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Abstract Periodicity, anti-periodicity and almost periodicity are significant dynamic behaviors

of time-varying neural networks. This paper researches the dynamics of anti-periodic solution-

s for a kind of inertial Quaternion-valued Hopfield neural networks with varying-time delays.

Without resolving the explored neural networks into real-valued systems, in the light of a con-

tinuation theorem of coincidence degree theory and inequality skills, by constructing different

Lyapunov functions from those constructed in the existing research of the stability of equilibrium

point, periodic solutions and anti-periodic solutions for neural networks, a newfangled sufficient

condition insuring the existence of periodic solutions for above neural networks is gained. By

constructing the same Lyapunov functions as those constructed in the proof of the existence of

anti-periodic solutions, the newfangled asymptotic stability of anti-periodic solutions for above

networks is acquired.
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1. Introduction

Quaternion algebra was introduced into mathematics by Hamilton in 1843. The expression

of skew field of quaternions is

H = {u|u = uR + iuI + juJ + kuK},

where uR, uI , uJ , uK ∈ R, i, j, k are the fundamental quaternion units, which meet the Hamilton’s

multiplication rules: ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1. For each

u ∈ H, the conjugate of u is u∗ = uR − iuI − juJ − kuK and the norm of u is defined as

∥u∥ =
√
uu∗ =

√
(uR)2 + (uI)2 + (uJ )2 + (uK)2.

Quaternion-valued neural networks is involved in various fields such as attitude control, quan-

tum mechanics and computer graphics. It can use multistate activation functions particularly to

process multi-level information, the research of periodic solutions, stability and synchronization

have become a very topical issues. Lately, by resolving a quaternion-valued neural networks
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into real-valued neural networks, some authors get a number of sufficient conditions insuring the

existence and exponential stability of the equilibrium point, periodic solutions, anti-periodic solu-

tions for quaternion-valued neural networks, in this regard, we can see the references [1–6]. In [7],

so as to avoid the complexity of computation of resolving a quaternion-valued neural networks

into real-valued neural networks, the authors studied the stability of a class of quaternion-valued

neural networks by the use of non-decomposition ways, that is, without resolving a quaternion-

valued neural networks into real-valued neural networks.

In many researches on neural networks, physical or natural phenomenon is applied to the

periodic motion control, and can be converted into transaction cycle mode expression recognition,

especially the latter is used for image processing and other complex static pattern recognition is

expected to bring computing superiority, and improve the efficiency of information processing, so

as to realize more intelligent information processing system, to create a possible way to achieve

intelligent computer. These applications rely massively on the dynamic behaviors of the neural

networks. Thus, the qualitative analysis of these dynamical behavior is prerequisite step in

practical designing of neural networks, for example [8–12].

Furthermore, due to rich periodic and anti-periodic significant dynamic behaviors of neural

networks, it becomes very useful to analyze the periodicity, anti-periodicity and almost period-

icity of neural networks. It has been observed that many physical or natural phenomena do

not show exact periodic behaviour, rather they show anti-periodic behaviour. Especially, neu-

ral network signal transmission courses can often be represented as anti-periodic courses. As a

special case of periodic solution, the anti-periodicity of a variety of forms neural networks has

been studied extensively, it plays an important role in the dynamic behavior of nonlinear dif-

ferential equations. For example [4, 13–15]. Thus, it is essential to research the periodicity and

anti-periodicity of neural networks. We have improved and generalized some known results.

Inertial neural network is a significant neural network, till now, the stability of equilibrium

point and periodic solutions for inertial neural networks has been discriminated clearly, which

we can refer to [16–18].

In [19], lately, the authors researched the existence and exponential stability of anti-periodic

solutions for a class of inertial Quaternion-valued high-order Hopfield neural networks with state-

dependent delays. Without resolving the considered neural networks into real-valued systems,

in the light of a continuation theorem of coincidence degree theory and the wirtinger inequality,

an adequate qualification on the existence of anti-periodic solutions for above neural networks is

got. Then by constructing a Lyapunov functional, an adequate qualification insuring the global

exponential stability of the anti-periodic solution of the neural networks is gained.

In this paper, we are going to investigate the existence and global asymptotic stability of

anti-periodic solutions for a kind of inertial Quaternion-valued Hopfield neural networks with

time-varying delays. Without resolving the researchful neural networks into eight real-valued

systems, such as [19], putting the continuation theorem of coincidence degree theory into use as

before, but averting the prior estate method of periodic solutions used in [19], by wielding new

approach of studying the existence and global asymptotic stability, we will explore newfangled
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adequate qualification for the considered neural networks. In this paper, we investigate the

following inertial quaternion-valued Hopfield neural networks with time-varying delays:

u′′p(t) = −αp(t)u
′
p(t)− γp(t)up(t) +

n∑
q=1

cpq(t)Fquq(t) +

n∑
q=1

dpq(t)Fq(uq(t− τ(t)) + Ip(t), (1.1)

thereinto, p = 1, 2, . . . , n and n is the number of units in the neural network, up(t) ∈ Q corre-

sponds to the state vector of the pth unit at time t; αp(t) ≥ 0, γp(t) ≥ 0; cpq(t), dpq(t) ∈ Q are

the first and second-order connection weights of the neural network at time t, τ(t) ≥ 0 are the

transmission delays, Ip(t) ∈ Q denotes the external input at time t, and Fq : Q → Q is the

activation function of signal transmission.

The initial value conditions of system (1.1) is that:

up(s) = ϕ∗p(s), u
′
p(s) = ψ∗

p(s), s ∈ [−ρ, 0], p = 1, 2, . . . , n, (1.2)

where ϕp, ψp ∈ C([−ρ, 0],Q).

So far, in the research of the existence of periodic solutions (if u(t) is a ω
2 anti-periodic

solution, then it is also a ω periodic solution) for delayed neural networks, a V (t) function with

V (t) =
n∑

i=1

x2i (t) +
m∑
j=1

y2i (t) +
n∑

i=1

∫ τ

t−τ

x2i (s)ds+
m∑
j=1

∫ t

t−σ

y2i (s)ds+ · · · or

V (t) =
n∑

i=1

|xi(t)|+
m∑
j=1

|yi(t)|+
n∑

i=1

∫ τ

t−τ

|xi(s)|ds+
m∑
j=1

|yi(s)|ds+ · · ·

has been constructed, for instance [14–16]. By then showing V ′(t) ≤ −µ∥(x, y)T ∥ + k∗ (µ >

0, k∗ > 0), the existence of at least one periodic solution was testified. In the research of the

global stability of anti-periodic solutions and periodic solutions for delayed neural networks, a

V (t) function with

V (t) =
n∑

i=1

[xi(t)−x∗i (t)]2+
m∑
j=1

[yi(t)−y∗i (t)]2+
n∑

i=1

∫ τ

t−τ

[xi(s)−x∗i (s)]2ds+
m∑
j=1

∫ t

t−σ

[yi(s)−y∗i (s)]2ds+

· · · or

V (t) =
n∑

i=1

|xi(t)−x∗i (t)|+
m∑
j=1

|yi(t)−y∗i (t)|+
n∑

i=1

∫ τ

t−τ

|xi(s)−x∗i (t)|ds+
m∑
j=1

|yi(s)−y∗i (s)|ds+· · ·

has been constructed, then by showing V ′(t) ≤ 0, the global stability of anti-periodic solutions

and periodic solutions was testified. In this respect, we refer to [4, 5, 14,15,20–23].

Our purpose is constructing Lyapunov functions unlike those in the existing available litera-

ture and wielding a different research technique of anti-periodic solutions from that used in [19]

to acquire newfangled adequate qualification of the existence and global asymptotic stability of

periodic solutions for system (1.1). In our research, in the first place, a differential inequality

group will be built, then by solving the differential inequality group, the adequate qualification of

the existence of anti-periodic solutions is acquired. Furthermore, the exploring of global asymp-

totic stability is other than those in [19] and other existing papers. So, the efficiency of the paper



464 Ailing LI and Mengting LÜ

is listed below: (1) A newfangled research technique of the existence and global stability of anti-

periodic solution is introduced; (2) By putting differential inequality skills into use, newfangled

adequate qualification insuring the existence and asymptotic stability of anti-periodic solutions

for system (1.1) is received.

2. Preliminaries

Throughout this paper, we suppose that:

(v1) For p, q = 1, 2, . . . , n, αp, γp, τ ∈ BC(R × Q, R), Fq ∈ C(Q,Q), cpq, dpq, Ip ∈ C(R,Q)

and there exists a constant ω > 0 such that for t, u ∈ R,

αp(t+
ω

2
) = αp(t), γp(t+

ω

2
) = γp(t),

cpq(t+
ω

2
)Fq(u) = −cpq(t)Fq(−u),

τ(t+
ω

2
) = τ(t), Ip(t+

ω

2
) = −Ip(t).

(v2) There exist positive constants Lq such that for all u, v ∈ Q,

∥Fq(u)− Fq(v)∥ ≤ Lq∥u− v∥,

where ∥ · ∥ is the norm of Q. We will take the following notations:

α−
p = inf

t∈[0,ω]
αp(t), γ

+
p = sup

t∈[0,ω]

γp(t), τ
+ = max

1≤p,q≤n
{ sup
t∈[0,ω]

τ(t)},

c+pq = sup
t∈[0,ω]

∥cpq(t)∥, d+pq = sup
t∈[0,ω]

∥dpq(t)∥, I+p = sup
t∈[0,ω]

∥Ip(t)∥.

Let (u1, u2, . . . , un)
T be a solution of system (1.1) with initial value (1.2). Making variable

substitution:

vp(t) = u′p(t) + up, p = 1, 2, . . . , n,

then for p = 1, 2, . . . , n, system (1.1) is converted to

u′p(t) = −up(t) + vp(t) = πp(u, v, t),

v′p(t) =− [1 + γp(t)− αp(t)]up(t)− (αp(t)− 1)vp(t) +
n∑

q=1

dpq(t)Fq(uq(t− τ(t)))+

n∑
q=1

cpq(t)Fq(uq(t)) + Ip(t) = Γp(u, v, t), (2.1)

with the initial values:

up(s) = ϕ∗p(s), vp(s) = ψ∗
p(s), s ∈ [ρ, 0],

where p = 1, 2, . . . , n.

It is clear that the existence and global asymptotic stability of anti-periodic solutions of

system (1.1) are equivalent to the existence and global asymptotic stability of anti-periodic

solutions of system (2.1). Therefore, we only need to discuss the existence and global asymptotic
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stability of anti-periodic solutions of system (2.1).

Lemma 2.1( [17]) Let X̂ and Ŷ be two Banach spaces, L̂ : Dom(L̂) ⊂ X̂ → Ŷ be linear,

and N̂ : X̂ → Ŷ be continuous. Assume that L̂ is one-to-one and K := L̂−1N̂ is compact.

Furthermore, assume that there exists a bounded and open subset Ω̂ ⊂ X̂ with 0 ∈ Ω̂ such

that equation L̂u = λN̂u has no solutions in ∂Ω̂ ∩ DomL̂ for any λ ∈ (0, 1). Then the problem

L̂u = N̂u has at least one solution in Ω̂.

Lemma 2.2 For all a, b ∈ Q, a∗b+ b∗a ≤ a∗a+ b∗b.

3. The existence of anti-periodic solutions

In this section, we will acquire a sufficient condition on the existence of anti-periodic solutions

for system (1.1) by applying Lemma 2.1. Let p = 1, 2, . . . , n,

X̂ =
{
x : x = (u1, u2, . . . , un, v1, v2, . . . , vn)

T ∈ C(R,Q2n), x(t+
ω

2
) = −x(t), ∀t ∈ R

}
,

∥x∥X̂ =
n∑

p=1

(|up|0 + |vp|0),

|up|0 = sup
t∈[0,ω]

√
up(t)u∗p(t), |vp|0 = sup

t∈[0,ω]

√
vp(t)v∗p(t),

then X̂ is a Banach space with the norm ∥ · ∥X̂ .

Theorem 3.1 Assume that (v1) and (v2) hold. Furthermore assume that

(v3) α−
p > γ+p + 1;

(v4) µ1 > µ2 + µ̂1 + µ̂2, where

µ1 = min
1≤p≤n

{α−
p + γ+p − 2}, µ2 = max

1≤p≤n
{α−

p − γ+p − 1},

µ̂1 = n max
1≤q≤n

{ n∑
p=1

[L2
qc

+
pq(c

+
pq + d+pq)]

}
, µ̂2 = n max

1≤q≤n

{ n∑
p=1

[L2
qd

+
pq(d

+
pq + c+pq)]

}
.

Then system (1.1) has at least ω
2 anti-periodic solution.

Proof On the basis of (v4), it follows that there exists a positive constant ε such that

(v5) µ1 > µ2 + µ3 + µ4, where

µ3 = n max
1≤p≤n

{ n∑
p=1

[L2
qc

+
pq(c

+
pq + d+pq) + Lqc

+
pqε]

}
,

µ4 = n max
1≤p≤n

{ n∑
p=1

[L2
qd

+
pq(d

+
pq + c+pq) + Lqd

+
pqε]

}
.

Define a linear operator L̂ : Dom L̂ ⊂ X̂ → X̂ by L̂x = x′, where Dom L̂ = {x : x ∈ X,x′ ∈
X̂} and a continuous operator N̂ : X̂ → X̂ by

(N̂)(t) =
(
π1(u, v, t), π2(u, v, t), . . . , πn(u, v, t),Γ1(u, v, t),Γ2(u, v, t), . . . ,Γn(u, v, t)

)
.



466 Ailing LI and Mengting LÜ

It is easy to know that Ker L̂ = {0} and Im L̂ = {z ∈ X̂,
∫ ω

0
z(t)dt = 0} = X̂. Consequently,

L̂ : Dom L̂→ X̂ is one-to-one. Denote by (L̂)−1 the inverse of L̂ and take K̂ = (L̂)−1N̂ , then by

applying Arzela-Ascoli theorem, it can be tested that K̂ is compact.

Let x ∈ X̂ be an arbitrary solution of L̂x = λ1N̂x for a certain λ ∈ (0, 1). Then one has

u′p(t) = λ1πp(u, v, t), v
′
p(t) = λ1Γp(u, v, t), p = 1, 2, . . . , n. (3.1)

Define two Lyapunov functions as follows:

M1(t) =
n∑

p=1

u∗p(t)up(t), M2(t) =
n∑

p=1

v∗p(t)vp(t).

Applying Lemma 2.2, we have on the basis of (3.1),

dM1(t)

dt
=λ1

n∑
p=1

[(u∗p)
′(t)up(t) + u∗p(t)u

′
p(t)]

=λ1

n∑
p=1

(
u∗p(t)[−up(t) + vp(t)] + [−u∗p(t) + v∗p(t)]up(t)

)
=λ1

{
− 2M1(t) +

n∑
p=1

[u∗(t)vp(t) + v∗p(t)up(t)]
}

≤λ1
{
− 2M1(t) +

n∑
p=1

[u∗p(t)up(t) + v∗p(t)vp(t)]
}

=λ1[−M1(t) +M2(t)] (3.2)

dM2(t)

dt
=

n∑
p=1

[(v∗p)
′(t)vp(t) + v∗p(t)v

′
p(t)]

= λ1

n∑
p=1

{[
− (1 + γp(t)− αp(t))u

∗
p(t)− (αp(t)− 1)v∗p(t) +

n∑
q=1

dpq(t)Fq(u
∗
q(t− τ(t)))+

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

]
vp(t) + v∗p(t)

[
− (1 + γp(t)− αp(t))up(t)− (αp(t)− 1)vp(t)+

n∑
q=1

dpq(t)Fq(uq(t− τpq(t))) +
n∑

q=1

cpq(t)Fq(uq(t)) + Ip(t)
]}

≤ λ1

n∑
p=1

{
− 2(α−

p − 1)v∗p(t)vp(t)− [1 + γp(t)− αp(t)][u
∗
p(t)vp(t) + v∗p(t)up(t)] +

[ n∑
q=1

dpq(t)×

Fq(u
∗
q(t− τ(t))) +

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

]
vp(t) + v∗p(t)

[ n∑
q=1

Fq(uq(t− τ(t)))×

dpq(t) +
n∑

q=1

cpq(t)Fq(uq(t)) + Ip(t)
]}

≤ λ1

n∑
p=1

{
− 2(α−

p − 1)v∗p(t)vp(t) + [α−
p − γ+p − 1][u∗p(t)up(t) + v∗p(t)vp(t)] +

[ n∑
q=1

dpq(t)×
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Fq(u
∗
q(t− τ(t))) +

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

]
vp(t) + v∗p(t)

[ n∑
q=1

Fq(uq(t− τ(t)))×

dpq(t) +
n∑

q=1

cpq(t)Fq(uq(t)) + Ip(t)
]}
. (3.3)

By Lemma 2.2, one has[ n∑
q=1

dpq(t)Fq(u
∗
q(t− τ(t))) +

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

]
vp(t) + v∗p(t)×

[ n∑
q=1

dpq(t)Fq(uq(t− τ(t))) +
n∑

q=1

cpq(t)Fq(uq(t)) + Ip(t)
]

≤ v∗p(t)vp(t) +
( n∑

q=1

dpq(t)Fq(u
∗
q(t− τ(t))) +

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

)
×

( n∑
q=1

dpq(t)Fq(uq(t− τ(t))) +
n∑

q=1

cpq(t)Fq(uq(t)) + Ip(t)
)

≤ v∗p(t)vp(t) +
( n∑

q=1

d+pq[Lq∥u∗q(t− τ(t))∥+ ∥Fq(0)∥] +
n∑

q=1

c+pq[∥Lq∥u∗q(t)∥+ ∥Fq(0)∥]+

I+p

)( n∑
q=1

d+pq[Lq∥uq(t− τ(t))∥+ ∥Fq(0)∥] +
n∑

q=1

c+pq[∥Lq∥uq(t)∥+ ∥Fq(0)∥] + I+p

)
= v∗p(t)vp(t) +

{ n∑
q=1

[Apq + Lq(d
+
pq∥uq(t− τ(t)∥+ c+pq∥uq(t)∥)]

}2

≤ v∗p(t)vp(t) + n

n∑
q=1

[Apq + Lq(d
+
pq∥uq(t− τ(t))∥+ c+pq∥uq∥)]2

≤ v∗p(t)vp(t) + n
n∑

q=1

{
A2

pq + L2
q(c

+
pq)

2u∗q(t)uq(t) + L2
q(d

+
pq)

2u∗q(t− τ(t))uq(t− τ(t))+

2ApqLqd
+
pq∥uq(t− τ(t))∥+ 2ApqLqc

+
pq∥uq(t)∥+ 2L2

qd
+
pqc

+
pq∥uq(t− τ(t))∥×

∥uq(t)∥
}
, (3.4)

where Apq = I+p + (d+pq + c+pq)∥Fq(0)∥. Because

2Lqd
+
pqApq∥uq(t− τ(t))∥ ≤ Lqd

+
pq[εu

∗
q(t− τ(t))uq(t− τ(t)) +

Apq

ε
], (3.5)

2ApqLqc
+
pq∥uq∥ ≤ Lqc

+
pq[εu

∗
q(t)uq(t) +

Apq

ε
] (3.6)

and

2L2
qd

+
pqc

+
pq∥uq(t− τ(t))∥∥uq(t)∥ ≤ L2

qd
+
pqc

+
pq[u

∗
q(t− τ(t))uq(t− τ(t)) + u∗q(t)uq(t)], (3.7)

Substituting (3.5)–(3.7) into (3.4) leads to[ n∑
q=1

dpq(t)Fq(u
∗
q(t− τ(t))) +

n∑
q=1

cpq(t)Fq(u
∗
q(t)) + Ip(t)

]
vp(t) + v∗p(t)×
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q=1

dpq(t)Fq(uq(t− τ(t))) +

n∑
q=1

cpq(t)Fq(uq(t)) + Ip(t)
]

≤ v∗p(t)vp(t) + n
n∑

q=1

{[
L2
qc

+
pq(c

+
pq + d+pq) + Lqc

+
pqε

]
u∗q(t)uq(t) +

[
L2
q(d

+
pq)

2 + L2
qd

+
pqc

+
pq+

Lqd
+
pqε

]
u∗q(t− τ(t))uq(t− τpq(t)) +B0

}
, (3.8)

where B0 is a positive constant. Substituting (3.8) into (3.3) leads to

dM2(t)

dt
≤λ1

n∑
p=1

{
− (α−

p + γ+p − 2)v∗p(t)vp(t) + (α−
p − γ+p − 1)u∗p(t)up(t)+

n
n∑

q=1

([L2
qc

+
pq(c

+
pq + d+pq) + Lqc

+
pqε]u

∗
q(t)uq(t)+

[L2
q(d

+
pq)

2 + L2
qd

+
pqc

+
pq + Lqd

+
pqε]u

∗
q(t− τ(t))uq(t− τ(t)) +B0)

}
≤λ1[−µ1M2(t) + (µ2 + µ3)M1(t) + µ4M1(t− τ(t)) + n3B0]. (3.9)

Let M1(ξ1) = maxt∈[0,ω]{M1(t)}, M2(ξ2) = maxt∈[0,ω]{M2(t)}, ξ1, ξ2 ∈ [0, ω]. Then

M ′
1(ξ1) = 0, M ′

2(ξ2) = 0. (3.10)

On the basis of (3.10), (3.2) and (3.9), since µ1 > 0, µ2 > 0, µ3 > 0, µ4 > 0, B0 > 0, one has

M1(ξ1) ≤M2(ξ1), (3.11)

µ1M2(ξ2) ≤ (µ2 + µ3)M1(ξ2) + µ4M1(ξ2 − τ(ξ2)(ξ2)) + n3B0 = 0. (3.12)

In view of (3.12) and (3.11), one has

µ1M2(ξ2) ≤ (µ2 + µ3 + µ4)M1(ξ1) + n3B0 ≤ (µ2 + µ3 + µ4)M2(ξ2) + n3B0.

Consequently,

M2(ξ2) ≤
n3B0

µ1 − (µ2 + µ3 + µ4)
, M1(ξ1) ≤

n3B0

µ1 − (µ2 + µ3 + µ4)
.

Namely,

M1(t) =
∑
p=1

u∗p(t)up(t) ≤
n3B0

µ1 − (µ3 + µ2 + µ4)
,

M2(t) =
∑
p=1

u∗p(t)up(t) ≤
n3B0

µ1 − (µ3 + µ2 + µ4)
.

As a result

∥x∥2
X̂

≤
[ n∑
p=1

(|up|0 + |vp|0)
]2

≤ 2n
n∑

p=1

(|up|20 + |vp|20)

≤ 4n4B0

µ1 − (µ2 + µ3 + µ4)
.
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Take Ω̂ = {x ∈ X̂ : ∥x∥X < 4n4B0

µ1−(µ2+µ3+µ4)
+ 1}, then Ω̂ ∈ X̂ with 0 ∈ Ω̂ such that equation

L̂x = λ1N̂x has no solutions in ∂Ω̂∩Dom L̂ for any λ1 ∈ (0, 1). Then by Lemma 2.1, the system

(1.1) has at least one ω
2 anti-periodic solution. 2

4. Global asymptotic stability of anti-periodic solution

In the section, by constructing two Lyapunov functions and applying integral inequality

techniques, we study the global asymptotic stability of anti-periodic solutions of system (1.1).

Theorem 4.1 Let (v1)–(v4) hold. Furthermore, assume that τ ′(t) ≤ τ∗ < 1 and

(v6) µ̂1 + µ2 < 1;

(v7) µ1 > 1 + µ̂2

1−τ∗ .

Then system (1.1) has a unique ω
2 anti-periodic solution which is globally asymptotically stable.

Proof By Theorem 3.1, we know that system (1.1) or system (2.1) has an ω
2 -anti-periodic solu-

tion, say, x̂(t) = (û1(t), û2(t), . . . , ûn(t), v̂1(t), v̂2(t), . . . , v̂n(t))
T . Let x(t) = (u1(t), u2(t), . . . , un(t),

v1(t), v2(t), . . . , vn(t))
T be an arbitrary solution of system (2.1). By system (2.1), we have for

p = 1, 2, . . . , n,

d[up(t)− ûp(t)]

dt
=− [up(t)− ûp(t)] + vp(t)− v̂p(t)

d[vp(t)− v̂p(t)]

dt
=− [1 + γp(t)− αp(t)][up(t)− ûp(t)]− [αp(t)− 1][vp(t)− v̂p(t)] +

n∑
q=1

dpq(t)×

[Fq(uq(t− τ(t)))− Fq(û(t− τ(t)))] +
n∑

q=1

cpq(t)[Fq(uq(t)− Fq(û(t)]. (4.1)

Two Lyapunov functions are constructed as follows:

F1(t) =

n∑
p=1

[up(t)− ûp(t)]
∗[up(t)− ûp(t)], F2(t) =

n∑
p=1

[vp(t)− v̂p(t)]
∗[vp(t)− v̂p(t)].

By system (4.1), by the similar argument to those of (3.2)–(3.9) in the proof of the existence of

anti-periodic solution of system (2.1) (namely, the up(t), vp(t), M1(t), M2(t), µ3, µ4, Apq, B0, λ

respectively correspondingly change into up(t)− ûp(t), vp(t)− v̂p(t), F1(t), F2(t), µ̂1, µ̂2, 0, 0, 1),

we obtain
dF1(t)

dt
≤ −F1(t) + F2(t), (4.2)

dF2(t)

dt
≤ −µ1F2(t) + (µ2 + µ̂1)F1(t) + µ̂2F2(t− τ(t)). (4.3)

Define

F (t) = F1(t) + F2(t) +
µ̂2

1− τ∗

∫ t

t−τ(t)

F2(s)ds.

Then by (4.2) and (4.3), one has

F ′(t) ≤ (µ̂1 + µ2 − 1)F1(t) + (1− µ1 +
µ̂2

1− τ ′(t)
)F2(t)
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≤ (µ̂1 + µ2 − 1)F1(t) + (1− µ1 +
µ̂2

1− τ∗
)F2(t) < 0.

This accomplishes the proof of Theorem 4.1. 2
Claim 4.2 In [19], by putting the priori method of periodic solutions into use, the sufficient cri-

terion to guarantee the existence of anti-periodic solutions for the discussed Quaternion-Valued

inertial Hopfield neural networks was built. In this paper, by constructing two Lyapunov func-

tions and the behaviors of periodic solutions, the boundary of periodic solutions is estimated.

As a consequence, the way to prove periodic solutions or anti-periodic solutions for neural net-

works in our paper is different from those in the available literature and our means of exploring

anti-periodic solutions or periodic solutions is newfangled. Moreover, the exploration of global

asymptotic stability of periodic solutions is different from those in [19] and the available litera-

ture.

5. Numerical test

In this section, a simulation is conducted to illustrate the effectiveness and superiority of our

theoretical results.

Example 5.1 Take into account a Quaternion-valued inertial neural network as follows:

u′′p(t) = −αp(t)u
′
p(t)− γp(t)up(t) +

n∑
q=1

cpq(t)Fquq(t) +
n∑

q=1

dpq(t)Fq(uq(t− τ(t))) + Ip(t). (5.1)

Transform it into the following one-order differential system:

u′p(t) =− up(t) + vp(t) = πp(u, v, t),

v′p(t) =− [1 + γp(t)− αp(t)]up(t)− (αp(t)− 1)vp(t) +
n∑

q=1

dpq(t)Fq(uq(t− τ(t)))+

n∑
q=1

cpq(t)Fq(uq(t)) + Ip(t) = Γp(u, v, t), (5.2)

where n = 2, p = q = 2, ω = π
3 ,

αp(t) = cos 12t+ 6, γp(t) = sin 12t+ 2.8,

c11(t) = c21(t) = 0.3 cos 6t− i0.4 sin 6t+ j0.5 cos 6t+ k0.63 cos 6t,

c12(t) = c22(t) = 0.5 sin 6t− i0.3 cos 6t+ j0.3 sin 6t+ k0.2 cos 6t,

d11(t) = d21(t) = 1.3− i cos 12t+ j0.5 sin 12t− k cos 12t,

d21(t) = d22(t) = 0.6− i0.7 sin 12t− j cos 12t− k0.4 cos 12t,

Ip(t) = 0.4 sin 6t+ i0.7 cos 6t+ j sin 6t+ k2 cos 6t,

and for any u ∈ H, u = uR + uI + uJ + uK , F1(u) = F2(u) =
1
4 |u

R|+ i15 |u
I |+ j 16 |u

J |+ k 1
7 |u

K |,
τ(t) = 1 + 1

24 sin 12t. Thus in Theorem 4.1, τ∗ = 0.5, L1 = L2 = 1
4 ,

α−
p = 5, γ+p = 3.8, µ1 = 6.8, µ2 = 0.2,
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c+11 = c+21 = 0.9470, c+12 = c+22 = 0.6856, d+11 = d+21 = 1.9849, d+12 = d+22 = 1.4177,

thus µ̂1 = 2max{2L2
1c

+
11(c

+
11 + d+11), 2L

2
2c

+
12(c

+
12 + d+12)} = 2max{0.3471, 0.1802} = 0.6942, µ̂2 =

2max{0.7275, 0.3727} = 1.4550. Consequently, µ1 > µ2 + µ̂1 + µ̂2 = 2.3491, µ̂1 + µ2 < 1.

Hence (v3) and (v4) are met. We also check and testify that (v6) and (v7) are parameters

of satisfaction. The graphs of variables uR1 (t), u
R
2 (t), v1(t)

R and vR2 (t) are presented in Figure

1, The graphs of variables uI1(t), u
I
2(t), v1(t)

I and vI2(t) are presented in Figure 2, The graphs

of variables uR1 (t), u
R
2 (t), v1(t)

R and vR2 (t) are presented in Figure 3. The graphs of variables

uR1 (t), u
R
2 (t), v1(t)

R and vR2 (t) are presented in Figure 4,
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2 (t) Figure 4 Curves of the uK

1 (t), uK
2 (t), vK1 (t), vK2 (t)

6. Conclusion

Without resolving the Quaternion-valued inertial neural networks into eight real-valued neu-

ral networks, in the light of combining a continuation theorem of coincidence degree theory

with two newfangled Lyapunov functions, the existence of anti-periodic solutions for above

Quaternion-valued neural networks is acquired. By constructing a Lyapunov functional, the

adequate criterion to ensure the asymptotic stability of periodic solutions of above networks is

acquired.
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