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Abstract In this paper, we enumerate the set of Motzkin trees with n edges according to the

number of leaves, the number of vertices adjacent to a leaf, the number of protected nodes,

the number of (protected) branch nodes, and the number of (protected) lonely nodes. Explicit

formulae as well as generating functions are obtained. We also find that, as n goes to infinity, the

proportion of protected branch nodes and protected lonely nodes among all vertices of Motzkin

trees with n edges approaches 4/27 and 2/9.
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1. Introduction

A Motzkin tree is an ordered tree in which the degree of each vertex is 0, 1, or 2 with 0

indicating a leaf [1, 2]. It is also referred to as a {0, 1, 2}-tree, or unary-binary tree [3]. An

ordered tree is defined recursively as having a root and an ordered set of subtrees [4–6]. For each

vertex v of an ordered tree, the number of subtrees of v is called the degree of v. A vertex of

degree zero is called a leaf, a vertex of degree 1 is called a lonely node, and a vertex of degree at

least 2 is called a branch node.

Let M denote the family of Motzkin trees. Then every tree in M is one of the forms shown

in Figure 1.

q
�
��
B
BB
q
q
z

M
��
�
BB
B
��
��
��
��

q
q

z z

M M
��
�
BB
B
CC
CC
CC
CC

q
Figure 1 Decomposition of the Motzkin trees

Letmn be the number of Motzkin trees inM with n edges, and letM(z) be the corresponding

generating function M(z) =
∑∞

n=0 mnz
n. The symbolic equation in Figure 1 can be translated
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into the following recurrence relation for the generating function

M(z) = 1 + zM(z) + z2M(z)2. (1.1)

From this, an explicit form for M(z) is easily obtained

M(z) =
1− z −

√
1− 2z − 3z2

2z2
. (1.2)

The total number vn of vertices in all Motzkin trees with n edges has the generating function

V (z) =
∞∑

n=0

vnz
n =

d

dz
(zM(z)) =

1− z −
√
1− 2z − 3z2

2z2
√
1− 2z − 3z2

, (1.3)

since any tree with n edges has n+1 vertices. Using the uplift principle [7], Cheon and Shapiro [1]

obtained that the total number ln of leaves in Motzkin trees with n edges is determined by the

following generating function

L(z) =

∞∑
n=0

lnz
n =

V (z)

M(z)
=

1√
1− 2z − 3z2

. (1.4)

Note that the numbers {l0, l1, . . . , ln, . . .} are the central trinomial coefficients [8]. Furthermore,

the following asymptotic formulae were derived in [7]

ln+1

ln
∼ 3,

vn
ln

∼ 3. (1.5)

A protected node in an ordered tree is a vertex that is not a leaf and is not adjacent to

a leaf. Cheon and Shapiro [1] started the study of protected nodes in ordered trees. After

this pioneering paper, many scholars have studied protected nodes in various classes of ordered

trees. See Bóna [9] (binary search trees), Devroye and Janson [10] (random trees), Mahmoud

and Ward [11] (binary search trees), Du and Prodinger [12] (digital search trees), Heuberger and

Prodinger [13] (plane trees), Mansour [14] (k-ary trees). In particular, Cheon and Shapiro [1]

showed that the proportion of protected nodes in Motzkin trees approaches 10/27. But they did

not give the explicit formula of the number of Motzkin trees with n edges and k protected nodes.

The main purpose of the present paper is to study the number of Motzkin trees with n edges and

k protected nodes. We know that the number of Motzkin trees with n edges is the n-th Motzkin

number mn. Thus, for all arrays showed in this paper, the row sums are the Motzkin numbers.

It is easy to find that the vertices among Motzkin trees are partitioned into three classes:

vertices adjacent to a leaf, leaves, and protected nodes. From Cheon and Shapiro [1], we can

deduce that the asymptotic proportions of these three classes are 8
27 ,

9
27 ,

10
27 , respectively. Fur-

thermore, the protected nodes are partitioned into two subclasses: branch protected nodes and

lonely protected nodes. We will show that the asymptotic proportions of these two subclasses

are 4
27 ,

6
27 , respectively. On the other hand, the vertices among Motzkin trees may also be par-

titioned into leaves, branch nodes, and lonely nodes. We will show that these three classes are

asymptotic equinumerous, i.e., all of the asymptotically proportions of these three classes are 1
3 .

This paper is organized as follows. In Section 2, we will study the number of leaves and the

number of vertices adjacent to a leaf in all Motzkin trees of size n. In Section 3, we will give the
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formula for the number of Motzkin trees with n edges and k protected nodes. In Section 4, we

will enumerate the Motzkin trees according to the number of edges and branch (resp., protected

branch ) nodes. In Section 5, we will enumerate the Motzkin trees according to the number of

edges and lonely (resp., protected lonely) nodes.

2. Leaves and vertices adjacent to a leaf

Let L(t, z) be the generating function for the number of Motzkin trees according to the

number of leaves, where z marks edges and t marks leaves.
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Figure 2 Decomposition of the Motzkin trees with leaves marked

Making use of the symbolic method [15] and the decomposition of Motzkin trees illustrated

in Figure 2, we get an equation for L(t, z) as follows

L = 1 + z(t+ L− 1) + z2(t+ L− 1)2, (2.1)

which is equivalent to

z(t+ L− 1) = z(t+ z(t+ L− 1) + z2(t+ L− 1)2). (2.2)

We can now prove the following result.

In the following, we will study the number of Motzkin trees of size n containing k leaves. If

n = 0, then k = 0. This is the trivial tree. Thus we discuss n, k ≥ 1.

Theorem 2.1 For all n, k ≥ 1, the number of Motzkin trees of size n containing k leaves is

given by

ln,k =
1

n+ 1

(
n+ 1

k

)(
n+ 1− k

k − 1

)
.

Proof Let y(t, z) = z(t + L − 1). Then from (2.2), we can obtain that y = z(t + y + y2). For

n ≥ 1, using Lagrange inversion formula [16], we obtain that

[zn]L(t, z) =[zn+1]y =
1

n+ 1
[xn](t+ x+ x2)n+1

=
1

n+ 1

n+1∑
k=0

(
n+ 1

k

)(
n+ 1− k

k − 1

)
tk.

Thus, we have

[tkzn]L(t, z) =
1

n+ 1

(
n+ 1

k

)(
n+ 1− k

k − 1

)
. 2



130 Lin YANG and Shengliang YANG

Hence, we can get the following three formulas:

mn =
n∑

k=0

ln,k =
n∑

k=0

1

n+ 1

(
n+ 1

k

)(
n+ 1− k

k − 1

)
,

vn = (n+ 1)

n∑
k=0

ln,k =

n∑
k=0

(
n+ 1

k

)(
n+ 1− k

k − 1

)
,

ln =
n∑

k=0

kln,k =
n∑

k=0

k

n+ 1

(
n+ 1

k

)(
n+ 1− k

k − 1

)
.

Let A(t, z) be the generating function for the number of Motzkin trees according to the

number of vertices adjacent to a leaf, where z marks edges and t marks vertices adjacent to a

leaf. Thus, we can obtain that A(t, z) satisfies the following equation

A = 1 + tz + z(A− 1) + tz2 + 2tz2(A− 1) + z2(A− 1)2. (2.3)

We now have the following result.

Theorem 2.2 For all n, k ≥ 1, the number of Motzkin trees of size n containing k vertices

adjacent to a leaf is given by

n∑
m=1

m∑
i=0

22k+i−n−1

m

(
m

i

)(
i

n−m

)(
n−m

k − 1

)(
k − 1

n− i− k

)
.

Proof Let y(t, z) = A− 1. Then, from (2.3), we can obtain that

y = z(t+ y + tz + 2tzy + zy2).

Using Lagrange inversion formula, we obtain

[zm]A(t, z) =[zm]y(t, z) =
1

m
[xm−1](t+ x+ tz + 2tzx+ zx2)m

=
1

m

m∑
i=0

i∑
j=0

j∑
p=0

(
m

i

)(
i

j

)(
j

p

)(
p

m+ j − i− p− 1

)
22p−m−j+i+1tp+1zj .

It follows that

y(t, z) =

∞∑
m=1

m∑
i=0

i∑
j=0

j∑
p=0

(
m

i

)(
i

j

)(
j

p

)(
p

m+ j − i− p− 1

)
1

m
22p−m−j+i+1tp+1zj+m,

and hence,

[tkzn]A(t, z) = [tkzn]y(t, z) =
n∑

m=1

m∑
i=0

(
m

i

)(
i

n−m

)(
n−m

k − 1

)(
k − 1

n− i− k

)
1

m
22k+i−n−1. 2
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The first terms of the array (An,k) are

1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

0 2 0 0 0 0 0 · · ·

0 2 2 0 0 0 0 · · ·

0 2 7 0 0 0 0 · · ·

0 2 15 4 0 0 0 · · ·

0 2 27 22 0 0 0 · · ·

0 2 43 74 8 0 0 · · ·
...

...
...

...
...

...
...

. . .



.

Theorem 2.3 For n ≥ 2, the number of vertices adjacent to a leaf in all Motzkin trees of size

n is given by ln − ln−2. Furthermore, the proportion of vertices adjacent to a leaf among all

vertices of Motzkin trees with n edges is asymptotically 8
27 .

Proof Differentiating both sides of equation (2.3) with respect to t and taking into account that

A(1, z) = M(z) leads to

∂A

∂t

∣∣∣
t=1

=
1− z2 −

√
1− 2z − 3z2√

1− 2z − 3z2
= L(z)− z2L(z)− 1. (2.4)

Hence,

[zn]
∂A

∂t

∣∣
t=1

= ln − ln−2.

From (1.5), it follows that ln − ln−2 ∼ 8
9 ln. Thus, the proportion of vertices adjacent to a

leaf among all vertices of Motzkin trees with n edges is

ln − ln−2

vn
∼ 8/9ln

3ln
=

8

27
. 2

The referee kindly supplied a proof using a bijective. The proof goes like this.

Each leaf v counted by ln can be classified into the following two types:

(a) v is the first leaf adjacent to a vertex w, including the case that w is lonely and thus has

only one descendent (i.e., v). Such v is then enumerated by the number of vertices in any tree

of size n that are adjacent to a leaf.

(b) v is the second leaf adjacent to a vertex w. We can then delete the two descendents of

w as well as the two connecting edges, to arrive at a tree of size n − 2 and having w as a leaf.

Such v is therefore counted by ln−2.

3. Protected nodes

Let P (t, z) be the generating function for the number of Motzkin trees according to the

number of protected nodes, where z marks edges and t marks protected nodes. By considering

the root is protected or unprotected, we get that each Motzkin tree is one of the forms shown in
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Figure 3. From this, we obtain that

P = 1 + z + tz(P − 1) + z2 + 2z2(P − 1) + z2t(P − 1)2. (3.1)
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Figure 3 Decomposition of the Motzkin trees with protected nodes marked

Theorem 3.1 For all n, k ≥ 1, let Pn,k be the number of Motzkin trees of size n with k protected

nodes. Then

Pn,k =
n∑

m=1

n∑
j=0

2m+j−2k−1

m

(
m

2m− n

)(
2m− n

j

)(
n−m

n−m+ j − k

)(
n−m+ j − k

m+ j − 2k − 1

)
.

Proof Let y(t, z) = P (t, z)− 1. Then, from (3.1), we get

y = z(1 + ty) + z2(1 + 2y + ty2).

By the Lagrange inversion formula it follows that

[zm]y(z) =
1

m
[xm−1](1 + tx+ z(1 + 2x+ tx2))m

=
1

m

m∑
i=0

i∑
j=0

m−i∑
q=0

(
m

i

)(
i

j

)(
m− i

q

)(
q

2i− j + 2q −m− 1

)
22i−j+2q−m−1tm−i+j−qzm−i.

Furthermore, after some manipulations we can obtain

y =

∞∑
m=1

m∑
i=0

i∑
j=0

m−i∑
q=0

1

m

(
m

i

)(
i

j

)(
m− i

q

)(
q

2i− j + 2q −m− 1

)
22i−j+2q−m−1tm−i+j−qz2m−i

and hence, we finally have

[tkzn]P (t, z) = [tkzn]y(t, z)

=
n∑

m=1

n∑
j=0

1

m

(
m

2m− n

)(
2m− n

j

)(
n−m

n−m+ j − k

)(
n−m+ j − k

m+ j − 2k − 1

)
2m+j−2k−1. 2
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The first terms of the array (Pn,k) are

1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 1 1 0 0 0 0 · · ·

2 5 1 1 0 0 0 · · ·

4 6 9 1 1 0 0 · · ·

4 19 12 14 1 1 0 · · ·

8 24 53 20 20 1 1 · · ·
...

...
...

...
...

...
...

. . .



.

By Theorem 3.1, the triangle (Pn,k) corresponds to the sequence A143364 in [17], which was also

given by Deutsch in [17].

Theorem 3.2 For n ≥ 2, the number of protected nodes in all Motzkin trees of size n is given

by vn − 2vn−2 + ln−2 − ln−1 − ln. The proportion of protected nodes among all vertices for

Motzkin trees with n edges approaches 10
27 .

Proof Differentiating both sides of equation (3.1) with respect to t and taking into account that

M(1, z) = M(z) leads to

∂M

∂t

∣∣∣
t=1

=
(1− 2z2)M(z) + z2 − z − 1√

1− 2z − 3z2
.

Hence,

[zn]
∂M

∂t

∣∣∣
t=1

= [zn]
(1− 2z2)M(z) + z2 − z − 1√

1− 2z − 3z2
= vn − 2vn−2 + ln−2 − ln−1 − ln.

From (1.5), it follows that

vn − 2vn−2 + ln−2 − ln−1 − ln
vn

∼ 10

27
. 2

The generating function for the number of protected nodes in all Motzkin trees is also obtained

in Cheon and Shapiro [1] by the uplift principle. The first few terms of the generating function

are

z2 + 3z3 + 10z4 + 31z5 + 94z6 + 281z7 + 834z8 + 2465z9 + 7269z10 + · · · .

4. Branch nodes and protected branch nodes

Let G(t, z) be the generating function for the number of Motzkin trees according to the

number of branch nodes, where z marks edges and t marks branch nodes. Using Figure 1, we

get

G = 1 + zG+ tz2G2. (4.1)
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Then we have

Theorem 4.1 For all n, k ≥ 1, the number of Motzkin trees with n edges and k branch nodes

is equal to
1

n+ 1

(
n+ 1

k

)(
n+ 1− k

n− 2k

)
.

Proof Let y(t, z) = zG(t, z). Then from (4.1), we can deduce

y = z(1 + y + ty2).

Using Lagrange inversion formula we obtain

[zn]G(t, z) = [zn+1]y(t, z) =
1

n+ 1
[zn](1 + z + tz2)n+1

=
1

n+ 1

n+1∑
i=0

(
n+ 1

i

)(
n+ 1− i

n− 2i

)
ti.

Thus, we have

[tkzn]G(t, z) = [tk]
1

n+ 1

n+1∑
i=0

(
n+ 1

i

)(
n+ 1− i

n− 2i

)
ti

=
1

n+ 1

(
n+ 1

k

)(
n+ 1− k

n− 2k

)
. 2

The first terms of the array formed by the coefficients of G(t, z) are

1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

1 3 0 0 0 0 0 · · ·

1 6 2 0 0 0 0 · · ·

1 10 10 0 0 0 0 · · ·

1 15 30 5 0 0 0 · · ·

1 21 70 35 0 0 0 · · ·

1 28 140 140 14 0 0 · · ·
...

...
...

...
...

...
...

. . .



.

Corollary 4.2 For n ≥ 2, the number of Motzkin trees with n edges having exactly one branch

node is equal to
(
n
2

)
.

Proof Let k = 1. 2
Corollary 4.3 For m ≥ 1, the number of Motzkin trees with 2m edges containing m branch

nodes is equal to Cm = 1
m+1

(
2m
m

)
.

Proof Let n = 2m and k = m. 2
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Theorem 4.4 For n ≥ 1, the number of branch nodes in all Motzkin trees with n edges is equal

to vn − vn−1 − ln. In particular, the proportion of branch nodes among all vertices of Motzkin

trees with n edges is asymptotically 1
3 .

Proof Differentiating both sides of equation (4.1) with respect to t and setting t = 1 gives that

∂G

∂t

∣∣∣
t=1

=
(1− z)M(z)− 1√

1− 2z − 3z2
,

where we have used the fact that G(1, z) = M(z). From (1.5), it follows that

vn − vn−1 − ln
vn

∼ 1

3
. 2

Let g(t, z) be the generating function for the number of Motzkin trees according to the

number of protected branch nodes, where z marks edges and t marks protected branch nodes.

Then we have

g = 1 + zg + z2(1 + 2(g − 1) + (g − 1)2t). (4.2)

Precisely, we have

Theorem 4.5 For all n, k ≥ 1, the number of Motzkin trees with n edges and k protected

branch nodes is

n∑
m=1

2m−n∑
j=0

2m−2k−j−1

m

(
m

n−m

)(
2m− n

j

)(
n−m

n−m− k

)(
n−m− k

m− 2k − j − 1

)
.

Proof Let y(t, z) = g(t, z)− 1. Then from (4.2), we get

y = z((y + 1) + z(1 + 2y + y2t)).

Using Lagrange inversion formula, we obtain

[zm]g(t, z) = [zm]y(t, z) =
1

m
[xm−1]((x+ 1) + z(1 + 2x+ x2t))m

=
1

m

m∑
i=0

m−i∑
j=0

i∑
p=0

(
m

i

)(
m− i

j

)(
i

p

)(
p

m+ 2p− 2i− j − 1

)
2m+2p−2i−j−1ti−pzi.

By some computations it follows that

g(t, z) =
∞∑

m=1

m∑
i=0

m−i∑
j=0

i∑
p=0

(
m

i

)(
m− i

j

)(
i

p

)(
p

m+ 2p− 2i− j − 1

)
1

m
2m+2p−2i−j−1ti−pzm+i,

and hence,

[tkzn]g(t, z) =
n∑

m=1

2m−n∑
j=0

1

m

(
m

n−m

)(
2m− n

j

)(
n−m

n−m− k

)(
n−m− k

m− 2k − j − 1

)
2m−2k−j−1. 2
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The first terms of the array formed by the coefficients of g(t, z) are

1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 · · ·

2 0 0 0 0 0 0 · · ·

4 0 0 0 0 0 0 · · ·

8 1 0 0 0 0 0 · · ·

16 5 0 0 0 0 0 · · ·

32 19 0 0 0 0 0 · · ·

64 61 2 0 0 0 0 · · ·
...

...
...

...
...

...
...

. . .



.

When we take k = 0 and k = 1 in Theorem 4.5, we can obtain sequences A000079 and A102841

in [17]. Thus, the first column and the second column of the matrix correspond to sequences

A000079 and A102841 in [17], respectively.

Theorem 4.6 For n ≥ 2, the number of protected branch nodes in all Motzkin trees with n

edges is equal to

vn − vn−1 − 2vn−2 + ln−2 − ln.

The proportion of protected branch nodes among all vertices for trees with n edges is asymptot-

ically 4
27 .

Proof Differentiating both sides of Eq. (4.2) with respect to t and taking into account that

g(1, z) = M(z), we obtain

∂g

∂t

∣∣∣
t=1

=
(1− z − 2z2)M(z) + z2 − 1√

1− 2z − 3z2
.

Thus,

[zn]
∂g

∂t

∣∣∣
t=1

= [zn]
(1− z − 2z2)M(z) + z2 − 1√

1− 2z − 3z2
= vn − vn−1 − 2vn−2 + ln−2 − ln.

From (1.5), it follows that vn − vn−1 − 2vn−2 + ln−2 − ln ∼ 4
9 ln, and so

vn − vn−1 − 2vn−2 + ln−2 − ln
vn

∼ 4

27
. 2

The first few terms of the generating function for the number of protected branch nodes in

all Motzkin trees are (sequence A025568 [17]),

z4 + 5z5 + 19z6 + 65z7 + 211z8 + 665z9 + 2058z10 + · · · .

5. Lonely nodes and protected lonely nodes

Let H(t, z) be the generating function for the number of Motzkin trees according to the
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number of lonely nodes, where z marks edges and t marks lonely nodes. Using Figure 1, we get

H = 1 + tzH + z2H2. (5.1)

Thus, we can obtain the following result.

Theorem 5.1 For all n, k ≥ 1, the number of Motzkin trees with n edges containing k lonely

nodes is equal to
1 + (−1)n−k

2(n+ 1)

(
n+ 1
n−k
2

)(n+k+2
2

k

)
.

Proof Let y(t, z) = zH(t, z). Then, from (5.1), we get

y = z(1 + ty + y2).

By the Lagrange inversion formula it follows that

[zn]H(t, z) = [zn+1]y(t, z) =
1

n+ 1
[zn]

(
1 + tz + z2

)n+1

=
1

n+ 1

n+1∑
i=0

(
n+ 1

i

)(
n+ 1− i

i+ 1

)
tn−2i.

Therefore, we have

[tkzn]H(t, z) =
1 + (−1)n−k

2(n+ 1)

(
n+ 1
n−k
2

)(n+k+2
2

k

)
. 2

By Theorem 5.1, we know that the array formed by the coefficients of H(t, z) are (A097610),

1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

1 0 1 0 0 0 0 · · ·

0 3 0 1 0 0 0 · · ·

2 0 6 0 1 0 0 · · ·

0 10 0 10 0 1 0 · · ·

5 0 30 0 15 0 1 · · ·
...

...
...

...
...

...
...

. . .



.

Corollary 5.2 For n ≥ 1, the number of Motzkin trees of size 2m containing no lonely nodes

is equal to Cm, the mth Catalan number.

Proof Let k = 0. 2
Theorem 5.3 For n ≥ 1, the number of lonely nodes in all Motzkin trees with n edges is equal

to vn−1. In particular, the proportion of lonely nodes among all vertices of Motzkin trees with

n edges is asymptotically 1
3 .

Proof Differentiating both sides of Eq. (5.1) with respect to t and setting t = 1 gives that

∂H

∂t

∣∣∣
t=1

=
1− z −

√
1− 2z − 3z2

2z
√
1− 2z − 3z2

= zV (z),
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where we have used the fact that H(1, z) = M(z). Hence, the number of lonely nodes in all

Motzkin trees of size n is

[zn]
∂H

∂t

∣∣
t=1

= [zn]zV (z) = vn−1.

The proportion of lonely nodes among all vertices for trees with n edges is vn−1

vn
∼ 1

3 . 2
Since ln

vn
∼ 1

3 and Theorem 4.4, we can also have that the proportion of lonely nodes among

all vertices of Motzkin trees with n edges is asymptotically 1
3 .

Let h(t, z) be the generating function for the number of Motzkin trees according to the

number of protected lonely nodes, where z marks edges and t marks protected lonely nodes.

Thus we obtain

h = 1 + z + tz(h− 1) + z2h2, (5.2)

which is equivalent to

h = 1 + tzh+ (1− t)z + z2h2. (5.3)

We now immediately deduce the following result.

Theorem 5.4 For all n, k ≥ 1, the number of Motzkin trees with n edges containing k protected

lonely nodes is given by

n∑
m=0

m+1∑
i=0

(−1)k+3m

m+ 1

(
m+ 1

i

)(
i

2i+ 2n− 3m− 2

)(
m+ 1− i

n−m

)(
n−m

k + 3m+ 2− 2i− 2n

)
.

Proof Let y(t, z) = zh(t, z), then from (5.3), we can obtain that

y = z(1 + ty + (1− t)z + y2).

Using Lagrange inversion formula, we obtain

[zm]h(t, z) = [zm+1]y =
1

m+ 1
[xm](1 + tx+ (1− t)z + x2)m+1

=
1

m+ 1

m+1∑
i=0

m+1−i∑
p=0

p∑
q=0

(
m+ 1

i

)(
i

2i+ 2p−m− 2

)(
m+ 1− i

p

)(
p

q

)
(−1)qt2i+2p−m−2+qzp.

Furthermore, we deduce that

h(t, z) =
∞∑

m=0

m+1∑
i=0

m+1−i∑
p=0

p∑
q=0

1

m+ 1

(
m+ 1

i

)(
i

2i+ 2p−m− 2

)(
m+ 1− i

p

)
·(

p

q

)
(−1)qt2i+2p−m−2+qzp+m.

Thus, we have

[tkzn]h(t, z)

=
n∑

m=0

m+1∑
i=0

(−1)k+3m

m+ 1

(
m+ 1

i

)(
i

2i+ 2n− 3m− 2

)(
m+ 1− i

n−m

)(
n−m

k + 3m+ 2− 2i− 2n

)
. 2
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The first terms of the array formed by the coefficients of h(t, z) are

1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 1 1 0 0 0 0 · · ·

3 4 1 1 0 0 0 · · ·

6 7 6 1 1 0 0 · · ·

11 18 12 8 1 1 0 · · ·

22 39 36 18 10 1 1 · · ·
...

...
...

...
...

...
...

. . .



.

When we take k = 0 and k = 1 in Theorem 5.4, we should obtain sequences A007477 and

A234269 in [17]. Thus, the first column and the second column of the matrix correspond to

sequences A007477 and A234269 in [17], respectively.

By Theorems 3.2 and 4.6, we can obtain the following result. The result can be proved by

the generating function.

Theorem 5.5 For n ≥ 1, the number of protected lonely nodes in all Motzkin trees with n

edges is equal to vn−1 − ln−1. In particular, the proportion of protected lonely nodes among all

vertices of Motzkin trees with n edges approaches 2
9 .

Proof Differentiating both sides of Eq. (5.3) with respect to t and setting t = 1 gives that

∂h

∂t

∣∣∣
t=1

=
zM(z)− z√
1− 2z − 3z2

= zV (z)− zL(z),

where we have used the fact that h(1, z) = M(z). Hence, the number of protected lonely nodes

in all Motzkin trees with n edges is given by

[zn]
∂h

∂t

∣∣∣
t=1

= [zn]zV (z)− [zn]zL(z) = vn−1 − ln−1.

From the relations (1.5), it follows that vn−1 − ln−1 ∼ 2ln−1 ∼ 2
3 ln, and the proportion of

protected lonely nodes among all vertices of Motzkin trees with n edges is vn−1−ln−1

vn
∼

2
3 ln
3ln

= 2
9 . 2

The first few terms of the generating function for the number of protected lonely nodes in all

Motzkin trees are (sequence A005774 [17]),

z2 + 3z3 + 9z4 + 26z5 + 75z6 + 216z7 + 623z8 + 1800z9 + 5211z10 + · · · .

As future works, we will find bijective proofs for Theorems 3.2, 4.4, 4.6 and 5.5.
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