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Abstract For an integer p ≥ 2 we construct vertical and horizontal one-pth Riordan arrays from

a Riordan array. When p = 2 one-pth Riordan arrays are reduced to well known half Riordan

arrays. The generating functions of the A-sequences of vertical and horizontal one-pth Riordan

arrays are found. The vertical and horizontal one-pth Riordan arrays provide an approach to

construct many identities. They can also be used to verify some well known identities readily.

Keywords Riordan array; one-pth Riordan arrays; A-sequence; generating function; identities

MR(2020) Subject Classification 15B36; 05A15; 05A05; 15A06; 05A19; 11B83

1. Introduction

The Riordan group is a group of infinite lower triangular matrices defined by two generating

functions. Let g(z) = g0 + g1z + g2z
2 + · · · and f(z) = f1z + f2z

2 + · · · with g0 and f1 nonzero.

Without much loss of generality we will also set g0 = 1. Given g(z) and f(z), the matrix they

define is D = (dn,k)n,k≥0, where dn,k = [zn]g(z)f(z)k. For the sake of readability we often

shorten g(z) and f(z) to g and f and we will denote D as (g, f). Essentially the columns of

the matrix can be thought of as a geometric sequence with g as the leading term and f as the

multiplier term. Two examples are the identity matrix

(1, z) =



1 0 0 0

0 1 0 0

0 0 1 0 · · ·
0 0 0 1

· · ·
. . .


and the Pascal matrix

(
1

1− z
,

z

1− z
) =



1 0 0 0 · · ·
1 1 0 0

1 2 1 0

1 3 3 1

. . .
. . .


.

Here is a list of six important subgroups of the Riordan group [1].
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• the Appell subgroup {(g(z), z)}.
• the Lagrange (associated) subgroup {(1, f(z))}.
• the k-Bell subgroup {(g(z), z(g(z))k)}, where k is a fixed positive integer.

• the hitting-time subgroup {(zf ′(z)/f(z), f(z))}.
• the derivative subgroup {(f ′(z), f(z))}.
• the checkerboard subgroup {(g(z), f(z))}, where g is an even function and f is an odd

function.

The 1-Bell subgroup is referred to as the Bell subgroup for short, and the Appell subgroup

can be considered as the 0-Bell subgroup if we allow k = 0 to be included in the definition of the

k-Bell subgroup.

The Riordan group acts on the set of column vectors by matrix multiplication. In terms of

generating functions we let d(z) = d0 + d1z + d2z
2 + · · · and h(z) = h0 + h1z + h2z

2 + · · · . If

[d0, d1, d2, . . .]
T and [h0, h1, h2, . . .]

T are the corresponding column vectors we observe that

(g, f)[d0, d1, d2, . . .]
T = [h0, h1, h2, . . .]

T

translates to

d0g(z) + d1g(z)f(z) + d2g(z)f(z)
2 + · · · = g(z) · d(f(z)) = h(z).

This simple observation is called the Fundamental theorem of Riordan Arrays and is abbreviated

as FTRA.

The first application of the fundamental theorem is to set d(z) = ĝ(z)f̂(z)k so that

h(z) = g(z) · ĝ(f(z))f̂(f(z))k.

As k ranges over 0, 1, 2, . . . the multiplication rule for Riordan arrays emerges.

We define the Riordan group as the set of all pairs (g, f) as above together with the multi-

plication operation

(g, f)(ĝ, f̂) = (g · (ĝ ◦ f), f̂ ◦ f).

The identity element for this group is (1, z). If we denote the compositional inverse of f as f̄ ,

then

(g, f)−1 = (
1

g ◦ f̄
f̄).

As an example we return to the Pascal matrix where f = z
1−z . The inverse is f = z

1+z ,

g(f) = 1
1−( z

1+z )
= 1 + z and the inverse matrix starts

(
1

1 + z
,

z

1 + z
) =


1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0

−1 3 −3 1 0

1 −4 6 −4 1

 .

Both Pascal matrix and (1/(1 + z), z/(1 + z)) are pseudo-involution Riordan array due to the

fact that their multiplications with (1,−z) are involutions.
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Riordan arrays play an important unifying role in enumerative combinatorics, especially in

proving combinatorial identities, for instance, some results presented in [2–4], etc. This paper

will define a new type of Riordan arrays and study their applications in the construction of

identities.

For more information about the Riordan group see Shapiro, Getu, Woan and Woodson [1],

Shapiro [5], Barry [6], and Zeleke [7]. Shapiro and the author presented palindromes of pseudo-

involutions in a recent paper [8]. For general information about such items as Catalan numbers,

Motzkin numbers, generating functions and the like there are many excellent sources including

Stanley [9,10] and Aigner [11]. A short survey and an extension of Catalan numbers and Catalan

matrices can be seen in [12,13]. Fundamental papers by Sprugnoli [2,14] investigated the Riordan

arrays and showed that they constitute a practical device for solving combinatorial sums by means

of the generating functions and the Lagrange inversion formula.

For a function f as above, there is a sequence a0, a1, a2, . . . called the A sequence such that

f = z(a0 + a1f + a2f
2 + a3f

3 + · · · ).

The corresponding generating function is A(z) =
∑

n≥0 anz
n so we have, in terms of generating

functions, f = zA(f). See Merlini, Rogers, Sprugnoli, and Verri, [15] for a proof and Sprugnoli

and the author [16] and the author [17] for further results. The A sequence enables us to

inductively compute the next row of a Riordan matrix since

dn+1,k = a0dn,k−1 + a1dn,k + a2dn,k+1 + · · · .

The missing item is for the left most, i.e., zeroth column and there is a second sequence, the Z

sequence such that

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · .

The generating function Z =
∑

n≥0 znz
n is defined by the equation g(z) = 1/(1− zZ(f(z))).

By substituting z = f into the equation f = z(A(f)), we may have z = f(z)A(z) = fA.

Similarly, applying f gives us a useful alternate form of g(z) = 1/(1− zZ(f(z))) as Z = (g(f̄)−
1)/(f̄g(f̄)). We call A(z) and Z(z) the A and Z functions of the Riordan array (g, f).

We now consider an extension of Riordan arrays called half Riordan arrays, which will be

extended to one-pth Riordan arrays in the next section.

The entries of a Riordan array have a multitude of interesting combinatorial explanations.

The central entries play a significant role. For instance, the central entries of the Pascal matrix

(1/(1 − z), z/(1 − z)) are the central binomial coefficients
(
2n
n

)
(see the sequence A000984 in

OEIS [18]) that can be explained as the number of ordered trees with a distinguished point.

In addition, its exponential generating function is a modified Bessel function of the first kind.

Similarly, the central entries of the Delannoy matrix (1/(1−z), z(1+z)/(1−z)), called the Pascal-

like Riordan array, are the central Delannoy numbers
∑n

k=0

(
n
k

)2
2k (see the sequence A001850 in

OEIS [18]). The central Delannoy numbers can be explained as the number of paths from (0, 0)

to (n, n) in an n× n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and

(0, 1)). In addition, the nth central Delannoy number is the nth Legendre polynomial’s value at
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3. It is interesting, therefore, to be able to give generating functions of such central terms in a

systematic way. In recent papers [19–24] (cf. also the references of [22]), it has been shown how

to find generating functions of the central entries of some Riordan arrays.

Yang, Zheng, Yuan, and the author [24] gave the following definition of half Riordan arrays

(HRAs), which are called vertical half Riordan arrays in Barry [20] and in [17].

Definition 1.1 Let (g, f) = (dn,k)n,k≥0 be a Riordan array. Its related half Riordan array

(vn,k)n,k≥0, called the vertical half Riordan array (VHRA), is defined by

vn,k = d2n−k,n. (1.1)

Denote ϕ = t2/f . A direct approach is used in [22] to show that (vn,k)n,k≥0 = (tϕ′(t)g(ϕ)/ϕ, ϕ)

based on the Lagrange inversion formula.

In [22], a decomposition of (vn,k)n,k≥0 is presented as

(
tϕ′(t)g(ϕ)

ϕ
, ϕ) = (

tϕ′

ϕ
, ϕ)(g, t). (1.2)

Decomposition (1.2) suggests a more general type of half of Riordan array (g, f) defined by

(
tϕ′(t)g(ϕ)

ϕ
, f(ϕ)) = (

tϕ′

ϕ
, ϕ)(g, f), (1.3)

which is called the horizontal half of Riordan array (HHRA) in [17,20], in order to distinguish it

from VHRA. A similar approach can be used to show that the entries of the HHRA (hn,k)n,k≥0

of (g, f) = (dn,k)n,k≥0 are

hn,k = d2n,n+k, (1.4)

while a constructive approach is presented in [20] and an (m, r) extension can be seen in [23].

In the next section the VHRA and the HHRA of a given Riordan array will be extended to

the one-pth vertical and the one-pth horizontal Riordan arrays of the Riordan array. Then the

one-pth vertical transformation operators and the one-pth horizontal Riordan array transforma-

tion operators will be defined. We will present the relationship between the two types of one-pth

Riordan arrays by using their matrix factorization and the Lagrange inversion formula. In Sec-

tion 3, the sequence characterizations of the two types of one-pth Riordan arrays and several

illustrating examples are given. In Section 4, we study transformations among Riordan arrays by

using the one-pth Riordan array operators. The conditions for transforming Riordan arrays to

pseudo-involution Riordan arrays by using the one-pth Riordan arrays are given. The condition

for preserving the elements of a certain subgroup of the Riordan group under the one-pth Rior-

dan array transformation is shown. Other properties of the halves of Riordan arrays and their

entries such as related recurrence relations, double variable generating functions, combinatorial

explanations are also studied in the section. In the last section, we will show the construction of

identities and summation formulae by using one-pth Riordan arrays.

2. One-pth Riordan arrays
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The vertical and horizontal one-pth Riordan arrays of a Riordan array (g, f) will be defined

and constructed in the following two theorems.

Theorem 2.1 Given a Riordan array (dn,k)n,k≥0 = (g, f), for any integers p ≥ 1 and r ≥ 0,

(d̂n,k = dpn+r−k,(p−1)n+r)n,k≥0 defines a new Riordan array, called the one-pth or (p, r) vertical

Riordan array of (g, f), which can be written as

(
tϕ′(t)g(ϕ)f(ϕ)r

ϕr+1
, ϕ), where ϕ(t) =

tp

f(t)p−1
, (2.1)

and h̄(t) is the compositional inverse of h(t) (h(0) = 0 and h′(0) ̸= 0). Particularly, if p = 1 and

r = 0, then (d̂n,k = dn−k,0)n,k≥0 is the Toeplitz matrix (or diagonal-constant matrix) of the 0th

column of (dn,k)n,k≥0, and if p = 2 and r = 0, then (d̂n,k = d2n−k,n)n,k≥0 is the VHRA of the

Riordan array (dn,k)n,k≥0.

Moreover, the generating function of the A-sequence of the new array is (A(f))p−1 = (f/t)p−1,

where A(t) is the generating function of the A-sequence of the given Riordan array.

The Lagrange Inverse Formula (LIF) will be used in the proof. Let F (t) be any formal power

series, and let ϕ(t) and u(t) = f(t)/t satisfy ϕ = tu(ϕ). Then the following LIF holds (see, for

example, K6′ in Merlini, Sprugnoli, and Verri [25]).

[tn]F (ϕ(t)) = [tn]F (t)u(t)n−1(u(t)− tu′(t)). (2.2)

Proof From ϕ(t) = tp/f(t)p−1 we have ϕ̄(t) = tp/f(t)p−1 and consequently t = ϕ(t)p/f(ϕ(t))p−1.

Hence, we may write

ϕ = tu(ϕ) where u(t) = (
f(t)

t
)p−1.

Taking derivative on the both sides of the equation ϕ = tu(ϕ) and noting the definition of u(t),

we obtain

ϕ′(t) = (
f(ϕ)

ϕ
)p−1 + t(p− 1)(

f(ϕ)

ϕ
)p−2 f

′(ϕ)ϕ′(t)ϕ− ϕ′(t)f(ϕ)

ϕ2
,

which yields

ϕ′(t) = (
f(ϕ)

ϕ
)p−1

/
(1− t(p− 1)(

f(ϕ)

ϕ
)p−2 f

′(ϕ)ϕ− f(ϕ)

ϕ2
).

Noting t = ϕ/u(ϕ) = ϕp/f(ϕ)p−1, the last expression devotes

ϕ′(t) =(
f(ϕ)

ϕ
)p−1

/
(1− p− 1

f(ϕ)
(f ′(ϕ)ϕ− f(ϕ)))

=
(f(ϕ))p

ϕp−1(f(ϕ)− (p− 1)(ϕf ′(ϕ)− f(ϕ)))
(2.3)

We now use (2.3), t = ϕp/f(ϕ)p−1, and the LIF shown in (2.2) to calculate d̂n,k for n, k ≥ 0

d̂n,k =[tn]
tϕ′(t)g(ϕ)f(ϕ)r

ϕr+1
(ϕ)k

=[tn]
ϕp

(f(ϕ))p−1

ϕk(f(ϕ))p+rg(ϕ)

ϕp+r(f(ϕ)− (p− 1)(ϕf ′(ϕ)− f(ϕ)))

=[tn]
(f(ϕ))r+1g(ϕ)

ϕr−k(f(ϕ)− (p− 1)(ϕf ′(ϕ)− f(ϕ)))
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=[tn]
(f(t))r+1g(t)

tr−k(f(t)− (p− 1)(tf ′(t)− f(t)))
u(t)n−1(u(t)− tu′(t)),

where u(t) = ( f(t)t )p−1 and

u′(t) = (p− 1)(
f(t)

t
)p−2 tf

′(t)− f(t)

t2
.

Substituting the expressions of u(t) and u′(t) into the rightmost expression of d̂n,k, we have

d̂n,k =[tn]
(f(t))r+1g(t)

tr−k(f(t)− (p− 1)(tf ′(t)− f(t)))

(f(t))(p−1)(n−1)

t(p−1)(n−1)
×

(
(f(t)p−1

tp−1
− t(p− 1)

(f(t))p−2

tp−2

tf ′(t)− f(t)

t2
)

=[tn]
(f(t)(p−1)(n−1)+r+1g(t)

t(p−1)(n−1)+r−k(f(t)− (p− 1)(tf ′(t)− f(t)))
×

(f(t))p−2

tp−1
(f(t)− (p− 1)(tf ′(t)− f(t)))

=[tn]g(t)
(f(t))(p−1)n+r

t(p−1)n+r−k
= [tpn+r−k]g(t)(f(t))(p−1)n+r = dpn+r−k,(p−1)n+r.

Particularly, if p = 1 and r = 0, then (d̂n,k = dn−k,0)n,k is the Toeplitz matrix of the 0th

column of (g, f). If p = 2 and r = 0, then (d̂n,k = d2n−k,n)n,k≥0 is the VHRA of (g, f).

As for the Âp, the generating function of the A-sequence of (d̂n,k)n,k≥0, we have tÂp(ϕ) = ϕ,

which implies Âp(t) = t/(tp/fp−1), or equivalently,

Âp(f̄) = (
t

f̄
)p−1 = (A(t))p−1.

Hence, Âp(t) = (A(f))p−1 = (f/t)p−1 because tA(f) = f , completing the proof of the theorem. 2
Theorem 2.2 Given a Riordan array (dn,k)n,k≥0 = (g, f), for any integers p ≥ 1 and r ≥ 0,

(d̃n,k = dpn+r,(p−1)n+r+k)n,k≥0 defines a new Riordan array, called the one-pth or (p, r) horizontal

Riordan array of (g, f), which can be written as

(
tϕ′(t)g(ϕ)f(ϕ)r

ϕr+1
, f(ϕ)), where ϕ(t) =

tp

f(t)p−1
, (2.4)

and h̄(t) is the compositional inverse of h(t) (h(0) = 0 and h′(0) ̸= 0). Particularly, if p = 1 and

r = 0, the one-pth Riordan array reduces to the given Riordan array, and if p = 2 and r = 0, the

one-pth Riordan array is the HHRA of the given Riordan array.

Moreover, the generating function of the A-sequence of the new array is (A(t))p, where A(t)

is the generating function of the A-sequence of the given Riordan array.

Proof We now use (2.3) above, t = ϕp/f(ϕ)p−1, and the LIF shown in (2.2) to calculate d̃n,k

for n, k ≥ 0

d̃n,k =[tn]
tϕ′(t)g(ϕ)f(ϕ)r

ϕr+1
(f(ϕ))k

=[tn]
ϕp

(f(ϕ))p−1

(f(ϕ))p+r+kg(ϕ)

ϕp+r(f(ϕ)− (p− 1)(ϕf ′(ϕ)− f(ϕ)))
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=[tn]
(f(ϕ))r+k+1g(ϕ)

ϕr(f(ϕ)− (p− 1)(ϕf ′(ϕ)− f(ϕ)))

=[tn]
(f(t))r+k+1g(t)

tr(f(t)− (p− 1)(tf ′(t)− f(t)))
u(t)n−1(u(t)− tu′(t)),

where u(t) = ( f(t)t )p−1 and from the proof of Theorem 2.1

u′(t) = (p− 1)(
f(t)

t
)p−2 tf

′(t)− f(t)

t2
.

Substituting the expressions of u(t) and u′(t) into the rightmost expression of d̃n,k, we have

d̃n,k =[tn]
(f(t))r+k+1g(t)

tr(f(t)− (p− 1)(tf ′(t)− f(t)))

(f(t))(p−1)(n−1)

t(p−1)(n−1)
×

(
(f(t))p−1

tp−1
− t(p− 1)

(f(t))p−2

tp−2

tf ′(t)− f(t)

t2
)

=[tn]
(f(t))(p−1)(n−1)+r+k+1g(t)

t(p−1)(n−1)+r(f(t)− (p− 1)(tf ′(t)− f(t)))
×

(f(t))p−2

tp−1
(f(t)− (p− 1)(tf ′(t)− f(t)))

=[tn]g(t)
(f(t))(p−1)n+r+k

t(p−1)n+r
= [tpn+r]g(t)(f(t))(p−1)n+r+k = dpn+r,(p−1)n+r+k.

Particularly, if p = 1 and r = 0, then d̃n,k = dn,k, while p = 2 and r = 0 yields d̃n,k = d2n,n+k,

the (n, k) entry of the HHRA of (g, f).

Let A(t) be the generating function of the A-sequence of the given Riordan array (g, f). Then

A(f(t)) = f(t)/t. Let Ap(t) be the generating function of the A-sequence of the Riordan array

shown in (2.1). Then Ap(f(ϕ)) =
f(ϕ)
t . Substituting t = ϕ(t) into the last equation yields

Ap(f) =
f(t)

ϕ(t)
=

f(t)

tp/(f(t))p−1
= (

f(t)

t
)p = (A(f))p,

i.e., Ap(t) = (A(t))p completing the proof. 2
3. Identities related to one-pth Riordan arrays

We may use Theorems 2.1 and 2.2 and the Faà di Bruno formula to establish a class of

summation formulae.

Let h(t) =
∑∞

n=0 αnt
n be a given formal power series with the case h(0) = α0 ̸= 0. Assume

that f(a+ t) has a formal power series expansion in t with a ∈ R, real numbers, and let f̄ denote

the compositional inverse of f so that (f̄ ◦ f)(t) = (f ◦ f̄)(t) = t. Then the composition of f and

h in the case of h(0) = a still possesses a formal series expansion in t, namely,

(f ◦ h)(t) =
∞∑

n=0

([tn](f ◦ h)(t))tn = f(a+
∞∑

n=1

αnt
n)

=f(a) +
∞∑

n=1

([tn](f ◦ h)(t))tn. (3.1)
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Let f (k)(a) denote the kth derivative of f(t) at t = a, i.e.,

f (k)(a) = (dk/dtk)f(t)|t=a.

Recall the Faà di Brumo’s formula when applied to (f ◦ h)(t) may be written in the form [26,

Section 3.4]

[tn](f ◦ ϕ) =
∑
σ(n)

f (k)(ϕ(0))Πn
j=1

1

kj !
([ti]ϕ)kj , (3.2)

where the summation ranges over the set σ(n) of all partitions of n, that is, over the set of all

nonnegative integral solutions (k1, k2, . . . , kn) of the equations k1 + 2k2 + · · · + nkn = n and

k1 + k2 + · · ·+ kn = k, k = 1, 2, . . . , n. Each solution (k1, k2, . . . , kn) of the equations is called a

partition of n with k parts and is denoted by σ(n, k). Of course, the set σ(n) is the union of all

subsets σ(n, k), k = 1, 2, . . . , n.

Let βn = [tn](f ◦ h)(t) and h(0) = α0 = a. Then there exists a pair of reciprocal relations

βn =
∑
σ(n)

f (k)(a)
αk1
1 · · ·αkn

n

k1! · · · kn!
, (3.3)

αn =
∑
σ(n)

f̄ (k)(f(a))
βk1
1 · · ·βkn

n

k1! · · · kn!
, (3.4)

where the summation ranges the set σ(n) of all partitions of n. In fact, from (3.1) the given

conditions ensure that there holds a pair of formal series expansions

f(a+
∑
n≥1

αnt
n) = f(a) +

∑
n≥1

βnt
n, (3.5)

f̄(f(a) +
∑
n≥1

βnt
n) = a+

∑
n≥1

αnt
n. (3.6)

Thus, an application of the Faà di Bruno formula (3.2) to (f ◦ ϕ)(t), on the LHS of (3.5) yields

the expression (3.3) with [ti]ϕ = αi, [t
n](f ◦ ϕ) = βn, and ϕ(0) = a. Note that the LHS of

(3.6) may be expressed as ϕ(t) = ((f̄ ◦ f) ◦ ϕ)(t) = (f̄ ◦ (f ◦ ϕ))(t), so that in a like manner and

application of the Faà di Bruno formula to the LHS of (3.6) gives precisely the equality (3.4).

Replacing αn by xn/n! and βn by yn/n!, we see that (3.3) and (3.4) may be expressed in

terms of the exponential Bell polynomials, namely,

yn =
n∑

k=1

f (k)(a)Bn,k(x1, x2, . . . , xn−k+1), (3.7)

xn =

n∑
k=1

f̄ (k)(a)Bn,k(y1, y2, . . . , yn−k+1), (3.8)

where Bn,k(. . .) is defined by [26, Section 3.3])

Bn,k(x1, x2, . . . , xn−k+1) =
∑

σ(n,k)

n!

k1!k2! · · ·
(
x1

1!
)k1(

x2

2!
)k2 · · ·

and σ(n, k) as shown above is the set of the solutions of the partition equations for a given

k (1 ≤ k ≤ n). Bn,k = Bn,k(f1, f2, . . .) is the Bell polynomial with respect to (n!)n∈N, defined as
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follows:
1

k!
(f(z))k =

∞∑
n=k

Bn,k
zn

n!
. (3.9)

Therefore, Bn,k = [zn/n!](f(z))k/k!, which implies that the iteration matrix B(f(z)) is the

Riordan array (1, f(z)). Now, the following important property of the iteration matrix (see

Comtet [26, Theorem A on p.145], Roman [27], and Roman and Rota [28])

B(f(g(z))) = B(g(z))B(f(z))

is trivial in the context of the theory of Riordan arrays, i.e.,

(1, f(g(z))) = (1, g(z))(1, f(z)) ;

and the Faà di Bruno formula derived from the above property is an application of the FTRA.

Let f(x) = xp (p ̸= 0). Then f̄(x) = x1/p with f (k)(1) = (p)k and f̄ (k)(1) = (1/p)k. Hence,

we obtain the special cases of (3.3) and (3.4):

βn =
∑
σ(n)

(α)k
αk1
1 · · ·αkn

n

k1! · · · kn!
, (3.10)

αn =
∑
σ(n)

(1/α)k
βk1
1 · · ·βkn

n

k1! · · · kn!
, (3.11)

where (p)k = p(p− 1) · · · (p− k + 1) and (α)0 = 1. The above Faà di Bruno’s relations have the

associated expressions (
1 +

∞∑
n=1

αnt
n
)p

= 1 +
∞∑

n=1

βnt
n, (3.12)

(
1 +

∞∑
n=1

βnt
n
)1/p

= 1 +
∞∑

n=1

αnt
n. (3.13)

As an example, if h = a0+a1t and f(t) = tp, then f(h(t)) = ap0(1+α1t)
p, where α1 = a1/a0.

From (3.12) we have

(a0 + a1t)
p = ap0(1 + α1t)

p = ap0(1 +
∞∑
j=1

βjt
j),

where

βj =
∑
σ(j)

(α)k
αk1
1 · · ·αkn

n

k1! · · · kn!
= (p)j

αj
1

j!
=

(
p

j

)
αj
1,

which presents the obvious expression (a0 + a1t)
p = ap0 +

∑p
j=1

(
p
j

)
ap−j
0 aj1t

j .

Similarly, if h = a0 + a1t+ a2t
2, a0 ̸= 0, then

(a0 + a1t+ a2t
2)p = ap0(1 +

a1
a0

t+
a2
a0

t2)p = ap0(1 +

p∑
j=1

βjt
j),

where

βj =
∑
σ(j)

(p)j
1

ji!j2!
(
a1
a0

)j1(
a2
a0

)j2 =

j∑
ji=0

(
p

j

)(
j

j1

)
(
a1
a0

)j1(
a2
a0

)j−j1 .
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Theorem 3.1 Let A(t) =
∑

n≥0 ant
n (a0 ̸= 0) be the generating function of the A-sequence of

the given Riordan array (dn,k)n,k≥0 = (g, f), and let (d̃n,k = dpn+r,(p−1)n+r+k)n,k≥0 be the (p, r)

Riordan array of (g, f). Then there exists the following summation formula:

dp(n+1)+r,(p−1)(n+1)+r+k+1 =
n−k∑
j=0

βjdpn+r,(p−1)n+r+k+j , (3.14)

where by denoting (p)j = p(p− 1) · · · (p− j + 1), β0 = ap0, and for n ≥ 1 and αi = ai/a0,

βj =ap0[t
j ](A(t))p =

∑
σ(j)

(p)j
αk1
1 · · ·αkj

j

k1! · · · kj !

=

j∑
i=1

∑
σ(j,i)

(
p

j

)
j!

k1!k2! . . .
(α1)

k1(α2)
k2 . . . . (3.15)

Particularly, for A(t) = a0 + a1t and A(t) = a0 + a1t+ a2t
2, we have

βj =

(
p

j

)
ap−j
0 aj1 and

βj =

j∑
i=0

(
p

j

)(
j

i

)
ap−j
0 aj−i

1 ai2,

respectively.

Proof Since (f(t))p is the generating function of the A-sequence of (d̃n,k) and

d̃n,k = dpn+r,(p−1)n+r+k,

we obtain (3.14) from the definition of A-sequence, where βj can be found from (3.1) and (3.10). 2
Using (3.14) in Theorem 3.1, one may obtain many identities.

Example 3.2 Consider Pascal matrix (1/(1− t), t/(1− t)), its A-sequence generating function

is A(t) = 1 + t. Applying (3.14), we have(
p(n+ 1) + r

(p− 1)(n+ 1) + r + k + 1

)
=

min{p,n−k}∑
j=0

(
p

j

)(
pn+ r

(p− 1)n+ r + k + j

)
. (3.16)

If p = 1 and r = 0, the above identity reduces to the well-known identity
(
n+1
k+1

)
=

(
n
k

)
+
(

n
k+1

)
.

The Riordan array (1/(1− t− t2), tC(t)) is considered, where

C(t) =
∞∑

n=0

(
2n

n

)
tn/(n+ 1) = (1−

√
1− 4t)/(2t)

is the Catalan function. It can be found that the A-sequence of the Riordan array (1/(1 −
t − t2), tC(t)) is (1, 1, 1, . . .), i.e., the A-sequence has the generating function A(t) = 1/(1 − t).

From [13,29] we have

C(t)k =
∞∑

n=0

k

2n+ k

(
2n+ k

n

)
tn. (3.17)
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Thus, the (n, k) entry of the Riordan array (1/(1− t− t2), tC(t)) is

dn,k =[tn]
1

1− t− t2
(tC(t))k

=[tn−k]
(∑

i≥0

Fit
i
)(∑

j≥0

k

2j + k

(
2j + k

j

)
tj
)

=[tn−k]
∑
i≥0

( i∑
j=0

Fi−j
k

2j + k

(
2j + k

j

))
ti

=

n−k∑
j=0

Fn−k−j
k

2j + k

(
2j + k

j

)
.

Since

(A(t))p = (1− t)−p =
∑
i≥0

(
−p

i

)
(−t)i =

∑
i≥0

(
p+ i− 1

i

)
ti,

from (3.14) there holds an identity

n−k∑
j=0

Fn−k−j
(p− 1)(n+ 1) + r + k + 1

2j + (p− 1)(n+ 1) + r + k + 1

(
2j + (p− 1)(n+ 1) + r + k + 1

j

)

=
∑
i≥0

(
p+ i− 1

i

) n−k−i∑
j=0

Fn−k−i−j
(p− 1)n+ r + k + i

2j + (p− 1)n+ r + k + i

(
2j + (p− 1)n+ r + k + i

j

)
.

Similarly, for the Riordan array (C(t), tC(t)), its (n, k) entry is

dn,k =[tn]tk(C(t))k+1

=[tn−k]
∑
j≥0

k + 1

2j + k + 1

(
2j + k + 1

j

)
tj

=
k + 1

2n− k + 1

(
2n− k + 1

n− k

)
.

Hence, from (3.14) we may derive the identity

(p− 1)(n+ 1) + r + k + 2

(p+ 1)(n+ 1) + r − k

(
(p+ 1)(n+ 1) + r − k

n− k

)
=

n−k∑
j=0

(p− 1)n+ r + k + j + 1

(p+ 1)n+ r − k − j + 1

(
p+ j − 1

j

)(
(p+ 1)n+ r − k − j + 1

n− k − j

)
.

4. More identities

The generating function Fm(t) of themth order Fuss-Catalan numbers (Fm(n, 1))n≥0 is called

the generalized binomial series in [29], and it satisfies the function equation Fm(t) = 1+tFm(t)m.

Hence from Lambert’s formula for the Taylor expansion of the powers of Fm(t) (see [29, P. 201]),

we have

F r
m := Fm(t)r =

∑
n≥0

r

mn+ r

(
mn+ r

n

)
tn (4.1)
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for all r ∈ R, where Fm(t) is defined by

Fm(t) =
∑
k≥0

(mk)!

((m− 1)k + 1)!

tk

k!
=

∑
k≥0

1

(m− 1)k + 1

(
mk

k

)
tk. (4.2)

For instance,

F0(t) = 1 + t,

F1(t) =
∑
k≥0

tk =
1

1− t
,

F2(t) =
∑
k≥0

1

k + 1

(
2k

k

)
tk = C(t).

The key case (4.1) leads the following formula for Fm(t):

Fm(t) = 1 + tFm
m (t). (4.3)

Actually,

1 + tFm
m (t) = 1 +

∑
n≥0

m

mn+m

(
mn+m

n

)
tn+1

= 1 +
∑
n≥1

m

mn

(
mn

n− 1

)
tn

=
∑
n≥0

1

mn+ 1

(
mn+ 1

n

)
tn = Fm(t).

For the cases m = 1 and 2, we have F1 = 1/(1−t) and F2 = C(t), respectively. When m = 3, the

Fuss-Catalan numbers (F3)n form the sequence A001764 (see [18]), 1, 1, 3, 12, 55, 273, 1428, . . . ,

which are the ternary numbers. The ternary numbers count the number of 3-Dyck paths or

ternary paths. The generating function of the ternary numbers is denoted as T (t) =
∑∞

n=0 Tnt
n

with Tn = 1
3n+1

(
3n+1

n

)
, and is given equivalently by the equation T (t) = 1 + tT (t)3.

We now give more examples of Theorem 2.1 related to Fuss-Catalan numbers. First, we estab-

lish the relation between the Fuss-Catalan numbers and the Riordan array (g̃, f̃) = (d̃n,k)n,k≥0,

where d̃n,k = dpn+r,(p−1)n+r+k and dn,k is the (n, k) entry of the Pascal’ triangle (g, f) =

(1/(1− t), t/(1− t)).

Theorem 4.1 Let (dn,k)n,k≥0 = (1/(1 − t), t/(1 − t)) be the Pascal triangle, for any integers

p ≥ 2 and r ≥ 0 and a given Riordan array (g, f) let (d̃n,k = dpn+r,(p−1)n+r+k)n,k≥0 = (g̃, f̃) be

the one-pth or (p, r) Riordan array of (g, f). Then

g̃(t) =
∑
n≥0

(
pn+ r

n

)
tn =

(1 + w)r+1

1− (p− 1)w

∣∣
w=t(1+w)p

(4.4)

f̃(t) =
∞∑

n=1

1

pn+ 1

(
pn+ 1

n

)
tn = Fp(t)− 1 = tF p

p (t), (4.5)
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where Fp(t) is the pth order Fuss-Catalan function satisfying

Fp(t(1− t)p−1) =
1

1− t
. (4.6)

Proof For expression (4.4), we find

[tn]g̃ =d̃n,0 = dpn+r,(p−1)n+r =

(
pn+ r

n

)
=[tn](1 + t)pn+r = [tn](1 + t)r((1 + t)p)n

=[tn]
(1 + w)r

1− t(d/dw)((1 + w)p)

∣∣
w=t(1+w)p

,

which implies (4.4).

From (2.4) of Theorem 2.2 we know that

(g̃, f̃) = (
tϕ′(t)g(ϕ)f(ϕ)r

ϕr+1
, f(ϕ)), (4.7)

where ϕ(t) = tp

(f(t))p−1 , and h̄(t) is the compositional inverse of h(t) (h(0) = 0 and h′(0) ̸= 0).

Moreover, the generating function of the A-sequence of the new array (g̃, f̃) is (A(t))p, where

A(t) is the generating function of the A-sequence of the given Riordan array (g, f). By using the

Lagrange Inverse Formula

[tn](f(t))k =
k

n
[tn−k](A(t))n,

we have

[tn]f̃ =
1

n
[tn−1](A(t))pn =

1

n
[tn−1](1 + t)pn =

1

n

(
pn

n− 1

)
.

Therefore,

f̃ =
∞∑

n=1

(pn)!

((p− 1)n+ 1)!n!
tn =

∞∑
n=1

1

pn+ 1

(
pn+ 1

n

)
tn = Fp(t)− 1.

Since the key equation (4.3) of the Fuss-Catalan function Fp shows Fp = 1 + tF p
p , we obtain

(4.5). From (4.7),

f(ϕ) = f̃(t) = tF p
p (t).

Therefore, noting f(t) = t/(1− t) we get

t

1− t
= f(t) = ϕF p

p (ϕ) =
tp

(f(t))p−1
F p
p (

tp

(f(t))p−1
) = t(1− t)p−1F p

p (t(1− t)p−1),

and (4.6) follows from the comparison of the leftmost side and the rightmost side of the above

equation. 2
For example, if p = 2 and r ≥ 0, then

f̃ = tF 2
2 (t) = t(C(t))2.

Since w = t(1 + w)2 has a solution

w =
1− 2t−

√
1− 4t

2t
= C(t)− 1,
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we have

g̃ =
(1 + w)r+1

1− w

∣∣
w=t(1+w)2

=
(C(t))r+1

2− C(t)
=

(C(t))r√
1− 4t

= B(t)(C(t))r,

where B(t) is the generating function for the central binomial coefficients. Thus, (d̃n,k)n,k≥0 =

(d2n+r,n+r+k)n,k≥0 is the Riordan array

(g̃, f̃) = (B(t)Cr, t(C(t))2).

We need one more property of Riordan arrays, which generalizes a well-known property of

the Pascal triangle and is shown in Brietzke [30].

Theorem 4.2 Let (dn,k)n,k≥0 = (g, f) be a Riordan array. Then for any integers k ≥ s ≥ 1 we

have

dn,k =

n∑
j=s

dn−j,k−s[t
j ](f(t))s. (4.8)

Particularly, for s = 1, dn,k =
∑n

j=1 fjdn−j,k−1, where fj = [tj ]f(t).

Proof The (n, k) entry of the Riordan array (g, f) can be written as

dn,k =[tn]g(t)(f(t))k = [tn]g(t)(f(t))k−s((f(t))s

=

n∑
j=s

([tn−j ]g(t)(f(t))k−s)([tj ](f(t))s)

=
n∑

j=s

dn−j,k−s[t
j ]((f(t))s. 2

Example 4.3 If (g, f) = (1/(1 − t), t/(1 − t)), then fj = [tj ](t/(1 − t)) = 1 for all j ≥ 1. We

have the well-known identity
n∑

j=1

(
n− j

k − 1

)
=

(
n

k

)
. (4.9)

More generally, for the Pascal triangle (g, f) = (1/(1− t), t/(1− t)), we have

[tj ](f(t))s = [tj ]
ts

(1− t)s
= [tj−s](1− t)−s = [tj−s]

∑
i≥0

(
s+ i− 1

i

)
ti =

(
j − 1

s− 1

)
.

Consequently, (4.8) becomes the Chu-Vandermonde identity

n∑
j=s

(
n− j

k − s

)(
j − 1

s− 1

)
=

(
n

k

)
,

which contains (4.9) as a special case.

Example 4.4 For fixed integers p ≥ 2 and r ≥ 0, starting with the Pascal triangle and using

Theorem 2.1, we obtain the Riordan array (g̃, f̃) with its (n, k) entry as

d̃n,k =

(
pn+ r

(p− 1)n+ r + k

)
=

(
pn+ r

n− k

)
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possesses the formal power series f̃(t) = tF p
p (t). Thus,

[tj ](f̃(t))s =[tj−s]F ps
p (t) = [tj−s]

ps

pn+ ps

(
pn+ ps

n

)
=

ps

p(j − s) + ps

(
p(j − s) + ps

j − s

)
=

s

j

(
pj

j − s

)
.

From the expression (4.8) of Theorem 4.2 we obtain the identity

n∑
j=s

s

j

(
pj

j − s

)(
p(n− j) + r

n− j − k + s

)
=

(
pn+ r

n− k

)
. (4.10)

Particularly, if s = 1, then (4.10) becomes

n∑
j=1

1

pj + 1

(
pj + 1

j

)(
p(n− j) + r

n− j − k + 1

)
=

(
pn+ r

n− k

)
and, finally, adding to the both sides

(
pn+r
n−k+1

)
, we have

n∑
j=0

1

pj + 1

(
pj + 1

j

)(
p(n− j) + r

n− j − k + 1

)
=

(
pn+ r + 1

n− k + 1

)
.

Setting j = i+ s, x = ps, y = pk− ps+ r, and replacing n by n+ k, identity (4.10) becomes

formula (5.62) of [29]:

n∑
i=0

x

x+ pi

(
x+ pi

i

)(
y + p(n− i)

n− i

)
=

(
x+ y + pn

n

)
.

Substituting p = −q, x = r, and y + pn = p, the above identity is equivalent to the Gould

identity:
n∑

i=0

r

r − qi

(
r − qi

i

)(
p+ qi

n− i

)
=

(
r + p

n

)
.
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Linear Algebra Appl., 2013, 439(11): 3605–3614.

[25] D. MERLINI, R. SPRUGNOLI, M. C. VERRI. Lagrange inversion: When and how. Acta Appl. Math., 2006,

94(3): 233–249.

[26] L. COMTET. Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht, 1974.

[27] S. M. ROMAN. The Umbral Calculus. Academic Press, Inc., New York, 1984.

[28] S. M. ROMAN, G. C. ROTA. The umbral calculus. Advances in Math., 1978, 27(2): 95–188.

[29] R. L. GRAHAM, D. E. KNUTH, O. PARTASHNIK. Concrete Mathematics. Addison-Wesley Publishing

Company, Reading, MA, 1994.

[30] E. H. M. BRIETZKE. An identity of Andrews and a new method for the Riordan array proof of combinatorial

identities. Discrete Math., 2008, 308(18): 4246–4262.


