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Abstract In this paper, we study the asymptotic behavior of solutions to the parabolic-elliptic

chemotaxis system with singular sensitivity and logistic source{
ut = ∆u− χ∇ · (u

v
∇v) + ru− µuk, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0

in a smooth bounded domain Ω ⊂ Rn (n > 2) with the non-flux boundary, where χ, r, µ > 0,

k ≥ 2. It is proved that the global bounded classical solution will exponentially converge to

(( r
µ
)

1
k−1 , ( r

µ
)

1
k−1 ) as t → ∞ if r is suitably large.
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1. Introduction

In recent years, many papers are concerned with the variant of the classical Keller-Segel

chemotaxis system 
ut = ∆u−∇ · (uχ0(v)∇v) + f(u), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x), x ∈ Ω,

(1.1)

which describes the cells move towards the high concentration of a chemical signal produced

by the cells themselves, where Ω is a smooth bounded domain in Rn (n ≥ 1) with smooth

boundary ∂Ω and ν represents the outward normal vector of ∂Ω, u(x, t) and v(x, t) stand for cell

density, the concentration of a chemical signal produced by the cells themselves, respectively.

The nonlinear cross-diffusive term −∇ · (uχ0(v)∇v) with the sensitivity function χ0(v) reflects

the chemotactic movement, while the inhomogeneity f(u) represents the cell kinetic mechanism.

Since the pioneering work of Keller and Segel, many efforts have been devoted to the properties

of solutions to the system (1.1). We refer the reader to [1–13] and references therein.
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The sensitivity function χ0(v) =
χ
v with χ > 0 was first proposed in [14] based on the Weber-

Fechner law of stimulus perception. When τ = 0 and f(u) = 0, it was shown in [15] that all radial

solutions are globally bounded if n = 2 with χ > 0, or n ≥ 3 with χ < 2
n−2 , and there exist radial

blow-up solutions if χ > 2N
N−2 , N ≥ 3. It has been proved that the system (1.1) has a unique

global bounded classical solution if n ≥ 2 with χ < 2
n (see [5]). When τ = 1 and f(u) = 0, it was

shown that the system (1.1) has global bounded classical solutions for n ≥ 2 and 0 < χ <
√

n
2

(see [2]), while 0 < χ <
√

n+2
3n−4 with n ≥ 2, then there exists a global weak solution to (1.1)

(see [8,16]). The stabilization in the logarithmic Keller-Segel system was considered in paper [9].

More results with singular sensitivity for chemotaxis systems have been obtained [3, 6, 7].

Now we focus on the chemotaxis system (1.1) with sensitivity function χ0(v) = χ
v ,τ = 1

and f(u) = ru− µuk as the cell kinetic term. The logistic source f(u) exerts a certain growth-

inhibiting influence. If n, k = 2, there exists a unique global bounded classical solution [10],

whenever

r >

{
χ2

4 , χ ≤ 2,

χ− 1, χ > 2.
(1.2)

In addition, the authors have proved for n ≥ 2, k > 3(n+2)
n+4 that the system (1.1) possesses a

global bounded solution provided χ is suitably small relative to r and k (see [11]). Meanwhile,

the global bounded solution exponentially converges to the steady state [13].

When χ0(v) = χ
v , τ = 0 and f(u) = ru − µuk, the system (1.1) becomes the following

parabolic-elliptic chemotaxis system
ut = ∆u− χ∇ · (uv∇v) + ru− µuk, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where χ, r, µ > 0 and k ≥ 2. Recently, the authors [4, 12] have studied global existence and

boundedness of classical solutions to the system (1.3) with n ≥ 2, k ≥ 3n−2
n and r, χ > 0

satisfying (1.2). Under n = 2 and k = 2, Cao et al. [17] obtained that the global bounded

solution exponentially converges to the steady state when initial data u0 and r are suitably large

relative to χ and Ω.

In the present work, we will study the large time behavior of solutions to the system (1.3).

The main result of this paper reads as follows.

Theorem 1.1 Let Ω ⊂ Rn (n > 2) be a bounded domain with smooth boundary, k ≥ 3n−2
n , r,

χ > 0 and satisfy (1.2). Suppose that r is suitably large and the initial data satisfy

u0(x) ∈ C0(Ω̄), u0(x) ≥ 0 and u0 ̸≡ 0, x ∈ Ω̄,

then for the global bounded classical solution (u, v) of (1.3), there exist constants C, λ > 0 such

that

∥ u(·, t)− (
r

µ
)

1
k−1 ∥L∞(Ω) + ∥ v(·, t)− (

r

µ
)

1
k−1 ∥L∞(Ω)≤ Ce−λt as t → ∞. (1.4)
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This paper is organized as follows. In Section 2, we mainly give preliminary estimates for

the parabolic-elliptic chemotaxis system (1.3). Then we prove the main results of this paper in

Section 3.

2. Preliminaries

In this section, we first recall the global boundedness of classical solutions to (1.3) (see [4,12]).

Lemma 2.1 Under the assumptions in Theorem 1.1, the system (1.3) has a global bounded

classical solution satisfying

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) ≤ C for all t > 0, (2.1)

where C is a constant independent of t.

Next we give the unform-in-time lower bound of v in Ω with the conditions of Lemma 2.1,

which can be obtained in the proof in Lemma 2.4 of [12].

Lemma 2.2 Let the conditions in Lemma 1.1 hold. There exists δ > 0 such that

v(x, t) ≥ δ := ρ(
1

µ
)

1
k−1

with some constant ρ > 0 for all (x, t) ∈ Ω× (0,∞).

Now we give the regularity of u and v (see [17,18]).

Lemma 2.3 Let (u, v) be a global bounded classical solution of (1.3). Then there exist α ∈ (0, 1)

and C > 0 such that

∥u∥
C2+α,1+α

2 (Ω̄×[t,t+1])
+ ∥v∥

C2+α,1+α
2 (Ω̄×[t,t+1])

≤ C for all t ≥ 1.

We utilize the well-known Neumann heat semigroup {et∆}t≥0 estimates in Ω ⊂ Rn to show

the W 1,∞-estimates of u.

Lemma 2.4 Let (u, v) be a global bounded classical solution of (1.3). Then there exists C > 0

such that

∥u(·, t)∥W 1,∞(Ω) ≤ C (2.2)

for all t > 1.

Proof In order to prove that there exists C > 0 such that ∥u(·, t)∥W 1,∞(Ω) ≤ C for all t > 1.

First, for all T > 2, let

M(T ) := sup
t∈(2,T )

∥∇u(·, t)∥L∞(Ω).

Because ∇u is continuous on Ω× [0, T ], we infer that M(T ) is finite. According to (2.1), we only

need to prove that there exists a positive constant c1 such that M(T ) ≤ c1 for all T > 2. Due to

the variation-of-constants formula, for all t ∈ (2, T ), we can conclude that

∥∇u(·, t)∥L∞(Ω) ≤∥∇e∆u(·, t− 1)∥L∞(Ω) + χ

∫ t

t−1

∥∇e(t−s)∆∇ · (u
v
∇v)∥L∞(Ω)ds+
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t−1

∥∇e(t−s)∆(ru− µuk)∥L∞(Ω)ds := I1 + I2 + I3. (2.3)

With semigroup estimates [19,20] and Lemma 2.1, we obtain

I1 = ∥∇e∆u(·, t− 1)∥L∞(Ω) ≤ c1∥u(·, t− 1)∥L∞(Ω) ≤ c2 (2.4)

and

I3 =

∫ t

t−1

∥∇e(t−s)∆(ru− µuk)∥L∞(Ω)ds

≤ c3

∫ t

t−1

[1 + (t− s)−
1
2 ]e−λ1(t−s)ds

= c3

∫ 1

0

(1 + τ−
1
2 )e−λ1τdτ ≤ c4 (2.5)

as well as

I2 =χ

∫ t

t−1

∥∇e(t−s)∆∇ · (u
v
∇v)∥L∞(Ω)ds

≤c5

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥∇ · (u

v
∇v)∥Lp(Ω)ds

=c5

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥∇u · ∇v

v
− u|∇v|2

v2
+

u

v
∆v∥Lp(Ω)ds

≤c5

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥∇u · ∇v

v
∥Lp(Ω)ds+

c5

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥u|∇v|2

v2
∥Lp(Ω)ds+

c5

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥u

v
∆v∥Lp(Ω)ds,

where ci (i = 2, 3, . . . , 5) and λ1 are positive constants. According to Lemma 2.1, we know

∥v(·, t)∥W 1,∞ ≤ c6 with c6 > 0. Hence, through the second equation in (1.3), we can gain

∥∆v(·, t)∥L∞(Ω) ≤ ∥v(·, t)∥L∞(Ω) + ∥u(·, t)∥L∞(Ω) ≤ c7 for all t > 1. (2.6)

By choosing p > n, we ensure the finiteness of the integral∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)ds.

Then we know from Lemmas 2.1, 2.2 and (2.6) that

I2 ≤ c8

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥∇u∥Lp(Ω)ds+ c9. (2.7)

It follows from (2.3)–(2.5), (2.7) that

∥∇u(·, t)∥L∞(Ω) ≤ c8

∫ t

t−1

[1 + (t− s)−
1
2−

n
2 · 1p ]e−λ1(t−s)∥∇u∥Lp(Ω)ds+ c10, (2.8)

where c10 = c2 + c4 + c9. Applying the Gaglirado-Nirenberg inequality

∥Dlϕ∥Lp(Ω) ≤ CGN∥Dkϕ∥θLq(Ω)∥ϕ∥
1−θ
Lr(Ω) + ∥ϕ∥θLr(Ω)
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with 0 < p < ∞, 1 ≤ q, r ≤ +∞ and

1

p
− l

n
= θ(

1

q
− k

n
) + (1− θ)

1

r
,

there are some positive constants c11, c12 and c13 satisfying

∥∇u(·, s)∥Lp(Ω) ≤ c11∥∇u(·, s)∥θL∞(Ω)∥u(·, s)∥
1−θ
L∞(Ω) + c12∥u(·, s)∥L∞(Ω)

≤ c13(M
θ(T ) + 1) for all s ∈ (1, T ), (2.9)

where θ = p−n
p ∈ (0, 1) due to p > n. Finally, since 1

2 + n
2p < 1, substituting (2.9) into (2.8), we

can get some positive constants c14 and c15 such that

M(T ) ≤ c14M
θ(T ) + c15 for all T > 2,

which implies

M(T ) ≤ max
{
(
c15
c14

)
1
θ , (2c14)

1
1−θ

}
for all T > 2.

Hence, we get an estimate of (2.2). And the proof of Lemma 2.4 is completed. 2
Finally, we give the following lemma.

Lemma 2.5 Assume that f : (1,∞) → R is a uniformly continuous nonnegative function such

that
∫∞
1

f(t)dt < ∞. Then we have f(t) → 0 as t → ∞.

Proof A detailed proof can be found in [21]. Thus we omit the details. 2
3. Proof of Theorem 1.1

This section is devoted to the proof of main results. In order to simplify notation, let

κ := ( rµ )
1

k−1 in this section. As a preparation, we first have the following simple estimate.

Lemma 3.1 Let (u, v) be a global bounded classical solution of (1.3). Then there exists δ > 0

such that ∫
Ω

|∇v|2

v2
dx ≤ 1

4κδ

∫
Ω

(u(x, t)− κ)2dx for all t > 0. (3.1)

Proof Multiply the second equation in (1.3) by v−κ
v and integrate by parts to obtain

κ

∫
Ω

|∇v|2

v2
dx = −

∫
Ω

1

v
(v(x, t)− κ)2dx+

∫
Ω

1

v
(u(x, t)− κ)(v(x, t)− κ)dx.

By Lemma 2.2, there exists δ > 0 such that v(x, t) ≥ δ for all (x, t) ∈ Ω × (0,∞). Then it is

obtained that by Cauchy inequality

κ

∫
Ω

|∇v|2

v2
dx ≤ −

∫
Ω

1

v
(v(x, t)− κ)2dx+

∫
Ω

1

v
(v(x, t)− κ)2dx+

1

4

∫
Ω

1

v
(u(x, t)− κ)2dx

≤ 1

4δ

∫
Ω

(u(x, t)− κ)2dx.

This completes the proof. 2
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Proof of Theorem 1.1 Define

E(t) :=

∫
Ω

F (u(x, t))dx, t > 0

with

F (s) := s− κ− κ ln(
s

κ
), s > 0.

Then we shall prove the nonnegativity of E(t). Fixing (x, t) and using two-order Taylor’s formula,

we can derive that there exists τ ∈ (0, 1) such that

F (u(x, t))− F (κ) = F ′(κ)(u(x, t)− κ) +
1

2
F ′′(τu(x, t) + (1− τ)κ) · (u(x, t)− κ)2

=
κ

2(τu(x, t) + (1− τ)κ)2
(u(x, t)− κ)2 ≥ 0

for all x ∈ Ω and t > 0. Thus E(t) ≥ 0 for t > 0. Differentiate E(t) to arrive at

E′(t) =

∫
Ω

(1− κ

u
)utdx

=− κ

∫
Ω

|∇u|2

u2
dx+ χκ

∫
Ω

∇u · ∇v

uv
dx− µ

∫
Ω

(u− κ)(uk−1 − r

µ
)dx

≤κχ2

4

∫
Ω

|∇v|2

v2
dx− (µrk−2)

1
k−1

∫
Ω

(u(x, t)− κ)2dx for all t > 0,

where the Cauchy inequality is used. According to (3.1), we obtain that

E′(t) ≤ −D

∫
Ω

(u(x, t)− κ)2dx for all t > 0, (3.2)

where D = (µrk−2)
1

k−1 − χ2

16δ > 0 if we choose r large enough to satisfy

rk−2 > (
χ2

16ρ
)k−1,

which implies

µ > r2−k(
χ2

16δ
)k−1

due to Lemma 2.2. Integrating (3.2) over (1, t), we get

E(t)− E(1) ≤ −D

∫ t

1

∫
Ω

(u(x, t)− κ)2dxds

and thus ∫ t

1

∫
Ω

(u(x, t)− κ)2dxds ≤ E(1)

D
< ∞.

It follows from Lemma 2.3 that (u, v) is Hölder continuous uniformly in regard to t > 1 in

Ω̄× [t, t+ 1], so we derive that
∫
Ω
(u(x, t)− κ)2dx is uniformly continuous in (1,∞). Then from

Lemma 2.5, we have ∫
Ω

(u(x, t)− κ)2dx → 0 as t → ∞. (3.3)

Next, we further indicate that the L2-normal of u− κ decays exponentially. More precisely,

there exists t0 > 0 such that ∫
Ω

(u(x, t)− κ)2dx ≤ c0e
−Lt, t > t0. (3.4)
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Application of the Gagliardo-Nirenberg inequality together with Lemma 2.4 provides us with

some positive constants C1 and C2 such that

∥u(·, t)− κ∥L∞(Ω) ≤ C1∥u(·, t)− κ∥
n

n+2

W 1,∞(Ω)∥u(·, t)− κ∥
2

n+2

L2(Ω)

≤ C2∥u(·, t)− κ∥
2

n+2

L2(Ω). (3.5)

In conjunction with (3.3), this entails that

∥u(·, t)− κ∥L∞(Ω) → 0 as t → ∞.

Using L’Hôpital’s rule, one can derive

lim
s→κ

F (s)− F (κ)

(s− κ)2
=

1

2κ
.

Because ∥u(·, t)− κ∥L∞(Ω) → 0 as t → ∞, we can obtain that there exists t0 > 0 such that∫
Ω

(
u(x, t)− κ− κ ln(

u(x, t)

κ
)
)
dx =

∫
Ω

(F (u(x, t))− F (κ))dx

≤ 1

κ

∫
Ω

(u(x, t)− κ)2dx (3.6)

and ∫
Ω

(
u(x, t)− κ− κ ln(

u(x, t)

κ
)
)
dx =

∫
Ω

(F (u(x, t))− F (κ))dx

≥ 1

4κ

∫
Ω

(u(x, t)− κ)2dx (3.7)

for all t > t0. We can show that (3.6) implies c1E(t) ≤
∫
Ω
(u(x, t) − κ)2dx with c1 > 0 for all

t > t0. According to (3.2), we can see

E′(t) ≤ −D

∫
Ω

(u(x, t)− κ)2dx ≤ −c1DE(t) for all t > t0,

which on integration shows that there exist c2 > 0 and L > 0 such that

E(t) ≤ c2e
−Lt for all t > t0. (3.8)

Hence the combination of (3.7) and (3.8) gives∫
Ω

(u(x, t)− κ)2dx ≤ c3E(t) ≤ c2c3e
−Lt

with c3 > 0 for all t > t0. Now according to (3.4) and (3.5), we obtain

∥ u(., t)− κ ∥L∞(Ω)≤ C2c
1

n+2

0 e−
L

n+2 t for all t > t0. (3.9)

Set w = v − κ. Then we have{
−∆w + w = u− κ, x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0.

It follows by the maximum principle that

∥v(·, t)− κ∥L∞(Ω) = ∥w(·, t)∥L∞(Ω) ≤ ∥u(·, t)− κ∥L∞(Ω) ≤ C2c
1

n+2

0 e−
L

n+2 t for all t > t0. (3.10)
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Noting κ = ( rµ )
1

k−1 , by (3.9) and (3.10), we complete the proof of Theorem 1.1 by taking

λ = − L
n+2 and C = C2c

1
n+2

0 . 2
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