bipartite graph with a vertex partition V (G) = {x1, . . . , xn} ∪
{y1, . . . , ym}. Then the following statements are equivalent:

(1) G is well-covered and vertex decomposable;

(2) G is well-covered and shellable;

(3) G is well-covered and constructible;

(4) G is Cohen-Macaulay;

(5) n = m, and there is a labeling such that

(a) {xi, yi} ∈ E(G) for each i;

(b) {xi, yj} ∈ E(G) implies i ≤ j; and

(c) for i < j < k, {xi, yj} ∈ E(G) and {xj , yk} ∈ E(G) imply {xi, yk} ∈ E(G).

Note that the implications (1) =⇒ (2) =⇒ (3) =⇒ (4) are well-known; the equivalence of (4)

with (5) is the classical [1, Theorem 3.4]. In order to derive (5) =⇒ (1), note that condition (b)

implies that yn is a weak shedding vertex, and one can use mathematical induction to conclude

that both Gr yn and GrNG[yn] are vertex decomposable. Thus G is well-covered and vertex
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decomposable.

Proposition 1.2 Let ∆ be a simplicial complex of dimension 1. Then the following statements

are equivalent:

(1) ∆ is pure and vertex decomposable;

(2) ∆ is pure and shellable;

(3) ∆ is pure constructible;

(4) ∆ is Cohen-Macaulay;

(5) ∆ is connected.

Again, the implications (1) =⇒ (2) =⇒ (3) =⇒ (4) are well-known. For the equivalence of

(4) and (5), one can refer to [2, Corollary 6.3.14]. For proving the implication (5) =⇒ (1), one

can use mathematical induction on the number of edges in ∆.

As a corollary of Proposition 1.2, it is known that for a non-complete graph G whose com-

plement G is bipartite, G is well-covered and vertex decomposable if and only if G is connected

as a graph.

In this paper, we study properties of the graph G whose complement G is r-partite for

r ≥ 3, and it is organized as follows. In Section 2, we recall some preliminaries on both graph

theory and combinatorics and in Section 3, some constructions of vertex decomposable graphs

are given for the graphs whose complements are r-partite, where r = 2, 3. In Section 4, the vertex

decomposable property of the graphs is discussed for r ≥ 4, whose complements are r-partite.

2. Preliminaries

In this section, we recall some relevant definitions and results on graphs and simplicial com-

plexes, which are commonly used in combinatorial commutative algebra.

Recall that a simplicial complex ∆ on the vertex set [n] = {1, 2, . . . , n} is a collection of

subsets of [n] such that if F ∈ ∆ and E ⊆ F , then E ∈ ∆. Each F in ∆ is called a face,

and a facet F is a maximal face with respect to inclusion. A simplicial complex ∆ is called

pure if all facets have the same cardinality. The set of all facets of ∆ is denoted by F(∆) and, if

F(∆) = {F1, F2, . . . , Ft}, then ∆ can be written as ∆ = ⟨F1, F2, . . . , Ft⟩. The dimension of a face

F is dimF = |F | − 1 and the dimension of ∆ is defined by dim∆ = max{dimF |F ∈ ∆}. Recall
that the Alexander dual ∆∨ of a simplicial complex ∆ is defined by ∆∨ = {[n]r F |F /∈ ∆}.

For a face H of a simplicial complex ∆, recall the following notations, namely deletion and

link:

∆rH =: {F ∈ ∆ | H ∩ F = ∅},

lk∆(H) =: {F ∈ ∆ | H ∩ F = ∅, F ∪H ∈ ∆}.

Note that whenever H = {x} is a vertex, the notations are usually written as ∆r x and lk∆(x),

respectively. Recall the following concept of a vertex decomposable simplicial complex, which

is introduced by Provan and Billera [3] in the pure case and extended to the nonpure case by

Björner and Wachs [4, 5]:
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Definition 2.1 A simplicial complex ∆ over [n ] is called vertex decomposable, if either ∆ is a

simplex, or ∆ contains a vertex x such that the following requirements are satisfied:

(1) Both ∆r x and lk∆(x) are vertex decomposable, and

(2) No facet of lk∆(x) is a facet of ∆r x, or equivalently, ∆r x = ⟨ {F | x ̸∈ F ∈ F(∆)} ⟩.
A vertex x satisfying the conditions (1) and (2) is called a shedding vertex of ∆. If x only

satisfies the condition (2), then it is called a weak shedding vertex.

It is well known that a vertex cover of a graph G is a subset C of the vertex set V (G) such

that C ∩ {i, j} ̸= ∅ holds for all {i, j} ∈ E(G). A vertex cover is called minimal if no proper

subset of it is a vertex cover. An independent vertex set I of graph G is a subset of V (G) such

that there is no edge between any pair of vertices in I. An independent vertex set is called

maximal if there is no other independent vertex set of G containing it. Clearly, a subset C of

V (G) is a minimal vertex cover of G if and only if V (G) r C is a maximal independent vertex

subset of G. Recall also that a graph G is said to be well-covered, if all the minimal vertex covers

of G have the same cardinality. For a graph G, the cluster of all maximal independent vertex

sets is a simplicial complex, which is called the independent simplicial complex of graph G and

is denoted by Ind(G).

A translation in the language of graphs is restated in the following.

Definition 2.2 A graph G is called vertex decomposable if either it has no edges, or else has

some vertex x such that the following conditions hold:

(1) Both graphs G rNG[x] and G r x are vertex decomposable, where NG[x] is the union

of the neighbourhood NG(x) together with {x};
(2) For every independent vertex set S in GrNG[x], there exists some y ∈ NG(x) such that

S ∪ {y} is independent in Gr x.

A vertex x with above properties is called a shedding vertex of G. A vertex with the second

property is called a weak shedding vertex.

Following [6], a vertex v of a graph G is called codominated if there exists a vertex u ̸= v such

that NG[u] ⊆ NG[v]. In particular, a vertex which has an adjacent end vertex is codominated.

Lemma 2.3 ([5, Lemma 6] or [6]) A codominated vertex of a graph G is a weak shedding vertex

of G.

By Definition 2.2, we easily get the following general construction:

Theorem 2.4 Let G1 and G2 be two graphs with V (G1) ∩ V (G2) = ∅. Let Hi be an induced

subgraph of a graph Gi (i = 1, 2); and let u,w1, . . . , wr (r ≥ 1) be some additional vertices such

that {u,w1, . . . , wr} ∩ (V (G1) ∪ V (G2)) = ∅. Let L be an enlarged graph such that V (L) =

V (G1) ∪ {u,w1, . . . , wr} ∪ V (G2), in which each Gi is an induced subgraph of L, and

{{u,wi}, {u, h} | 1 ≤ i ≤ r, h ∈ V (Gi rHi) (i = 1, 2)} ∪ E(G1) ∪ E(G2) = E(L).

If each Hi and Gi are vertex decomposable, then L is also vertex decomposable.

Proof Note that LrNL[u] = H1 ∪H2 and Lr u is identical with G1 ∪G2 together with some
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isolated vertices wi. Any independent subset S of V (H1∪H2) can be enlarged to an independent

vertex set S ∪ {w1}, thus u is a shedding vertex of L, so L is vertex decomposable. 2
Vertex decomposable simplicial complexes and graphs are important in combinatorial commu-

tative algebra and combinatorial topology because they provide examples of shellable simplicial

complexes, while well-covered vertex decomposable graphs are further Cohen-Macaulay; refer

to [7–13] for related studies. It is known that each matroid is well-covered and vertex decom-

posable [14]. Furthermore, each vertex is a shedding vertex. Note that all chordal graphs are

also vertex decomposable. For each graph G and a clique partition π of V (G), an extension

graph Gπ of G is constructed (called a clique-whiskered graph of G), which is well-covered and

vertex decomposable [15]. As a generalization, a construction ∆χ is provided for each simplicial

complex ∆ and any s-coloring χ on ∆, and it is proved that all ∆χ are well-covered and vertex

decomposable simplicial complexes [16].

3. Vertex decomposable graphs whose complements are 3-partite

Let us begin with the following observation on graphs whose complement is bipartite:

Lemma 3.1 Let G be a non-complete graph whose complement is bipartite. Then G is not

well-covered if and only if there is a clone vertex in G, i.e., a vertex which is adjacent to all other

vertices.

Proof Note that dim Ind(G) = 1 and that G is a bipartite graph, thus G is not well-covered if

and only if Ind(G) has isolated vertices. The latter holds true if and only if there exists a clone

vertex in G. 2
Lemma 3.2 Let G be any vertex decomposable graph, and v a clone vertex in G. Then v is a

shedding vertex of G.

Proof Since v is a clone vertex, we have GrNG[v] = ∅, thus v is a weak shedding vertex of G

by Lemma 2.3. Therefore, it is only necessary to show that G r v is vertex decomposable. For

this, we use induction on |V (G)|.
Let w be any shedding vertex of G with w ̸= v. Then both G1 =: GrNG[w] and G2 =: Grw

are vertex decomposable, and for any independent subset S of V (G1), there exists a vertex

y ∈ NG(w) such that S ∪ {y} is independent in G2. Clearly, y ̸= v whenever S is nonempty.

Hence it follows from

(Gr v)r w = (Gr w)r v, GrNG[w] = (Gr v)rNGrv[w]

and induction on the vertex decomposable graph Grw that w is a shedding vertex of the graph

Gr v, therefore, Gr v is vertex decomposable. 2
Now the following result is an immediate corollary of Proposition 1.2 and the previous lemmas:

Proposition 3.3 LetG be any graph such thatG is bipartite. Let v1, . . . , vt be the clone vertexes

of G. Then G is vertex decomposable if and only if the complement of the graph Gr{v1, . . . , vr}
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is connected.

In the following we record further two immediate corollaries of Proposition 1.2.

Corollary 3.4 Let G be a non-complete graph consisting of two cliques A and B, with some

additional edges in between. If there exists a vertex w in B such that w is not adjacent to any

vertex of A, then G is vertex decomposable.

Proof We use induction on the number of clone vertices of G. If G contains no clone vertex,

then G is connected since A ⊆ NG(w). Thus, G is well-covered and by vertex decomposable by

Proposition 1.2. If G contains a clone vertex v1, then v1 ∈ B holds. Thus, G r v1 satisfies the

assumed condition and therefore, it is vertex decomposable by induction assumption. Conse-

quently, G is vertex decomposable. 2
Corollary 3.5 Let G be a non-complete graph consisting of two cliques A and B, with some

additional edges in between (called proper edges), such that |B| ≥ 3. Assume further that there

exists a proper edge e such that V (e) ∩ V (h) = ∅ holds for other proper edge h. If further,

there exists a vertex w ∈ B r V (e) such that w is a vertex of exactly one proper edge, then G is

well-covered and vertex decomposable.

Proof Clearly, there is no clone vertex in G, thus G is well-covered. Assuming further that

e = {x, y}, h = {w, u}, where {x,w} ⊆ B, {y, u} ⊆ A. We claim that G is connected since in G

we have the following edges:

{x, u}, {w, y}, {w, a}, {y, b}, ∀ a ∈ Ar {u}, ∀ b ∈ B r {x}.

Finally, it follows from Lemma 1.2 that G is well-covered and vertex decomposable. 2
In the remaining part of this section, a graph G is always assumed such that G is tripartite.

We introduce the following:

Definition 3.6 Let G be a graph whose complement is 3-partite. Then G is called quasi-dual-

connected if it satisfies the following inductive conditions: either G is a discrete graph or there

is a weak shedding vertex v such that the following conditions are fulfilled:

(1) The graph H =: GrNG[v] either satisfies |V (H)| ≤ 1, or is such that H is connected;

(2) The graph L =: G r v satisfies one of the following three conditions: (a) quasi-dual-

connected; (b) bipartite and L is connected; (c) |V (L)| ≤ 1.

By Proposition 1.2, we immediately have

Proposition 3.7 Let G be a graph whose complement is 3-partite. Then G is vertex decom-

posable if and only if it is quasi-dual-connected.

In the end of this section, Proposition 3.7 is applied to construct a series of vertex decom-

posable graphs whose complement is 3-partite.

Example 3.8 Let G1 be any vertex decomposable graph whose complement is 2-partite, with

parts A1 and B1.
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(1) Take any additional u11, w1i, where 1 ≤ i ≤ r1. Let G2 be a graph on the vertex set

V (G1) ∪ {u11, w11, . . . , w1,r1}, and let E(G1) ∪ [∪1≤j≤r1{u11, w1j}] ⊆ E(G2). Add some edges

between u11 and vertices of G1 in such a way that it makes G2rNG2 [u11] a vertex decomposable

graph. Then G2 will be a vertex decomposable graph whose complement is 3-partite, with parts

A2 = A1 ∪ {w11, . . . , w1r1}, B2 = B1, C2 = {u11}.

(2) Take any additional u21, w2i, where 1 ≤ i ≤ r2. Let G3 be a graph on the vertex set

V (G2) ∪ {u21, w21, . . . , w2,r2}, and let the edge set be E(G2) ∪ [∪1≤j≤r2{u21, w2j}] ∪ {u21, u11}.
Then G3 will be a vertex decomposable graph whose complement is 3-partite, with parts

A3 = A2 ∪ {u21}, B3 = B2 ∪ {w21, . . . , w2r2}, C3 = {u11}.

(3) Take any additional u31, w3i, where 1 ≤ i ≤ r3. Let G4 be a graph on the vertex set

V (G3) ∪ {u31, w31, . . . , w3,r3}, and let the edge set be E(G3) ∪ [ ∪
1≤j≤r3

{u31, w3j}] ∪ {u31, u21}.
Then G4 will be a vertex decomposable graph whose complement is 3-partite, with parts

A4 = A3, B4 = B3 ∪ {u31}, C3 = {u11, w31, . . . , w3r3}.

This process can be continued in a similar way until we have a large enough graph.

This construction is illustrated in the following simple example. Note that all the four graphs

are vertex decomposable, and it also follows by Theorem 2.4.

Figure 1 The enlargements of vertex decomposable graphs

4. Vertex decomposable graphs whose complements are r-partite (r ≥ 4)

Throughout this section, all graphs are assumed to be connected and non-complete, consisting

of several finite cliques with some additional edges in between. These additional edges are called

proper edges, i.e., a proper edge is the one that its related two vertices belong to distinct cliques.

If a vertex of a proper edge does not belong to another proper edge, then this vertex is called a

rigid vertex. If a proper edge has both rigid vertices, then this edge is called a rigid edge. If a

vertex is not used in any proper edge, it is called an improper vertex.

Proposition 4.1 Let G be a non-complete graph consisting of r cliques Ai (1 ≤ i ≤ r), together

with some additional edges. Assume further that of the r cliques, r− 1 cliques have an improper

vertex each. Then the graph G is vertex decomposable.
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Proof We use mathematical induction on r. For r = 2, it is vertex decomposable by Proposition

1.2. Now assume r ≥ 3, and suppose it is true for the r − 1 case. Assume further that each

of A2, . . . , Ar has an improper vertex. For r, take a vertex v ∈ Ar such that v is not an

improper vertex. Note that GrNG[v] is a non-complete graph consisting of r−1 cliques, having

r − 2 improper vertices in distinct cliques together with some additional edges, so it is vertex

decomposable. While, Gr v consists of r cliques with r− 1 improper vertices. Furthermore, for

any independent vertex set M of the graph G r NG[v], there is an improper vertex w ∈ N(v)

such that M ∪ {w} is an independent set of G r v. Note that G r v shares the same property

with G, thus mathematical induction can be applied to conclude that GrAr is a non-complete

graph consisting of r−1 cliques with some additional edges, of which r−2 cliques have improper

vertex each, so it is vertex decomposable. 2
Theorem 4.2 Let G be a non-complete graph consisting of r cliques A1, A2, . . . , Ar with some

additional edges. Assume further that there is one improper vertex w ∈ A1, and from A1 to each

Ai (2 ≤ i ≤ r) there exists a rigid edge. Then the graph G is vertex decomposable.

Proof Take any vertex v ∈ A1 such that v is a vertex of a rigid edge. Clearly, G rNG[v] is a

non-complete graph consisting of r − 1 cliques of which r − 2 cliques have an improper vertex

each, so it is vertex decomposable by Proposition 4.1. While, Grv consists of r cliques with some

additional edges, in which there are two cliques having an improper vertex each. Furthermore,

for any independent vertex set M of G r NG[v], there exists w ∈ NG(v) such that M ∪ {w} is

an independent vertex set of G r v. Then, we use mathematical induction on A1 to conclude

that Gr A1 is a graph consisting of r − 1 cliques and each clique has an improper vertex, so it

is vertex decomposable by [15, Lemma 3.2, Theorem 3.3]. 2
Proposition 4.3 Let G be a non-complete graph consisting of r cliques Ai (1 ≤ i ≤ r), with

some additional edges in between. Set

I = {Ai | 1 ≤ i ≤ r, and Ai contains improper vertices of G }, P = {A1, . . . , Ar}r I,

and assume |I| = m ≥ 1 and |P| = n ≥ 1. Then G is vertex decomposable if one of the following

conditions is satisfied:

(1) There exists an element A ∈ I and a subset S of P with |S| = n− 1, such that for each

B ∈ S, there is a rigid edge of G from A to B, and there is a vertex v in A which is adjacent to

a rigid vertex of B (∀B ∈ S).
(2) There exist A ∈ I and B ∈ P , and take v ∈ A and u ∈ B such that v is adjacent to

u, and every Ai ̸= B from P has two vertices rigid in G, one of which is adjacent to v and the

other is adjacent to u.

Proof For A ∈ I, there is an improper vertex w ∈ A. Take a vertex v ∈ A and consider

G r NG[v]. Clearly, G r NG[v] is a non-complete graph consisting of r − 1 cliques with r − 2

improper vertices, so by Proposition 4.1 it is vertex decomposable. While G r v consists of

r cliques with r − 1 improper vertices, so it is again vertex decomposable by Proposition 4.1.
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Furthermore, for any independent vertex set M of G r NG[v], clearly, there exists w ∈ NG(v)

such that M ∪ {w} is an independent vertex set of Gr v. This completes the proof. 2
Proposition 4.4 Let G be a non-complete graph consisting of r cliques Ai (1 ≤ i ≤ r), with

some additional edges in between. Assume that no Ai has an improper vertex in G. Then,

(1) G is vertex decomposable if the following two conditions are fulfilled:

(a) There exist some clique A1 and other r − 2 cliques Aj (2 ≤ j ≤ r − 1), such that

there is a vertex v in A1 which is adjacent to a rigid vertex of Aj (∀ 2 ≤ j ≤ r− 1), and for each

2 ≤ j ≤ r − 1, there is an edge in E(A1, Aj) which is rigid in the graph G.

(b) There exists a number j (2 ≤ j ≤ r−1), such that E(A1, Aj) contains one rigid edge

in G, and there exists a number t (t ̸= j, 2 ≤ t ≤ r), such that E(Aj , At) contains two edges

rigid in G.

or

(2) G is vertex decomposable if the following two conditions are fulfilled:

(c) There exists a couple, say {A1, A2}, such that v ∈ A1 and u ∈ A2, and v is adjacent

to u. And every Aj (j ̸= 1, 2) has two rigid vertices, one of which is adjacent to v and the other

is adjacent to u.

(d) There exists a number k (2 ≤ k ≤ r), such that E(A1, Ak) contains three edges rigid

in G.

Proof (1) Let Aj = A2 and At = A3, then e1 = {x1, y1}, e2 = {x2, y2} and e3 = {x3, y3}
are rigid edges, where x1 ∈ A1, {y1, x2, x3} ⊂ A2 and {y2, y3} ⊂ A3. For the vertex y1 ∈ A2,

the graph G r NG[y1] consists of r − 1 cliques with an improper vertex in A1, which satisfies

condition (1) of Proposition 4.3, so it is vertex decomposable. While, the graph Gr y1 consists

of r cliques with an improper vertex in A1, which satisfies condition (1) of Proposition 4.3 also,

so it is also vertex decomposable. For any independent vertex set M of G r NG[y1], we have

{x2, x3} ⊂ NG(y1), if M ∩ V (e2) = ∅ holds. In this case, M ∪ {x2} is an independent set of

G r y1; if M ∩ V (e2) ̸= ∅ holds, then M ∪ {x3} is an independent vertex set of G r y1. This

proves that G is vertex decomposable.

(2) Take Ak = A2. Then there are three rigid edges, e1 = {x1, y1}, e2 = {x2, y2} and

e3 = {x3, y3}, from A1 to A2, where xi ∈ A1 and yi ∈ A2 for i = {1, 2, 3}. Take y1 ∈ A2,

then GrNG[y1] consists of r − 1 cliques and every clique has an improper vertex, so the graph

GrNG[y1] is vertex decomposable by [15, Lemma 3.2, Theorem 3.3]. The graph Gr y1 consists

of r cliques with an improper vertex x1 ∈ A1. So condition (2) of Proposition 4.3 is fulfilled and

hence, Gr y1 is vertex decomposable. Further, for any independent vertex set M of GrNG[y1],

we have {y2, y3} ⊂ NG(y1), if M ∩V (e2) = ∅ holds. Then M ∪{y2} is an independent vertex set

of Gr y1; if M ∩ V (e2) ̸= ∅ holds, then M ∪ {y3} is an independent vertex set of Gr y1. Note

that when Ak = A3, GrNG[y1] consists of r− 1 cliques satisfying conditions (2) of Proposition

4.3, so it is vertex decomposable. This proves that G is vertex decomposable. 2
We have the following two remarks:
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Remark 4.5 Condition (b) can be replaced by any one of the following:

(b2) There exists a number j, where 2 ≤ j ≤ r − 1, such that E(A1, Aj) contains two edges

rigid in G.

(b3) There exist three edges in E(A1, Ar), which are rigid in graph G.

(b4) There exist two rigid edges in E(A1, Ar) and there exists a number t, where 2 ≤ t ≤ r−1,

such that E(Ar, At) contains two rigid edges in G.

Remark 4.6 Condition (d) can be replaced by any one of the following:

(d2) There exists a number k, where 3 ≤ k ≤ r, such that E(A1, Ak) contains two edges

rigid in G, and there exists a number x where x ̸= k, 3 ≤ x ≤ r, such that E(Ak, Ax) contains

two edges rigid in G.

(d3) There exists one rigid edge in E(A1, A2) and there exists a number k, where 3 ≤ k ≤ r,

such that E(A2, Ak) contains two edges rigid in G.

In the following theorem, let (A1, A2, . . . , Ar) be cyclic, i.e., we regard A1 as Ar+1.

Theorem 4.7 Let G be a non-complete graph with r cliques A1, A2, . . . , Ar together with some

additional edges in between. Then G is vertex decomposable if the following conditions are

fulfilled:

(1) There exist two disjoint cycles, each containing exactly one edge in E(Ai, Ai+1) (∀1 ≤
i ≤ r) which is rigid in G.

(2) For each 1 ≤ i ≤ r and each j ̸= i − 1, i, i + 1, Aj has a rigid vertex adjacent to some

vertex of Ai.

Proof Let G be a non-complete graph with the above construction. By condition (1), there exist

two disjoint cycles C1 and C2, each containing exactly one edge in E(Ai, Ai+1) (∀1 ≤ i ≤ r),

which is rigid in G.

Without loss of generality, let ei = {xi, yi} ∈ Ci (i = 1, 2, xi ∈ Ar, yi ∈ A1) be two rigid

edges in the cycles. Consider the induced subgraph GrNG[x1], which consists of r − 1 cliques

Ai (1 ≤ i ≤ r − 1). Clearly, y2 is an improper vertex in G r NG[x1] since e2 is a rigid edge.

Due to the same reason, Ar−1 also contains at leat two improper vertices in G rNG[x1]. Note

that condition (2) ensures that every other Ai also contains at least one improper vertex in

G rNG[x1], hence G rNG[x1] consists of r − 1 cliques, each of which has an improper vertex.

So, GrNG[x1] is vertex decomposable by [15, Lemma 3.2, Theorem 3.3].

Figure 2 C1 and C2

Now let e3 = {x′
1, z1} ∈ C1, e4 = {x′

2, z2} ∈ C2, where {z1, z2} ∈ Ar−1 and {x′
1, x

′
2} ⊆ Ar.

For any independent vertex set M of the graph G r NG[x1], if M ∩ V {e3} = ∅ holds, then
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M ∪ {x′
1} is independent set in Gr x1. If M ∩ V {e3} ̸= ∅ holds, then M ∪ {x′

2} is independent

in the graph Gr x1. This shows that x1 is a weak shedding vertex of G.

Next, we proceed to show thatH =: Grx1 is also vertex decomposable. For this, consider the

two rigid edges e5 = {y′1, u1} ∈ C1 and e6 = {y′2, u2} ∈ C2, where {u1, u2} ⊆ A2, {y′1, y′2} ⊆ A1.

Consider H rNH [y′1] and note that x2 is an improper vertex of Ar and u2 is an improper vertex

of A2 in HrNH [y′1], thus condition (2) ensures that HrNH [y′1] consists of r−2 cliques, each of

which has at least one improper vertex, so it is vertex decomposable by [15, Lemma 3.2, Theorem

3.3]; while H r y′1 consists of r cliques with two improper vertices y1 ∈ A1 and u1 ∈ A2. For any

independent set M of HrNH [y′1], there exists y1 ∈ NH(y′1) such that M∪{y1} is an independent

set of H r y′1. This shows that y
′
1 is a weak shedding vertex of H.

Now apply mathematical induction on pathes A2A3, A3A4, . . . , Ar−1Ar, respectively. In the

end, we get a graph consisting of r cliques, where each clique has an improper vertex, so by [15,

Lemma 3.2, Theorem 3.3] it is vertex decomposable.

Finally, x1 is a shedding vertex of G, thus G is vertex decomposable. 2
Theorem 4.8 Let G be a non-complete graph consisting of cliques Ai (1 ≤ i ≤ r), with some

additional edges in between. Assume further that each Ai contains no improper vertices in G.

Then G is vertex decomposable if the following conditions are fulfilled:

(1) For each t where 3 ≤ t ≤ r, there exists one rigid edge et in E(A1, At) and two rigid

edges e1, e2 in E(A1, A2).

(2) There exist ai ∈ Ai (i = 1, 2) such that neither is adjacent to a vertex of Aj (3 ≤ j ≤ r),

and ai ∩ V (ej) = ∅ holds, where 1 ≤ j ≤ r and 1 ≤ i ≤ 2.

Proof For 1 ≤ j ≤ r, let ej = {xj , yj} be rigid edges in G, where xj ∈ A1 holds for all 1 ≤ j ≤ r,

{y1, y2} ⊂ A2 and yt ∈ At holds for each 3 ≤ t ≤ r. Consider the vertex x3 ∈ A1 from the rigid

edge e3, and note that GrNG[x3] consists of r− 1 cliques with some additional edges, of which

r − 2 cliques have an improper vertex each. So it is vertex decomposable by Proposition 4.1.

While Gr x3 consists of r cliques with some additional edges and one improper vertex y3 ∈ A3.

For any independent vertex setM of GrNG[x3], we have {x1, x2} ⊂ NG(x3) and ifM∩V (e1) = ∅
holds, then M ∪{x1} is an independent vertex set. But if M ∩V (e1) ̸= ∅ holds, then M ∪{x2} is

an independent vertex set of Grx3. Next, apply the same procedure on the sequence of vertices

x4, x5, . . . , xr. Let H = G r {x3, x4, . . . , xr} consist of r cliques with some additional edges, of

which r − 2 cliques have an improper vertex each. For x2 ∈ A1, the graph H rNH [x2] consists

of r − 1 cliques and each clique has an improper vertex, so by [15, Lemma 3.2, Theorem 3.3] it

is vertex decomposable. H r x2 consists of r cliques with some additional edges, of which r − 1

cliques have an improper vertex each. So by Proposition 4.1, it is vertex decomposable. For any

independent vertex set M of H r NH [x2], {x1, a1} ⊂ NH(x2) holds true if M ∩ V (e1) = ∅. In

the case, M ∪ {x1} is an independent vertex set of H r x2. But if M ∩ V (e1) ̸= ∅ holds, then

M ∪ {a1} is an independent vertex set of H r x2. This shows that G is vertex decomposable. 2
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