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Abstract In this paper, the higher order asymptotic behaviors of boundary blow-up solutions

to the equation ∆u = up ± |∇u|q in bounded smooth domain Ω ⊂ RN are systematically

investigated for p and q. The second and third order boundary behaviours of the equation are

derived. The results show the role of the mean curvature of the boundary ∂Ω and its gradient

in the high order asymptotic expansions of the solutions.
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1. Introduction

Consider the boundary blow-up problem{
∆u = up ± |∇u|q , x ∈ Ω

u(x) = ∞, x ∈ ∂Ω,
(P±)

where Ω ⊂ RN is a bounded smooth domain, N ≥ 2. We are interested in the high order

asymptotic behavior of the boundary blow-up solutions to (P±). For the special case q = 2p
p+1 ,

the boundary behavior has been studied in [1]. The aim of this essay is to explore the relationship

between higher order (higher than the first order) asymptotic behavior of the boundary blow-

up solutions and the geometry of the domain Ω for more general p, q. Second order estimates

(approximation) of the blow-up solutions to the equation ∆u = up have been investigated in

many papers [2–4]. For 1 < p < 3, Bandle [2] obtained the second order estimates:

u(x) =
(√2 p+ 2

p− 1

) 2
p−1

δ(x)
2

1−p

(
1 +

(N − 1)H(x̄)δ(x)

p+ 3
+ o(δ(x))

)
,

where x̄ ∈ ∂Ω is the point such that δ(x) = |x− x̄| and H(x̄) denotes the mean curvature of ∂Ω.

High order estimates of the equation ∆u = up + uq has been studied in [5]. More results about

behavior of the boundary blow-up solutions can be found in [6–10].
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Recently, researchers have shown an increased interest in large solutions of equations with

gradient term. Second order estimates of the blow-up solutions for the equations with gradient

term are discussed in [1, 11–16]. In [11] the equation ∆u = up|∇u|q for 0 ≤ p ≤ p+3
p+2 has

been studied. These results show how the gradient term affects the asymptotic behaviour of u.

Giarrusso and Porru [1] studied an equation with a special gradient term ∆u = up + λ|∇u|
2p

p+1 ,

0 ≤ λ ≤ 1, p > 1, and derived that

u(x) = L(δ(x))
2

1−p

(
1 +

(N − 1)H(x̄)(p+ 1)δ(x)

(3− p)(p+ 1) + Lp−1p(p− 1)2
+ o(δ(x))

)
,

where L is the solution of the equation( 2

p− 1

) 2p
p+1L

p−1
p+1 λ+ Lp−1 =

2(p+ 1)

(p− 1)2
.

This paper considers general case of p and q in (P±). Our estimates also include the critical case

of the exponent in gradient term, where the factors of logarithmic function rise in the estimates.

Theorem 1.1 Assume p > 0, q > 0, and ∂Ω ∈ C4. If u(x) is a solution to problem (P±) in Ω.

Then u(x) satisfies the following second order estimates on a sufficiently small neighborhood of

∂Ω as in the following cases.

(i) 1 < p < 3 and 0 < q < 1 for (P±):

u(x) =
( p− 1√

2 p+ 2

) 2
1−p δ(x)

2
1−p

(
1 +

(N − 1)H(x̄)

p+ 3
+ o(δ(x))

)
;

(i)′ 1 < p < 3 and q = 1 for (P±):

u (x) =
( p− 1√

2 p+ 2

) 2
1−p δ(x)

2
1−p

(
1 +

(N − 1)H (x̄) δ(x)

p+ 3
∓

2−
p

p+1

(p+ 3) (p+ 1)
1

p+1

(p− 1)
p+5
p+1 δ(x) + o(δ(x))

)
;

(ii) p > 3 and 2p
p+1 < q < p

2 for (P−):

u (x) =
( (p− q) δ(x)

q

)− q
p−q

(
1 +

(N − 1)H (x̄) (p− q) δ (x)

p− 2q
+ o (δ (x))

)
;

(ii)′ p > 3 and q = p
2 for (P−):

u (x) =
1

δ(x)

(
1 + (N − 1)H (x̄) δ (x) log δ(x) + o(δ(x) log

1

δ(x)
)
)
;

(iii) 2p−1
p < q < 3

2 and 1 < p < 2 for (P+):

u (x) =
[(q − 1)δ(x)]

q−2
q−1

2− q

(
1 +

(N − 1)H (x̄) (q − 2) δ (x)

4 q − 6
+ o (δ (x))

)
;

(iii)′ q = 3
2 and 1 < p < 2 for (P+):

u(x) =
4

δ(x)

(
1− (N − 1)H (x̄) δ log δ(x)

2
+ o(δ(x) log

1

δ(x)
)
)
;
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(iii)′′ q = 2p−1
p and 1 < p < 2 for (P+):

u(x) =
( p

(p− 1) δ(x)

) 1
p−1

(
1 +

(N − 1)H (x̄)

2− 2 p
δ(x)− (2− p)

−p−1

2
δ(x)+

o(δ(x)
)
;

(iv) q = 2 and p > 0 for (P+):

u(x) =
1

log δ(x)

(
1 +

(N − 1)H (x̄) δ(x)

3
+ o(δ(x))

)
.

Remark 1.2 The existence theory of (P±) can be found in [17]. Related to the case (iii),

q = 2p
p+1 and p > 1, the second order estimates (see (1)) have been obtained in [1].

We also get the third order estimates of the (P±), where mean curvature H(x) of the surface

{y ∈ Ω, δ(y) = δ(x)} at the x and ∇H(x) are included in the estimates.

Theorem 1.3 Assume 1 < p < 3, 0 < q ≤ 2
p+1 , and ∂Ω ∈ C5. If u (x) is a solution to the

problem (P±), then we have the third order estimates as the following cases.

(i) 1 < p < 3 and 0 < q < 2
p+1 :

u(x) =
( p− 1√

2 p+ 2

) 2
1−p δ

2
1−p (x)

(
1 +

(N − 1)H (x)

p+ 3
δ(x)+

(3− p)
(
(N − 1)H2(x)− 2∇H(x)∇δ(x)

)
(N − 1)

12 (p+ 3)
δ2(x)+

o(δ2(x))
)
; (1.1)

(ii) 1 < p < 3 and q = 2
p+1 :

u(x) =
( p− 1√

2 p+ 2

) 2
1−p δ

2
1−p (x)

(
1 +

(N − 1)H (x)

p+ 3
δ(x)+

(3− p)
(
(N − 1)H2(x)− 2∇H(x)∇δ(x)

)
(N − 1)

12 (p+ 3)
δ2(x)∓

2−
2p+1
p+1

3 (p+ 1)
1

p+1

(p− 1)
p+5
p+1 δ2(x) + o(δ2(x))

)
. (1.2)

This theorem shows how ∇H(x) appears in the third order estimates. The proof is based on

the construction of upper and lower solutions near the boundary. The construction is inspired

by [1]. The paper is organized as follows. In Section 2, we introduce the first order estimates

in the boundary asymptotic behavior and some notations. In Section 3, the upper and lower

solutions are constructed. In Section 4, we prove Theorem 1.1. Section 5 is devoted to the third

order estimates (see Theorem 1.3).

2. Preliminaries

In this section, we state some first order estimates, which will be used in the proof of our

higher order estimates in the following sections. The first order approximation of the large

solution to ∆u = up + |∇u|q has been obtained in [17]. That is if max{ 2p
p+1 , 1} < q < 2 and
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p > 0, then

u (x) =
1

2− q
[(q − 1)δ(x)]

q−2
q−1 (1 + o(1)). (2.1)

In Theorem 1.1, p and q are divided into 5 cases. We need some notations. In case (iii)
2p−1
p < q < 3

2 , 1 < p < 2, we define

ψ(δ(x)) =
1

2− q
[(q − 1)δ(x)]

q−2
q−1 . (2.2)

To simplify notation, we denote δ(x) by δ and ψ(δ) by ψ. We have ψ → ∞ as δ → 0 and

ψ′ < 0. And we get

ψ = ψ′ q − 1

2− q
δ,−ψ′ = ψ′′(q − 1)δ,−ψ = ψ′′ (q − 1)2

q − 2
δ2. (2.3)

Then (−ψ′)q

ψ′′ = ( 1
q−1 (q − 1)

q−2
q−1 )q(q − 1)2(q − 1)

2−q
q−1 = 1. Set

G(δ) =
(ψ′)p

ψ′′ =
[(q − 1)δ]

q(p+1)−2p
q−1

(2− q)
p . (2.4)

Define similar functions ψ1, ψ2, and ψ4, for case (i)–(iii), respectively, as

ψ1 = (
p− 1√
2 p+ 2

)
2

1−p δ
2

1−p , ψ2 = (
(p− q)δ

q
)−

q
p−q , ψ4 = log δ−1.

3. Second order estimates

To derive second order estimates, we need the following lemma, which will be proved in the

section.

Lemma 3.1 Assume 2p−1
p < q < 3

2 and 1 < p < 2. ψ is defined as (2.2). If u (x) is a solution

to the problem (P+), then there exists a positive constant C such that for x ∈ Ω,

(1− Cδ)ψ (δ) < u (x) < (1 + Cδ)ψ (δ) . (3.1)

Furthermore, for q = 3/2, 1 < p < 2 and δ < 1,(
1− Cδ log δ−1

)
ψ (δ) < u (x) <

(
1 + Cδ log δ−1

)
ψ (δ) . (3.2)

Proof Define Ωη = {x ∈ Ω; δ(x) < η, η > 0}. For x ∈ Ωη, we know [18]

|∇δ| = 1, ∆δ = − (N − 1)H(x). (3.3)

First, consider the case 2p−1
p < q < 3

2 , 1 < p < 2. Let

v = (1− αδ)ψ (δ) . (3.4)

By Taylor expansion, we have

vp < (1− pαδ + C̃1(αδ)
2)ψp, (3.5)

where C̃i (i ≥ 1, i ∈ N) is a positive constant independent of α. From (2.3) and (3.4),

∇v =
(
1− 2q − 3

q − 2
αδ

)
ψ′∇δ. (3.6)
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Noticing that 1− 2q−3
q−2 αδ ≥

q−1
2−q > 0, we derive

|∇v|q <
(
1− (2q − 3)q

q − 2
αδ + C̃2(αδ)

2
)
|ψ′|q.

From (3.3) and (3.5),

∆v =
(
1− 2q − 3

q − 2
αδ

)
(ψ′′ + ψ′∆δ)− 2q − 3

q − 2
αψ′.

Consequently,

∆v =
[
1− (q − 1)∆δδ + (2q − 3)αδ +

(2q − 3)(q − 1)

q − 2
αδ2∆δ

]
ψ′′.

Consider the domain Ωµ = {x ∈ Ω : δ(x) < µ} for µ small. Claim v is a lower solution of (P−)

in Ωµ, i.e.,

∆v > |∇v|q + vp, x ∈ Ωµ. (3.7)

In order to prove (3.7), we need[
1− (q − 1)δ∆δ + (2q − 3)αδ +

(2q − 3)(q − 1)

q − 2
αδ2∆δ

]
ψ′′

>
(
1− (2q − 3)q

q − 2
αδ + C̃2(αδ)

2
)
|ψ′|q + (1− pαδ + C̃1(αδ)

2)ψp.

Applying (2.4) to the inequality, we can rewrite the inequality as[
1− (q − 1)∆δδ + (2q − 3)αδ +

(2q − 3)(q − 1)

q − 2
αδ2∆δ

]
> B(1− (2q − 3)q

q − 2
αδ + C̃2(αδ)

2) +G(δ)(1− pαδ + C̃1(αδ)
2),

which can be simplified as

(q − 1)∆δ − (2q − 3)(q − 1)

q − 2
αδ∆δ

< α
(2q − 3)(q − 1)2

q − 2
− G(δ)(1− pαδ + C̃1(αδ)

2)

δ
− C̃3(α)

2δ.

Since q > 2p−1
p , we obtain

G(δ) =
((q − 1)δ)

q(p+1)−2p
q−1

(2− q)
p = o(δ).

Thus if ∆δ < α 2(2q−3)
q−2 , then (3.6) can be derived straightly. Since q < 3/2, taking α0 large and

δ0 small enough, we have (3.6) holds for 0 < δ ≤ δ0 and α ≥ α0. Then, choosing δ1 such that

δ1 < δ0, by (2.1) we have

u > ψ(δ)(1− α0δ0) for δ < δ1.

Choose α1 such that α0δ0 = α1δ1. Then we have

u(x) > ψ(δ1)(1− α1δ1) for δ = δ1.

By (2.1), θu(x) > ψ(δ) (1− α1δ) for any θ > 1 near ∂Ω, and

θ∆u < (θu)
p
+ |∇(θu)|q .
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Using the comparison principle and (3.7), we obtain θ u > ψ(δ)(1− α1δ) for δ < δ1. Let θ → 1,

u > ψ(δ)(1− α1δ) for δ < δ1. Increasing α1, we obtain u > ψ(δ)(1− α1δ) on Ω. The left side of

inequality (3.1) is proved. The proof of right side is similar and omitted. Thus (3.1) holds. Now

we consider ∆u = |∇u|3/2 + up, where 1 < p < 2 and δ (x) < 1. Let v = (1 − αδ log δ−1)ψ(δ).

Using the arguments similar to that in the proof of (3.1) gives the desired result (3.2). 2
Lemma 3.2 Assume 2p−1

p < q < 3
2 and 1 < p < 2. ψ is defined as (2.2). If u (x) is a solution

to the problem (P+), then there exists a positive constant C such that for x ∈ Ω,∣∣∣u(x)
ψ(δ)

−
(
1 +

(N − 1)H (x) (q − 2) δ

4q − 6

)∣∣∣ < Cδσ, (3.8)

where G(δ) is defined in (2.4) and 1 < σ < q(p+1)−2p
q−1 is a suitable constant.

Furthermore, for q = 3/2, 1 < p < 2, and δ < 1.∣∣∣u(x)
ψ(δ)

−
(
1− (N − 1)H (x) δ log δ

2

)∣∣∣ < Cδ(− log δ)σ
′
, (3.9)

where 0 < σ′ < 1 is a constant.

Proof To prove (3.8) it suffices to show that(
1 +

(N − 1)H (x) (q − 2) δ

4 q − 6
− αδσ

)
ψ (δ) < u(x)

<
(
1 +

(N − 1)H (x) (q − 2) δ

4 q − 6
+ αδσ

)
ψ (δ) , (3.10)

where α is a positive constant. Consider the left side of (3.10). Let

v = (1 +Aδ − αδσ)ψ(δ), (3.11)

where A = −∆δ(q−2)
4 q−6 . From (2.3),

∇v =
[
(1 +

2q − 3

q − 2
Aδ − (1 +

q − 1

q − 2
σ)αδσ)∇δ + q − 1

q − 2
∇Aδ

]
ψ′. (3.12)

Taking α large enough and δ small enough such that

1 +
2q − 3

q − 2
Aδ − (1 +

q − 1

q − 2
σ)αδσ > 0, (3.13)

we obtain

|∇v|q <
(
1 +

2q − 3

q − 2
Aqδ − (1 +

q − 1

q − 2
σ)qαδσ + C̄1δ

2 + C̄1(αδ
σ)2

)
|ψ′|q,

where C̄i (i ≥ 1, i ∈ N) is a positive constant independent of α. Using (3.12) yields

∆v =(1 +Aδ − αδσ) (ψ′′ + ψ′∆δ) + (∇A∇δδ +A− ασδσ−1)2ψ′+

(∆Aδ + 2∇A∇δ +A∆δ − ασ(σ − 1)δσ−2 − ασδσ−1∆δ)ψ.

Consequently, we have

∆v >{1 + [(3− 2q)A− (q − 1)∆δ]δ − αδσ + (q − 1)2ασδσ+

(q − 1)2

q − 2
ασ(σ − 1)δσ − C̄2δ

2 − C̄2αδ
(σ+1)}ψ′′.
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Choose α and δ such that

−1 < Aδ − αδσ < 1. (3.14)

By (3.11), we derive

vp < (1 + pAδ − pαδσ + C̄3δ
2 + C̄3(αδ

σ)2)ψp.

Claim v is a lower solution of (P+) in Ωµ, i.e.,

∆v > |∇v|q + vp, x ∈ Ωµ. (3.15)

That is

{1 + [(3− 2q)A− (q − 1)∆δ]δ − αδσ +
(q − 1)2

q − 2
ασ(σ − 1)δσ+

2(q − 1)ασδσ − C̄2δ
2 − C̄2αδ

(σ+1)}ψ′′ > (1 +
2q − 3

q − 2
Aqδ−

q(1 +
q − 1

q − 2
σ)αδσ + C̄1δ

2 + C̄1(αδ
σ)2)|ψ′|q + (1 + pAδ−

pαδσ + C̄3δ
2 + C̄3(αδ

σ)2)ψp.

Applying (2.4) to the inequality, we can rewrite the inequality as

1 + [(3− 2q)A− (q − 1)∆δ]δ − αδσ +
(q − 1)2

q − 2
ασ(σ − 1)δσ+

2(q − 1)ασδσ − C̄2δ
2 − C̄2αδ

(σ+1) > (1 +
2q − 3

q − 2
Aqδ−

q(1 +
q − 1

q − 2
σ)αδσ + C̄1δ

2 + C̄1(αδ
σ)2) + (1 + pAδ−

pαδσ + C̄3δ
2 + C̄3(αδ

σ)2)G(δ). (3.16)

Since A = −∆δ(q−2)
4 q−6 , we have

(3− 2q)A− (q − 1)∆δ =
2q − 3

q − 2
Aq. (3.17)

Hence (3.16) becomes

C̄4δ
2 +G(δ)(1 + pAδ + C̄3δ

2) <αδσ[(q − 1)(1 + 2σ) +
q − 1

q − 2
(σq − σ + 1)σ−

C̄1αδ
σ +G(δ)p−G(δ)C̄3αδ

σ].

From 1 < σ < q(p+1)−2p
q−1 , we get

G(δ) =
(q − 1)

q(p+1)−2p
q−1 (δ)

q(p+1)−2p
q−1 −σ

(2− p)
p = o(δσ).

By a direct calculation, (3.16) can be derived if we have

(q − 1)(1 + 2σ) +
q − 1

q − 2
σ(σq − σ + 1) > 0.

Since 1 < q < 3
2 and 1 < σ < q(p+1)−2p

q−1 , the inequality holds.
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Taking α0 large and δ0 small enough, we have (3.13) and (3.14). Decrease δ0 until (3.15)

holds. Hence, we have inequality (3.15) for δ ≤ δ0 and α ≥ α0. Choose δ1 such that δ1 ≤ δ0.

Using (3.1), we obtain u (x) > (1− Cδ)ψ (δ) for δ ≤ δ1. From (3.11),

v(x)− u (x) < ψ (δ) ((A+ C)δ − αδσ) .

Choosing α1 such that α1δ
σ
1 = α0δ

σ
0 , we obtain (A + C)δ1 − α1δ

σ
1 < 0. Then u(x) ≥ v(x) for

δ(x) = δ1. For any θ > 1, we have v(x) < θu(x) for δ(x) = δ1. Hence, by (2.1) we obtain

v(x) < θu(x) near ∂Ω and derive

θ∆u < (θu)
p
+ |∇(θu)|q .

Using comparison principle and (3.15), we have proved that v(x) < θu(x) for δ ≤ δ1.

Let θ → 1. We get u(x) ≥ v(x) for δ ≤ δ1. Increasing α1, we obtain u(x) ≥ v(x) on Ω.

Hence, the left side of Eq.(3.10) is proved. The proof of the right side of Eq.(3.10) is similar and

is omitted. Hence, we prove (3.10).

By a direct calculation, (3.9) can be derived if we have

(1− (N − 1)H (x) δ log δ

2
− αδ(− log δ)σ)ψ (δ) < u(x)

< (1− (N − 1)H (x) δ log δ

2
+ αδ(− log δ)σ)ψ (δ (x)) ,

where α is a positive constant. Consider the left side of the inequality. Let

v = (1 + Āδ log δ − αδ(− log δ)σ)ψ(δ),

where Ā = ∆δ
2 . Similarly, one can prove (3.10). This completes our proof of the lemma. 2

4. Proof of Theorem 1.1

In this section, we give a proof for all the cases in Theorem 1.1.

Proof First, we consider the case (iii)′′. By replacing (3.17) in the proof of Lemma 3.2 with

(3− 2q)A− (q − 1)∆δ =
2q − 3

q − 2
Aq +G(δ),

we can prove

u(x) =
( p

(p− 1) δ

) 1
p−1

(
1 +

(N − 1)H (x)

2− 2 p
δ − (2− p)

−p−1

2
δ + o(δ)

)
.

Similarly, H (x) can be replaced by H (x̄) in the inequality, where x̄ is the point such that

δ(x) = |x− x̄|. ∆δ(x) has eigenvalues given by

−κ1(x̄)
1− κ1(x̄)δ

, . . . ,
−κN−1(x̄)

1− κN−1(x̄)δ
,

where κ1(x̄), . . . , κN−1(x̄) are the principal curvatures of ∂Ω, N is the dimension of Ω. We

know [18]

∆δ =
N−1∑
i=1

−κi(x̄)
1− κi(x̄)δ

= −
N−1∑
i=1

κi(x̄)[1 + κi(x̄)δ + · · ·+ (κi(x̄)δ)
n + o((κi(x̄)δ)

n)].
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Let n = 1. We get

∆δ =
N−1∑
i=1

−κi(x̄)
1− κi(x̄)δ

= −
N−1∑
i=1

κi(x̄)−
N−1∑
i=1

κi(x̄)(κi(x̄)δ + o(δ))

=− (N − 1)H(x̄) + o(δ).

Hence, replace H(x) by H(x̄). For the other cases (i), (ii) and (iv), using the same arguments as

(iii), one can prove the second order estimates. The proof for the cases (i)′ and (ii)′ follow the

ones of (iii)′′ and (iii)′, respectively. 2
5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

Proof It suffices to prove that there exists a positive constant C such that∣∣ u (x)
ψ1 (δ)

−
(
1 +A1δ +A2δ

2
) ∣∣ < Cδσ,

where

A1 = − ∆δ

p+ 3
, A2 =

(−A1∆δ − 2∇A1∇δ)(3− p)

12
,

and 2 < σ < 3 is a constant. First, consider the case 1 < p < 3, 0 < q < 2
p+1 for (P+). Let

v =
(
1 +A1δ +A2δ

2 − αδσ
)
ψ1 (δ) ,

where

A1 = − ∆δ

p+ 3
, A2 =

(−A1∆δ − 2∇A1∇δ)(3− p)

12
,

and 2 < σ < 3 is a constant. The left part is the same as Lemma 3.2. The proof is left to the

reader. Hence, we have (1.1) and (1.2). 2
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