Reducing Subspaces for $T_{z_{1}^{k_{1}} z_{2}^{k_{2}}+\bar{z}_{1}^{l_{1}} \bar{z}_{2}}$ on Weighted Hardy Space over Bidisk

Bian REN, Yanyue SHI*
School of Mathematic Sciences, Ocean University of China, Shandong 266100, P. R. China

Abstract

In this paper, we characterize the reducing subspaces for Toeplitz operator $T=$ $M_{z^{k}}+M_{z^{l}}^{*}$, where $M_{z^{k}}, M_{z^{l}}$ are the multiplication operators on weighted Hardy space $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$, $k=\left(k_{1}, k_{2}\right), l=\left(l_{1}, l_{2}\right), k \neq l$ and k_{i}, l_{i} are positive integers for $i=1,2$. It is proved that the reducing subspace for T generated by z^{m} is minimal under proper assumptions on ω. The Bergman space and weighted Dirichlet spaces $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)(\delta>0)$ are weighted Hardy spaces which satisfy these assumptions. As an application, we describe the reducing subspaces for $T_{z^{k}+\bar{z}^{l}}$ on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)(\delta>0)$, which generalized the results on Bergman space over bidisk.

Keywords reducing subspaces; weighted Dirichlet space; commutant algebra
MR(2020) Subject Classification 47B35

1. Introduction

Let $S \in B(\mathcal{H})$ be a bounded linear operator on a Hilbert space \mathcal{H}. A closed subspace \mathcal{M} is said to be a reducing subspace for S, if $S \mathcal{M} \subseteq \mathcal{M}$ and $S \mathcal{M}^{\perp} \subseteq \mathcal{M}^{\perp}$. Or equivalently, \mathcal{M} is a reducing subspace for S if and only if $S P_{\mathcal{M}}=P_{\mathcal{M}} S$, where $P_{\mathcal{M}}$ is the orthogonal projection from \mathcal{H} onto \mathcal{M}. The space \mathcal{M} is called minimal if there is no nonzero reducing subspace \mathcal{N} for S which is contained in \mathcal{M} properly. In addition, the operator S is irreducible if the only reducing subspaces for S are $\{0\}$ and the whole space \mathcal{H}.

Stessin and Zhu [1] completely characterized the reducing subspaces for weighted unilateral shift operators of finite multiplicity. Consequently, multiplication operator $M_{z^{N}}$ (N is a positive integer) on Bergman space and Dirichlet space over disk has exactly 2^{N} reducing subspaces. For a finite Blaschke product B, a lot of remarkable progress had been made on reducing subspaces for multiplication operator M_{B} on the Bergman space over unit disk [1-7]. Some of them are generalized to the Dirichlet space [8-10] and the derivative Hardy space [11].

A naturel theme is to consider the similar question over polydisk. If φ is a polynomial, the reducing subspaces for M_{φ} on the Bergman space and Dirichlet spaces over bidisk are considered, such as $\varphi=z^{N} w^{M}, \alpha z^{N}+\beta w^{M}$ with $N, M \geq 0, \alpha, \beta \in \mathbb{C}$ (see [12-18]). Guo and Wang [19] generalized some of above results in view of graded structure for a Hilbert module. Recently,

[^0]Guo and Huang [20] gave a survey on recent developments concerning commutants, reducing subspaces and von Neumann algebras associated with multiplication operators that are defined on both Hardy space and Bergman spaces over bounded domains in \mathbb{C}^{d}.

Since $M_{z^{N}}, M_{w^{M}}$ are operator-weighted shifts on weighted Hardy space, Gu [21, 22] characterized the reducing subspaces and common reducing subspaces of operator-weighted shifts , and provided uniform proofs of some results from $[12,13]$. In the case that φ is a nonanalytic function, the reducing subspaces for $T_{z^{k} \bar{w}^{l}}$ and $T_{z^{N}+\bar{w}^{M}}$ on Bergman space over bidisk are characterized $[23,24]$. Under proper assumptions about the weight coefficients ω, these results can also be generalized to operator-weighted shifts on weighted Hardy space [25, 26]. For $\varphi(z, w)=z^{k_{1}} w^{k_{2}}+\bar{z}^{l_{1}} \bar{w}^{l_{2}}$, Deng et al. [27] obtained a uniform characterization of the reducing subspaces for T_{φ} on Bergman space over the bidisk, including the known cases that $\varphi=z^{N} w^{M}$ and $\varphi=z^{N}+\bar{w}^{M}$. In this paper, we mainly consider the reducing subspaces for T_{φ} on weighted Hardy space $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$, where $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$ is defined by

$$
\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)=\left\{f(z)=\sum_{n \in \mathbb{Z}_{+}^{2}} f_{n} z^{n}: f_{n} \in \mathbb{C},\|f\|^{2}=\sum_{n \in \mathbb{Z}_{+}^{2}} \omega_{n}\left|f_{n}\right|^{2}<\infty\right\}
$$

$\omega_{n}=\omega_{n_{1}} \omega_{n_{2}}, \forall n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$, and $\omega=\left\{\omega_{j}, j \geq 0\right\}$ is a sequence of positive numbers such that

$$
\lim \inf _{j \rightarrow+\infty}\left(\sqrt{\omega_{j}}\right)^{1 / j} \geq 1
$$

More details can be seen in [25]. Throughout this paper, let $k=\left(k_{1}, k_{2}\right), l=\left(l_{1}, l_{2}\right)$ where $k \neq l$ and k_{i}, l_{i} are positive integers for $i=1,2$. By computation, we get $\left\{z^{n}\right\}_{n=1}^{\infty}$ are the eigenvectors of $T_{\varphi}^{*} T_{\varphi}-T_{\varphi} T_{\varphi}^{*}$. Set

$$
\left(T_{\varphi}^{*} T_{\varphi}-T_{\varphi} T_{\varphi}^{*}\right) z^{n}=\lambda_{n} z^{n} \text { and } Q_{n}(p)=\lambda_{n+p(k+l)}, \quad \forall p \in \mathbb{N}
$$

Denote $Q_{n}(p) \equiv 0$ if $Q_{n}(p)=0, \forall p \in \mathbb{N}$. Suppose that
(P1) $\lim _{p \rightarrow+\infty} \frac{\omega_{m+p(k+l)}}{\omega_{n+p(k+l)}}=1$.
(P2) If there exists $\left\{p_{j}\right\} \subseteq \mathbb{N}$ such that $\lim _{j \rightarrow+\infty} p_{j}=+\infty$ and $Q_{n}\left(p_{j}\right)=0$, then $Q_{n}(p) \equiv 0$.
(P3) If $Q_{n}(p) \equiv 0$, then $Q_{n+l}(p) \not \equiv 0, Q_{n+k}(p) \not \equiv 0$.
(P4) If $Q_{n}(p) \equiv 0$, then

$$
\lim _{p \rightarrow+\infty} p\left(\frac{\omega_{n+(p+1)(k+l)} \omega_{n+p(k+l)}}{\omega_{n+p(k+l)+l}^{2}}-1\right)=0 \text { or } \lim _{p \rightarrow+\infty} p\left(\frac{\omega_{n+(p+1)(k+l)} \omega_{n+p(k+l)}}{\omega_{n+p(k+l)+k}^{2}}-1\right)=0 .
$$

(P5) Let $n \in \Omega_{1}, m \in \Omega_{4}$. If $Q_{n}(p) \not \equiv 0$ and $\lambda_{n}=\lambda_{m}$, then $Q_{m}(p) \not \equiv 0$.
(P6) If $n \neq m$ and $Q_{n}(p) \equiv Q_{m}(p)$, then the following statements hold:
(i) If $Q_{n+l}(p) \equiv Q_{m+l}(p)$, then $Q_{n+l}(p) \not \equiv 0, Q_{n}(p) \not \equiv 0$;
(ii) If $Q_{n+k}(p) \equiv Q_{m+k}(p)$, then $Q_{n+k}(p) \not \equiv 0, Q_{n}(p) \not \equiv 0$.
(P7) Let $m \in \Delta$ and $n \neq m$. If $\omega_{m+k}=\omega_{n+k}, \omega_{m+h(k+l)}=\omega_{n+h(k+l)}$ for $h \in \mathbb{Z}_{+}$, then $z^{n} \notin L_{m}$, where

$$
\Delta= \begin{cases}\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+}^{2}: m_{1} \in\left[0, s_{1}\right), m_{2} \in\left[0, \frac{\left|l_{1} k_{2}-l_{2} k_{1}\right|}{s_{1}}\right)\right\}, & k_{1} l_{2} \neq k_{2} l_{1} \\ \left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+}^{2}: m_{1} \in\left[0, s_{1}\right) \text { or } m_{2} \in\left[0, s_{2}\right)\right\}, & k_{1} l_{2}=k_{2} l_{1}\end{cases}
$$

$s_{i}=\operatorname{gcd}\left\{k_{i}, l_{i}\right\}, i=1,2$, and $L_{m}=\overline{\operatorname{span}}\left\{z^{m+u k+v l}: m+u k+v l \in \mathbb{Z}_{+}^{2}, u, v \in \mathbb{Z}\right\}$.
Let $\left[z^{m}\right]$ be the reducing subspace for $T_{z^{k}+\bar{z}^{l}}$ on $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$ generated by z^{m}. We characterize $\left[z^{m}\right]$ as follows:

Theorem 1.1 Suppose ω satisfies (P1)-(P7). Let $\varphi=z^{k_{1}} \omega^{k_{2}}+\bar{z}^{l_{1}} \bar{\omega}^{l_{2}}, k_{i}, l_{i}$ are positive integers for $i=1,2$ such that $\left(k_{1}, k_{2}\right) \neq\left(l_{1}, l_{2}\right)$. For each $m \in \Delta, L_{m}=\left[z^{m}\right]$ is a minimal reducing subspace for T_{φ} on $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$.

In fact, Bergman space over the bidisk is a weighted Hardy space satisfying assumptions (P1)-(P7). So we also get in [27, Theorem 3.3] when k_{i}, l_{i} are positive integers. Furthermore, we generalize some results in [27] to the weighted Dirichlet space $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)(\delta>0)$ over bidisk. For every $\delta>0$, we show that Dirichlet space $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$ is a weighted Hardy space which satisfies the assumptions (P1)-(P7), and then we characterize the reducing subspaces for T_{φ} on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$ and the commutant algebra of $\left\{T_{\varphi}, T_{\varphi}^{*}\right\}$ as follows.

Theorem 1.2 Let $\varphi=z^{k_{1}} \omega^{k_{2}}+\bar{z}^{l_{1}} \bar{\omega}^{l_{2}}$, where k_{i}, l_{i} are positive integers for $i=1,2$ such that $\left(k_{1}, k_{2}\right) \neq\left(l_{1}, l_{2}\right)$. If \mathcal{M} is a reducing subspace for T_{φ} on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)(\delta>0)$, then \mathcal{M} is the orthogonal sum of some minimal reducing subspaces. Moreover, \mathcal{M} is a minimal reducing subspace for T_{φ} if and only if \mathcal{M} has the form as follows:
(i) If $l_{1} k_{2} \neq k_{1} l_{2}$, then $\mathcal{M}=L_{m}$ for some $m \in \Delta$;
(ii) If $l_{1} k_{2}=k_{1} l_{2}$, then there exist $m \in \Delta$ and $a, b \in \mathbb{C}$ such that $\mathcal{M}=\mathcal{M}_{a b}$ where $\mathcal{M}_{a b}$ is defined by

$$
\mathcal{M}_{a b}=\overline{\operatorname{span}}\left\{\left(a z^{m}+b z^{m^{\prime}}\right) z^{u k+v l}: u, v \in \mathbb{Z}, u k+v l+m \succeq 0\right\}
$$

with $m^{\prime}=\left(\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1, \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1\right)$. In particular, if $m^{\prime} \notin \mathbb{Z}_{+}^{2}$, then $b=0$.
Theorem 1.3 Let $\varphi=z^{k_{1}} \omega^{k_{2}}+\bar{z}^{l_{1}} \bar{\omega}^{l_{2}}$, where k_{i}, l_{i} are positive integers for $i=1,2$ such that $\left(k_{1}, k_{2}\right) \neq\left(l_{1}, l_{2}\right)$. Then $\mathcal{V}^{*}(\varphi)$ is a Type I von Neumann algebra. Furthermore, the following statements hold:
(i) If $k_{1} l_{2} \neq k_{2} l_{1}$, then $\mathcal{V}^{*}(\varphi)$ is abelian and is $*$-isomorphic to $\bigoplus_{i=1}^{j} \mathbb{C}$, where $j=\left|l_{1} k_{2}-l_{2} k_{1}\right|$.
(ii) If $k_{1} l_{2}=k_{2} l_{1}$ and $s=\left(s_{1}, s_{2}\right)$ with $s_{i}=\operatorname{gcd}\left\{k_{i}, l_{i}\right\}(i=1,2)$, then $\mathcal{V}^{*}(\varphi)=\mathcal{V}^{*}\left(z^{s}\right)$ and $\mathcal{V}^{*}(\varphi)$ is never abelian. Moreover, if $s_{1}=s_{2}=r$, then $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to

$$
\bigoplus_{j=1}^{\infty} M_{2}(\mathbb{C}) \oplus \bigoplus_{i=1}^{r} \mathbb{C}
$$

if $s_{1} \neq s_{2}$, then $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to the direct sum of countably many $M_{2}(\mathbb{C}) \oplus \mathbb{C}$.
This paper is organized as follows: in Section 2, we give some useful lemmas; in Section 3, we show the proof of Theorem 1.1; in Section 4, we introduce the proof of Theorems 1.2 and 1.3.

2. Preliminaries

Firstly, we follow some notations. More details can be seen in [27] and their references. Denote by \mathbb{N} and \mathbb{Z}_{+}the set of all positive integers and all nonnegative integers, respectively.

The Toeplitz operator T_{φ} with non-analytic symbol $\varphi=z^{k}+\bar{z}^{l}$ is defined as follows:

$$
T_{\varphi}=T_{z^{k}+\bar{z}^{l}}=M_{z^{k}}+M_{z^{l}}^{*}
$$

where $k, l \in \mathbb{N}^{2}$ and $M_{z^{l}}^{*}$ is the adjoint of multiplication operator $M_{z^{l}}$ on $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$.
For $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in \mathbb{Z}_{+}^{2}$, denote by $a \succeq b$, if $a_{1} \geq b_{1}$ and $a_{2} \geq b_{2}$. Otherwise, denote by $a \nsucceq b$.

By computation,

$$
T_{\varphi} z^{n}=\left\{\begin{array}{ll}
z^{n+k}, & n \nsucceq l \\
z^{n+k}+\frac{\omega_{n}}{\omega_{n-l}} z^{n-l}, & n \succeq l
\end{array} ; T_{\varphi}^{*} z^{n}= \begin{cases}z^{n+l}, & n \nsucceq k \\
z^{n+l}+\frac{\omega_{n}}{\omega_{n-k}} z^{n-k}, & n \succeq k\end{cases}\right.
$$

More specifically, let

$$
\begin{aligned}
& \Omega_{1}=\left\{n \in \mathbb{Z}_{+}^{2}: n \nsucceq k, n \nsucceq l\right\}, \quad \Omega_{2}=\left\{n \in \mathbb{Z}_{+}^{2}: n \succeq k, n \nsucceq l\right\}, \\
& \Omega_{3}=\left\{n \in \mathbb{Z}_{+}^{2}: n \nsucceq k, n \succeq l\right\}, \quad \Omega_{4}=\left\{n \in \mathbb{Z}_{+}^{2}: n \succeq k, n \succeq l\right\} .
\end{aligned}
$$

For $n \in \mathbb{Z}_{+}^{2}, m \in \mathbb{N}^{2}$, set

$$
r(n, m)=\frac{\omega_{n+m}}{\omega_{n}}, \nabla r(n, m)=\frac{\omega_{n+m}}{\omega_{n}}-\frac{\omega_{n}}{\omega_{n-m}}, \quad n \succeq m .
$$

Denote by $T=T_{\varphi}^{*} T_{\varphi}-T_{\varphi} T_{\varphi}^{*}$, then

$$
T z^{n}=\lambda_{n} z^{n},
$$

where

$$
\lambda_{n}=\left\{\begin{array}{ll}
r(n, k)-r(n, l), & n \in \Omega_{1} \\
\nabla r(n, k)-r(n, l), & n \in \Omega_{2} \\
r(n, k)-\nabla r(n, l), & n \in \Omega_{3} \\
\nabla r(n, k)-\nabla r(n, l), & n \in \Omega_{4}
\end{array} .\right.
$$

Let

$$
Q_{n}(p)=\lambda_{n+p(k+l)}, \quad \forall p \in \mathbb{N} .
$$

Let $\mathcal{V}^{*}(\varphi)$ be the commutant algebra of the von Neumann algebra generated by $\left\{I, T_{\varphi}, T_{\varphi}^{*}\right\}$. Set $A \in \mathcal{V}^{*}(\varphi)$. Because $\lambda_{\beta} \in \mathbb{R}$ and $\lambda_{\alpha}\left\langle A z^{\alpha}, z^{\beta}\right\rangle=\left\langle A T z^{\alpha}, z^{\beta}\right\rangle=\left\langle T A z^{\alpha}, z^{\beta}\right\rangle=\left\langle A z^{\alpha}, T z^{\beta}\right\rangle=$ $\lambda_{\beta}\left\langle A z^{\alpha}, z^{\beta}\right\rangle$, we can prove that

$$
\begin{equation*}
A z^{\alpha}=\sum_{\lambda_{\beta}=\lambda_{\alpha}} c_{\beta} z^{\beta}, \quad \forall \alpha \in \mathbb{Z}_{+}^{2} \tag{2.1}
\end{equation*}
$$

Throughout this paper, let $k=\left(k_{1}, k_{2}\right), l=\left(l_{1}, l_{2}\right) \in \mathbb{N}^{2}$ with $k \neq l$. For $\alpha, \beta \in \mathbb{Z}_{+}^{2}$, let

$$
\begin{aligned}
& \Delta_{\alpha, \beta}=\left\{p \in \mathbb{Z}:\left\langle A z^{\alpha}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\} \\
& H_{\beta}^{0}=\overline{\operatorname{span}}\left\{z^{m}: m \neq \beta+p(k+l), p \in \mathbb{Z}, m \in \mathbb{Z}_{+}^{2}\right\}
\end{aligned}
$$

In the following, we provide several lemmas about $\Delta_{\alpha, \beta}$ under the assumptions (P1)-(P6). Given $\alpha \in \Omega_{1}$, we obtain that if $Q_{\alpha}(p) \equiv 0$, then $A z^{\alpha}=c z^{\alpha}$ for some $c \in \mathbb{C}$ (see Lemma 2.3); if $Q_{\alpha}(p) \not \equiv 0$, then $A z^{\alpha}=\sum_{\beta \in \Omega_{1}} c_{\beta} z^{\beta}$ for some $c_{\beta} \in \mathbb{C}$ (see Lemma 2.5).

Lemma 2.1 Let $A \in \mathcal{V}^{*}(\varphi)$. If $\alpha \in \Omega_{1}, \beta \nsucceq k+l$ and $Q_{\alpha}(p) \equiv 0$, then $\Delta_{\alpha, \beta}$ is a finite set.

Proof Suppose $\Delta_{\alpha, \beta}$ is infinite. There exist $\left\{p_{j}: j \in \mathbb{N}\right\} \subseteq \Delta_{\alpha, \beta}$ such that $p_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$. Thus, $\lambda_{\alpha}=\lambda_{\beta+p_{j}(k+l)}, \forall j \in \mathbb{N}$. By (P1), we get $\lambda_{\alpha}=Q_{\beta}\left(p_{j}\right) \rightarrow 0$ as $j \rightarrow+\infty$. i.e., $Q_{\beta}\left(p_{j}\right)=\lambda_{\alpha}=0, \forall j \in \mathbb{N}$. So (P2) shows that $Q_{\beta}(p) \equiv 0$. It means $Q_{\beta+l}(p) \not \equiv 0$ by (P3). Replacing α, β by $\alpha+l, \beta+l$, respectively, we can prove that $\Delta_{\alpha+l, \beta+l}$ is finite as above. Set

$$
A z^{\alpha}=\sum_{p \in \mathbb{Z}} c_{p} z^{\beta+p(k+l)}+q(z)
$$

where $c_{p} \in \mathbb{C}, q(z) \in H_{\beta}^{0}$. By (P 4), we will get contradictions in the following two cases.
Case 1. $\lim _{p \rightarrow+\infty} p\left(\frac{r(\beta+p(k+l)+l, k)}{r(\beta+p(k+l), l)}-1\right)=0$. For $\alpha \nsucceq k$, by $A T_{\varphi}^{*}=T_{\varphi}^{*} A$, we get

$$
A z^{\alpha+l}=c z^{\beta-k}+\sum_{p \in \mathbb{Z}}\left(c_{p}+c_{p+1} \frac{\omega_{\beta+(p+1)(k+l)}}{\omega_{\beta-k+(p+1)(k+l)}}\right) z^{\beta+l+p(k+l)}+T_{\varphi}^{*} q(z)
$$

where $c=0$ if $\beta \in \Omega_{1} \cup \Omega_{3} ; c=c_{0} \frac{\omega_{\beta}}{\omega_{\beta-k}}$ if $\beta \in \Omega_{2} \cup \Omega_{4}$, and $T_{\varphi}^{*} q(z) \in H_{\beta+l}^{0}$. Since $\Delta_{\alpha, \beta}$ is infinite and $\Delta_{\alpha+l, \beta+l}$ is finite, equality (2.1) shows that there is $N \in \mathbb{Z}_{+}$such that $c_{N} \neq 0$ and

$$
c_{p}+c_{p+1} \frac{\omega_{\beta+(p+1)(k+l)}}{\omega_{\beta-k+(p+1)(k+l)}}=0, \quad p \geq N
$$

That is,

$$
\left|c_{p+1}\right|=\left|c_{p}\right| \frac{\omega_{\beta-k+(p+1)(k+l)}}{\omega_{\beta+(p+1)(k+l)}}, \quad p \geq N
$$

So $c_{p} \neq 0$ for $p \geq N$ and that

$$
\begin{aligned}
\lim _{p \rightarrow+\infty} p\left(\frac{\left|c_{p}\right|^{2} \omega_{\beta+p(k+l)}}{\left|c_{p+1}\right|^{2} \omega_{\beta+(p+1)(k+l)}}-1\right) & =\lim _{p \rightarrow+\infty} p\left(\frac{\omega_{\beta+(p+1)(k+l)} \omega_{\beta+p(k+l)}}{\omega_{\beta+(p+1)(k+l)-k}^{2}}-1\right) \\
& =\lim _{p \rightarrow+\infty} p\left(\frac{\omega_{\beta+p(k+l)}}{\omega_{\beta+p(k+l)+l}} \frac{\omega_{\beta+p(k+l)+l+k}}{\omega_{\beta+p(k+l)+l}}-1\right) \\
& =\lim _{p \rightarrow+\infty} p\left(\frac{r(\beta+p(k+l)+l, k)}{r(\beta+p(k+l), l)}-1\right)=0 .
\end{aligned}
$$

By Raabe's convergence test, $\sum_{p \in \mathbb{Z}}\left|c_{p}\right|^{2} \omega_{\beta+p(k+l)}$ is divergent, which contradicts $A z^{\alpha} \in \mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$. Hence, $\Delta_{\alpha, \beta}$ is a finite set.

Case 2. $\lim _{p \rightarrow+\infty} p\left(\frac{r(\beta+p(k+l)+k, l)}{r(\beta+p(k+l), k)}-1\right)=0$. For $\alpha \nsucceq l$, by $A T_{\varphi}=T_{\varphi} A$ and Raabe’s convergence test, we can also get the contradictions. So we complete the proof. \square

Lemma 2.2 Given $\alpha \nsucceq k+l$ and $A \in \mathcal{V}^{*}(\varphi)$. If $\Delta_{\alpha, \beta}$ is a nonempty and finite set, then $\max \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+h(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0}+h$ where $p_{0}=\max \Delta_{\alpha, \beta}$ and $h \in \mathbb{Z}_{+}$.

Proof If $h=0$, it is obviously true by the definition of p_{0}. For every $N \in \mathbb{Z}_{+}$, suppose it is true when $h \leq N$. We will prove that it is also true when $h=N+1$.

By inductive hypothesis, set $A z^{\alpha+N(k+l)}=c_{N} z^{\beta+\left(p_{0}+N\right)(k+l)}+p_{N}(z)+h_{N}(z)$, where $c_{N} \neq 0$, $p_{N} \in \overline{\operatorname{span}}\left\{z^{\beta+p(k+l)}: p<p_{0}+N, \beta+p(k+l) \succeq 0\right\}$ and $h_{N} \in H_{\beta}^{0}$. So $A T_{\varphi}^{*} T_{\varphi}=T_{\varphi}^{*} T_{\varphi} A$ implies that

$$
\begin{align*}
& A\left(z^{\alpha+(N+1)(k+l)}+\rho z^{\alpha+N(k+l)}+\eta z^{\alpha+(N-1)(k+l)}\right) \\
& \quad=c_{N} z^{\beta+\left(p_{0}+N+1\right)(k+l)}+P_{N}(z)+H_{N}(z) \tag{2.2}
\end{align*}
$$

Reducing subspaces for $T_{z_{1}^{k_{1}} z_{2}^{k_{2}}+\bar{z}_{1}^{l_{1}} \bar{z}_{2}^{l_{2}}}$ on weighted Hardy space over bidisk
where $P_{N} \in \overline{\operatorname{span}}\left\{z^{\beta+p(k+l)}: p<p_{0}+N+1, \beta+p(k+l) \succeq 0\right\}, H_{N} \in H_{\beta}^{0}$, and $\rho, \eta \in \mathbb{R}$. In particular, there is no item $\eta z^{\alpha+(N-1)(k+l)}$ when $N=0$. Since $\max \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+h(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq\right.$ $0\}=p_{0}+h$ for $h=N, N-1$, we get

$$
A\left(\rho z^{\alpha+N(k+l)}+\eta z^{\alpha+(N-1)(k+l)}\right) \perp z^{\beta+\left(p_{0}+N+1\right)(k+l)} .
$$

Thus equality (2.2) shows that $\max \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+(N+1)(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0}+N+1$.
Lemma 2.3 Let $A \in \mathcal{V}^{*}(\varphi)$. If $\alpha \in \Omega_{1}$ such that $Q_{\alpha}(p) \equiv 0$, then $A z^{\alpha}=c z^{\alpha}$ for some $c \in \mathbb{C}$.
Proof If there exists $\beta \nsucceq k+l$ such that $\Delta_{\alpha, \beta}$ is not empty, Lemma 2.1 shows that $\Delta_{\alpha, \beta}$ is a finite set. Let $p_{0}=\max \Delta_{\alpha, \beta} \geq 0$. On the one hand, Lemma 2.2 shows that $\lambda_{\alpha+p(k+l)}=\lambda_{\beta+\left(p_{0}+p\right)(k+l)}$ for every $p \in \mathbb{Z}_{+}$. That is,

$$
\begin{equation*}
Q_{\alpha}(p) \equiv Q_{\beta+p_{0}(k+l)}(p) \tag{2.3}
\end{equation*}
$$

On the other hand, as in Lemma 2.2, set

$$
A z^{\alpha}=c_{p_{0}} z^{\beta+p_{0}(k+l)}+g_{p_{0}}(z)+h_{p_{0}}(z)
$$

where $c_{p_{0}} \neq 0$ and $g_{p_{0}} \in \overline{\operatorname{span}}\left\{z^{\beta+p(k+l)}: 0 \leq p<p_{0}\right\}$ and $h_{p_{0}} \in H_{\beta}^{0}$. By $A T_{\varphi}^{*}=T_{\varphi}^{*} A$, we get

$$
A z^{\alpha+l}=c_{p_{0}} z^{\beta+l+p_{0}(k+l)}+c z^{\beta+l+\left(p_{0}-1\right)(k+l)}+G_{p_{0}}(z)+H_{p_{0}}(z)
$$

where $c=c_{p_{0}} \frac{\omega_{\beta+p_{0}(k+l)}^{\omega_{\beta-k+p_{0}(k+l)}}, G_{p_{0}} \in \overline{\operatorname{span}}\left\{z^{\beta+p(k+l)}: 0 \leq p<p_{0}-1\right\} \text { and } H_{p_{0}} \in H_{\beta}^{0} \text {. So }{ }^{\text {. }} \text {. }}{}$

$$
\max \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+l}, z^{\beta+l+p(k+l)}\right\rangle \neq 0\right\}=p_{0}
$$

It shows that $\Delta_{\alpha+l, \beta+l}$ is finite. It is easy to see $\alpha+l \nsucceq k+l$ since $\alpha \in \Omega_{1}$. Using Lemma 2.2 again, we have $\lambda_{\alpha+l+p(k+l)}=\lambda_{\beta+l+\left(p_{0}+p\right)(k+l)}$ for every $p \in \mathbb{Z}_{+}$. That is,

$$
\begin{equation*}
Q_{\alpha+l}(p) \equiv Q_{\beta+l+p_{0}(k+l)}(p) \tag{2.4}
\end{equation*}
$$

By equalities (2.3), (2.4) and assumption $Q_{\alpha}(p) \equiv 0$, property (P6) implies that $\alpha=\beta+p_{0}(k+l) \in$ Ω_{1}. So $p_{0}=0$ and $\alpha=\beta$, which deduces that $A z^{\alpha}=c z^{\alpha}$ for some $c \in \mathbb{C}$.

Lemma 2.4 Let $\alpha, \beta \in \mathbb{Z}_{+}^{2}, \alpha \nsucceq k+l$, and $A \in \mathcal{V}^{*}(\varphi)$. If $Q_{\alpha}(p) \not \equiv 0$ and $\Delta_{\alpha, \beta}$ is a nonempty and finite set, then the following two statements hold:
(i) There is only one element in $\Delta_{\alpha, \beta}$;
(ii) $\min \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+h(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0}+h$, where $h \in \mathbb{Z}_{+}$and $\left\{p_{0}\right\}=\Delta_{\alpha, \beta}$.

Proof Let $\widetilde{\beta}=\beta+p_{1}(k+l)$ where $p_{1} \in \mathbb{Z}$ such that $\widetilde{\beta} \succeq 0$ and $\widetilde{\beta} \nsucceq k+l$. Then p_{0} satisfies the statements for β if and only if $p_{0}+p_{1}$ satisfies the statements for $\widetilde{\beta}$. Therefore, without loss of generality, we assume $\beta \nsucceq k+l$.

Since $Q_{\alpha}(p) \not \equiv 0$, equality (2.1), properties (P1) and (P2) imply that the set

$$
\left\{h \in \mathbb{Z}_{+}:\left\langle A z^{\alpha+h(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\} \subseteq\left\{h \in \mathbb{Z}_{+}: Q_{\alpha}(h)=\lambda_{\beta+p(k+l)}\right\}
$$

is a finite set for every $p \in \mathbb{Z}_{+}$. Let $p_{0}=\max \Delta_{\alpha, \beta}$, then

$$
E_{p_{0}}=\bigcup_{0 \leq p \leq p_{0}}\left\{h \in \mathbb{Z}_{+}:\left\langle A z^{\alpha+h(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}
$$

is also finite. Obviously, $0 \in E_{p_{0}}$. Let $h_{0}=\max E_{p_{0}}$.
Claim. for every $h \in \mathbb{Z}_{+}$the following equalities hold:

$$
\begin{align*}
& \min \left\{p \in \mathbb{Z}_{+}:\left\langle A z^{\alpha+\left(h_{0}+h+1\right)(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0}+h+1, \tag{2.5}\\
& \left\langle A z^{\alpha+\left(h_{0}+h+q\right)(k+l)}, z^{\beta+\left(p_{0}+h\right)(k+l)}\right\rangle=0, \quad \forall q \in \mathbb{N} . \tag{2.6}
\end{align*}
$$

If $h=0$, it is easy to see that (2.6) holds by the definition of h_{0}. Since $h_{0}+1 \notin E_{p_{0}}$, set

$$
\begin{equation*}
A z^{\alpha+\left(h_{0}+1\right)(k+l)}=d_{1} z^{\beta+\left(p_{0}+1\right)(k+l)}+f_{1}(z)+g_{1}(z) \tag{2.7}
\end{equation*}
$$

where $d_{1} \in \mathbb{C}, f_{1} \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+2\right\}$ and $g_{1} \in H_{\beta}^{0}$. By $A T_{\varphi}^{*} T_{\varphi}=T_{\varphi}^{*} T_{\varphi} A$, we have $A\left(z^{\alpha+\left(h_{0}+2\right)(k+l)}+\eta z^{\alpha+\left(h_{0}+1\right)(k+l)}+\rho z^{\alpha+h_{0}(k+l)}\right)=d_{1} \frac{\omega_{\beta+\left(p_{0}+1\right)(k+l)}}{\omega_{\beta+p_{0}(k+l)}} z^{\beta+p_{0}(k+l)}+F_{1}(z)+G_{1}(z)$, where $\eta, \rho>0, F_{1} \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+1\right\}$ and $G_{1} \in H_{\beta}^{0}$. Since $h_{0}+1, h_{0}+2 \notin E_{p_{0}}$, there is

$$
\begin{equation*}
\rho A z^{\alpha+h_{0}(k+l)}=d_{1} \frac{\omega_{\beta+\left(p_{0}+1\right)(k+l)}}{\omega_{\beta+p_{0}(k+l)}} z^{\beta+p_{0}(k+l)}+\widetilde{F}_{1}(z)+\widetilde{G}_{1}(z) \tag{2.8}
\end{equation*}
$$

where $\widetilde{F}_{1} \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+1\right\}$ and $\widetilde{G}_{1} \in H_{\beta}^{0}$. By the definition of h_{0}, there exists some $p \in\left[0, p_{0}\right]$ such that $\left\langle A z^{\alpha+h_{0}(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0$. Together with the fact that

$$
\left(\widetilde{F}_{1}+\widetilde{G}_{1}\right) \perp z^{\beta+p(k+l)}, \quad 0 \leq p \leq p_{0}
$$

we get $d_{1} \neq 0$. So equality (2.7) shows that equality (2.5) holds for $h=0$. Moreover, (2.8) implies that

$$
\begin{equation*}
\min \left\{p \in \mathbb{Z}_{+}:\left\langle A z^{\alpha+h_{0}(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0} \tag{2.9}
\end{equation*}
$$

That is, Claim holds when $h=0$.
Given $N \in \mathbb{Z}_{+}$. For $h \leq N$, suppose (2.5) and (2.6) hold. Therefore,

$$
A z^{\alpha+\left(h_{0}+N+1+q\right)(k+l)}=A z^{\alpha+\left(h_{0}+N-j+1+j+q\right)(k+l)} \perp z^{\beta+\left(p_{0}+N-j\right)(k+l)}, \quad 0 \leq j \leq N .
$$

According to $h_{0}+1+N+q \notin E_{p_{0}}$, we have $A z^{\alpha+\left(h_{0}+1+N+q\right)(k+l)} \perp z^{\beta+p(k+l)}$ for $0 \leq p \leq p_{0}$. Thus we can set

$$
A z^{\alpha+\left(h_{0}+1+N+q\right)(k+l)}=d_{1+N+q} z^{\beta+\left(p_{0}+N+1\right)(k+l)}+f_{1+N+q}(z)+g_{1+N+q}(z)
$$

where $d_{1+N+q} \in \mathbb{C}, f_{1+N+q} \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+N+2\right\}$ and $g_{1+N+q} \in H_{\beta}^{0}$. By $A T_{\varphi}^{*} T_{\varphi}=T_{\varphi}^{*} T_{\varphi} A$, it is easy to see that

$$
\begin{aligned}
& A\left(z^{\alpha+\left(h_{0}+N+2+q\right)(k+l)}+\eta^{\prime} z^{\alpha+\left(h_{0}+1+N+q\right)(k+l)}+\rho^{\prime} z^{\alpha+\left(h_{0}+N+q\right)(k+l)}\right) \\
& \quad=d_{1+N+q} \frac{\omega_{\beta+\left(p_{0}+N+1\right)(k+l)}}{\omega_{\beta+\left(p_{0}+N\right)(k+l)}} z^{\beta+\left(p_{0}+N\right)(k+l)}+F_{1+N+q}(z)+G_{1+N+q}(z)
\end{aligned}
$$

where $\eta^{\prime}, \rho^{\prime}>0, F_{1+N+q}(z) \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+N+1\right\}$ and $G_{1+N+q}(z) \in H_{\beta}^{0}$. Equality (2.6) with $h=N$ shows that $d_{1+N+q}=0$ for $q \in \mathbb{N}$. It means that (2.6) holds when $h=N+1$.

By (2.6) with $q=1$, set

$$
\begin{equation*}
A z^{\alpha+\left(h_{0}+N+2\right)(k+l)}=d z^{\beta+\left(p_{0}+N+2\right)(k+l)}+f(z)+g(z), \tag{2.10}
\end{equation*}
$$

Reducing subspaces for $T_{z_{1}^{k_{1}} z_{2}^{k_{2}}+\bar{z}_{1}^{l_{1}} \bar{z}_{2}^{l_{2}}}$ on weighted Hardy space over bidisk
where $d \in \mathbb{C}, f \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+N+3\right\}$ and $g \in H_{\beta}^{0}$. Then $A T_{\varphi}^{*} T_{\varphi}=T_{\varphi}^{*} T_{\varphi} A$ implies

$$
\begin{aligned}
& A\left(z^{\alpha+\left(h_{0}+N+3\right)(k+l)}+\eta^{\prime \prime} z^{\alpha+\left(h_{0}+N+2\right)(k+l)}+\rho^{\prime \prime} z^{\alpha+\left(h_{0}+N+1\right)(k+l)}\right) \\
& \quad=d \frac{\omega_{\beta+\left(p_{0}+N+2\right)(k+l)}^{\omega_{\beta+\left(p_{0}+N+1\right)(k+l)}} z^{\beta+\left(p_{0}+N+1\right)(k+l)}+F(z)+G(z),}{}
\end{aligned}
$$

where $F \in \overline{\operatorname{span}}\left\{z^{\beta+h(k+l)}: h \geq p_{0}+N+2\right\}$ and $G \in H_{\beta}^{0}$. By equality (2.5) with $h=N$, we have $d \neq 0$. Equality (2.10) shows that the equality (2.5) holds for $h=N+1$. So we finish the proof of Claim.

The equality (2.5) and (2.9) imply $\min \left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+\left(h_{0}+h\right)(k+l)}, z^{\beta+p(k+l)}\right\rangle \neq 0\right\}=p_{0}+h$. i.e., $\lambda_{\alpha+\left(h_{0}+h\right)(k+l)}=\lambda_{\beta+\left(p_{0}+h\right)(k+l)}$. By Lemma 2.2, $p_{0}=\max \Delta_{\alpha, \beta}$ shows that $\lambda_{\alpha+h(k+l)}=$ $\lambda_{\beta+\left(p_{0}+h\right)(k+l)}$. Therefore,

$$
\lambda_{\alpha+h(k+l)}=\lambda_{\alpha+\left(h+h_{0}\right)(k+l)}, \quad \forall h \in \mathbb{Z}_{+}
$$

If $h_{0} \geq 1$, then $\lambda_{\alpha+h_{0}(k+l)}=\lambda_{\alpha+n h_{0}(k+l)}=Q_{\alpha}\left(n h_{0}\right)=\lim _{n \rightarrow+\infty} Q_{\alpha}\left(n h_{0}\right)=0$. By (P2) again, we get $Q_{\alpha}(p) \equiv 0$, which contradicts the assumption. So $h_{0}=0$. The equality (2.9) implies that $p_{0}=\min \Delta_{\alpha, \beta}$. So we complete the proof.

Lemma 2.5 Let $A \in \mathcal{V}^{*}(\varphi)$. If $\alpha \in \Omega_{1}$ such that $Q_{\alpha}(p) \not \equiv 0$, then $\left\langle A z^{\alpha}, z^{\beta}\right\rangle=0$, for every $\beta \in \Omega_{2} \cup \Omega_{3} \cup \Omega_{4}$.

Proof Suppose $\left\langle A z^{\alpha}, z^{\beta}\right\rangle \neq 0$ for some $\beta \in \Omega_{2} \cup \Omega_{3} \cup \Omega_{4}$. Then $0 \in \Delta_{\alpha, \beta}$. Firstly, we show that $\Delta_{\alpha, \beta}=\{0\}$. Otherwise, set $p_{0} \in \Delta_{\alpha, \beta}$, then $\lambda_{\beta+p_{0}(k+l)}=\lambda_{\alpha}$. If $p_{0} \geq 1$, since $Q_{\alpha}(p) \not \equiv 0$ and $\beta+p_{0}(k+l) \in \Omega_{4},(\mathrm{P} 5)$ shows that $Q_{\beta+p_{0}(k+l)}(p) \not \equiv 0$. Note that $Q_{\beta}(p)=Q_{\beta+p_{0}(k+l)}\left(p-p_{0}\right)$. That is $Q_{\beta}(p) \not \equiv 0$. By (P 1) and (P 2), we get $\Delta_{\alpha, \beta} \subseteq\left\{p \in \mathbb{Z}_{+}: Q_{\beta}(p)=\lambda_{\alpha}\right\}$ is finite. Lemma 2.4 implies that there is only one element in $\Delta_{\alpha, \beta}$, which contradicts to $\left\{0, p_{0}\right\} \subseteq \Delta_{\alpha, \beta}$. If $p_{0}<0$, let $\beta_{1}=\beta+p_{0}(k+l) \succeq 0$. As above, we can prove $Q_{\beta_{1}}(p) \not \equiv 0$ and there is only one element in $\Delta_{\alpha, \beta_{1}}$, which contradict to $\left\{0,-p_{0}\right\} \subseteq \Delta_{\alpha, \beta_{1}}$.

By $\Delta_{\alpha, \beta}=\{0\}$, Lemma 2.2 implies that $Q_{\alpha}(p) \equiv Q_{\beta}(p)$. Moreover,

$$
A z^{\alpha}=c_{\beta} z^{\beta}+h(z)
$$

where $c_{\beta} \neq 0, h \in H_{\beta}^{0}$.
Next, we will get contradictions in two cases respectively.
(i) $\beta \in \Omega_{2} \cup \Omega_{4}$. By $A T_{\varphi}^{*}=T_{\varphi}^{*} A$, we get

$$
A z^{a+l}=c_{\beta} z^{\beta+l}+c_{\beta} \frac{\omega_{\beta}}{\omega_{\beta-k}} z^{\beta-k}+G(z)
$$

where $G \in H_{\beta}^{0}$. So $\Delta_{\alpha+l, \beta-k}=\left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+l}, z^{\beta-k+p(k+l)}\right\rangle \neq 0\right\}=\{0,1\}$ is finite. That is $1=\max \Delta_{\alpha+l, \beta-k}$. Lemma 2.2 implies that $\lambda_{\alpha+l+h(k+l)}=\lambda_{\beta+l+h(k+l)}$. So $Q_{\alpha+l}(p) \equiv Q_{\beta+l}(p)$. Together with $Q_{\alpha}(p) \equiv Q_{\beta}(p)$ and (P6), we get $Q_{\alpha+l}(p) \not \equiv 0$. Then Lemma 2.4 leads to that there is only one element in $\Delta_{\alpha+l, \beta-k}$. This is a contradiction.
(ii) $\beta \in \Omega_{3}$. Substituting T_{φ}^{*} with T_{φ}, we get

$$
A z^{\alpha+k}=c_{\beta} z^{\beta+k}+c_{\beta} \frac{\omega_{\beta}}{\omega_{\beta-l}} z^{\beta-l}+F(z)
$$

where $F \in H_{\beta}^{0}$. As in (i), we can prove that $\Delta_{\alpha+k, \beta-l}=\left\{p \in \mathbb{Z}:\left\langle A z^{\alpha+k}, z^{\beta-l+p(k+l)}\right\rangle \neq 0\right\}=$ $\{0,1\}$, which contradicts to the fact that there is only one element in $\Delta_{\alpha+k, \beta-l}$.

3. Reducing subspaces for $T_{z^{k}+\bar{z}^{l}}$ on weighted Hardy space

In this section, we mainly consider the reducing subspaces for T_{φ} with symbol $\varphi=z^{k}+\bar{z}^{l}$ $\left(k, l \in \mathbb{N}^{2}, k \neq l\right)$ on $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$. It is known that T_{φ} and T_{φ}^{*} share the same reducing subspaces. So k and l are symmetrical. Together with the symmetry of z_{1} and z_{2}, we assume $0<k_{1}<l_{1}$. For $m \in \mathbb{Z}_{+}^{2}$, let

$$
\begin{equation*}
L_{m}=\overline{\operatorname{span}}\left\{z^{m+u k+v l}: m+u k+v l \in \mathbb{Z}_{+}^{2}, u, v \in \mathbb{Z}\right\} \tag{3.1}
\end{equation*}
$$

Obviously, L_{m} are reducing subspaces for T_{φ}. Let

$$
[m]=\left\{m+u k+v l \in \mathbb{Z}_{+}^{2}: u, v \in \mathbb{Z}\right\}
$$

and

$$
\Delta= \begin{cases}\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+}^{2}: m_{1} \in\left[0, s_{1}\right), m_{2} \in\left[0, \frac{\left|l_{1} k_{2}-l_{2} k_{1}\right|}{s_{1}}\right)\right\}, & k_{1} l_{2} \neq k_{2} l_{1} \\ \left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+}^{2}: m_{1} \in\left[0, s_{1}\right) \text { or } m_{2} \in\left[0, s_{2}\right)\right\}, & k_{1} l_{2}=k_{2} l_{1}\end{cases}
$$

where $s_{i}=\operatorname{gcd}\left\{k_{i}, l_{i}\right\}, i=1,2$. Then $\mathbb{Z}_{+}^{2}=\bigcup_{m \in \Delta}[m]$. The proof can be seen in [27]. Therefore,

$$
\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)=\bigoplus_{m \in \Delta} L_{m}
$$

For $m \in \Delta$, let $\left[z^{m}\right]$ be the reducing subspace for $T_{z^{k}+\bar{z}^{l}}$ on $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$ generated by z^{m}.
If ω satisfies the assumptions (P1)-(P6), we can prove that $\left[z^{m}\right]=L_{m}$ (see Theorem 3.2). If ω satisfies the assumptions (P1)-(P7), we get that $\left[z^{m}\right]$ is minimal (see Theorem 3.3). By Theorems 3.2 and 3.3, it is easy to obtain Theorem 1.1. To prove Theorem 3.2, we need to show that set Ω is the union of an increasing sequence of sets. So we firstly give the following Lemma.

Lemma 3.1 Given $m \in \Delta$. Let $c_{i}=\min \left\{c \in \mathbb{Z}_{+}: m+c k \succeq i l\right\}, d_{i}=\min \left\{d \in \mathbb{Z}_{+}: m+d l \succeq\right.$ $i k\}, i \in \mathbb{Z}_{+}$. Then c_{i} and d_{i} are strictly monotonically increasing for $i \in \mathbb{Z}_{+}$.

Proof By the definition of c_{i}, it is easy to see $c_{i+1} \geq c_{i} \geq 1$. In the following, we will prove that $c_{i+1}>c_{i}$. For $i \in \mathbb{Z}_{+}$, since $m+\left(c_{i}-1\right) k \nsucceq i l$, we have $m_{1}+\left(c_{i}-1\right) k_{1}<i l_{1}$ or $m_{2}+\left(c_{i}-1\right) k_{2}<i l_{2}$.

Case 1. $m_{1}+\left(c_{i}-1\right) k_{1}<i l_{1}$. Then $-m_{1}-c_{i} k_{1}+k_{1}>-i l_{1}$. By the definition of c_{i+1}, there is $m_{1}+c_{i+1} k_{1} \geq(i+1) l_{1}$, which implies that $\left(c_{i+1}-c_{i}+1\right) k_{1}>l_{1}$. By assumptions $k_{1}<l_{1}$ and $c_{i}, c_{i+1} \in \mathbb{Z}_{+}$, we get $c_{i+1}-c_{i}+1 \geq 2$. So $c_{i+1} \geq c_{i}+1>c_{i}$.

Case 2. $m_{2}+\left(c_{i}-1\right) k_{2}<i l_{2}$. As in Case 1, it is easy to see $\left(c_{i+1}-c_{i}+1\right) k_{2}>l_{2}$.
If $k_{2} \leq l_{2}$, then $c_{i+1} \geq c_{i}+1>c_{i}$.
If $k_{2}>l_{2}$, let $s_{i}=\operatorname{gcd}\left\{k_{i}, l_{i}\right\}$, then $k_{1}=p_{1} s_{1}, l_{1}=q_{1} s_{1}, k_{2}=p_{2} s_{2}, l_{2}=q_{2} s_{2}$ for some $p_{i}, q_{i} \in \mathbb{N}$ such that $p_{1}<q_{1}$ and $p_{2}>q_{2}$. Assume $c_{i+1}=c_{i}$. Since $m+c_{i} k=m+c_{i+1} k \succeq(i+1) l$, we have $m_{1}+c_{i} k_{1} \geq(i+1) l_{1} \Rightarrow \frac{m_{1}}{s_{1}}+c_{i} p_{1} \geq(i+1) q_{1}$. Since $m \in \Delta, \frac{m_{1}}{s_{1}}<1$. Together with the fact that $c_{i} p_{1}$ is an integer, we have $c_{i} p_{1} \geq(i+1) q_{1}$, i.e.,

$$
\frac{c_{i}}{i+1} \geq \frac{q_{1}}{p_{1}}>1
$$

Reducing subspaces for $T_{z_{1}^{k_{1}} z_{2}^{k_{2}}+\bar{z}_{1}^{l_{1}} \bar{z}_{2}^{l_{2}}}$ on weighted Hardy space over bidisk
It follows that $c_{i} \geq i+2$. Furthermore, we get

$$
(i+2) p_{2} \leq c_{i} p_{2}<\frac{m_{2}}{s_{2}}+c_{i} p_{2}<i q_{2}+p_{2}
$$

where the last inequality comes from the assumption $m_{2}+\left(c_{i}-1\right) k_{2}<i l_{2}$. Thus $\frac{p_{2}}{q_{2}}<\frac{i}{i+1}<1$, which contradicts $p_{2}>q_{2}$. Hence, $c_{i+1}>c_{i}$.

By the same technique, we can prove that $d_{i+1}>d_{i}$. So we complete the proof.
Theorem 3.2 Assume ω satisfies (P1)-(P6). Let $m \in \Delta$, then $\left[z^{m}\right]=L_{m}$, where L_{m} is defined by (3.1).

Proof Clearly, $\left[z^{m}\right] \subseteq L_{m}$. Denote

$$
\Omega \triangleq\left\{(u, v) \in \mathbb{Z}^{2}: m+u k+v l \in \mathbb{Z}_{+}^{2}\right\} ; \widetilde{\Omega} \triangleq\left\{(u, v) \in \Omega: z^{m+u k+v l} \in\left[z^{m}\right]\right\}
$$

Clearly, $\widetilde{\Omega} \subseteq \Omega$. It is enough to prove that $\Omega \subseteq \widetilde{\Omega}$. Lemma 3.1 shows that $c_{n}<c_{n+1}$ and $d_{n}<d_{n+1}$. Since c_{n}, d_{n} are all integers, we have $\lim _{n \rightarrow+\infty} c_{n}=\lim _{n \rightarrow+\infty} d_{n}=+\infty$. Thus

$$
\Omega=\bigcup_{n=1}^{\infty}\left[\left(\left[-n+1, c_{n}\right] \times\left[-n+1, d_{n}\right]\right) \cap \Omega\right]
$$

By induction, we will prove that the following statements hold for each $n \in \mathbb{N}$:
(T1) $\left(\left[-n+1, c_{n}\right] \times\left[-n+1, d_{n}\right]\right) \cap \Omega \subseteq \widetilde{\Omega} ;$
(T2) $\left(c_{n},-n\right) \in \widetilde{\Omega}$;
(T3) $\left(-n, d_{n}\right) \in \widetilde{\Omega}$.
Therefore, (T1) implies the desired result.
Step 1. $n=1$. It is easy to check that

$$
T_{\varphi}^{j} z^{m}=z^{m+j k} \in\left[z^{m}\right], \forall j \in\left[0, c_{1}\right] ; T_{\varphi}^{* j} z^{m}=z^{m+j l} \in\left[z^{m}\right], \quad \forall j \in\left[0, d_{1}\right]
$$

It follows that $\left(\left[0, c_{1}\right] \times\{0\}\right) \cup\left(\{0\} \times\left[0, d_{1}\right]\right) \subseteq \widetilde{\Omega}$. If $d_{1}=0$, then (T1) holds for $n=1$.
For $(u-1, v) \in \Omega$, there is

$$
\begin{equation*}
T_{\varphi}^{*} z^{m+u k+v l}=z^{m+u k+(v+1) l}+\frac{\omega_{m+u k+v l}}{\omega_{m+(u-1) k+v l}} z^{m+(u-1) k+v l} \in\left[z^{m}\right] \tag{3.2}
\end{equation*}
$$

By (3.2) and $\left[0, c_{1}\right] \times\{0\} \subseteq \widetilde{\Omega}$, we have $\left[1, c_{1}\right] \times\{1\} \subseteq \widetilde{\Omega}$. If $d_{1}=1$, combining that $\{0\} \times\left[0, d_{1}\right] \subseteq \widetilde{\Omega}$, there is $\left[0, c_{1}\right] \times\{1\} \subseteq \widetilde{\Omega}$. Then (T1) holds when $n=1$.

If $d_{1} \geq 2$, by $\left[0, c_{1}\right] \times\{1\},\{0\} \times\left[0, d_{1}\right] \subseteq \widetilde{\Omega}$, it can be proved that $\left[0, c_{1}\right] \times\{2\} \subseteq \widetilde{\Omega}$. Therefore, we can prove that (T1) holds when $n=1$ by repeating the similar process as above a finite number of times.

By the definition of c_{1}, we have $m+c_{1} k-l \succeq 0$. Let $P_{\left[z^{m}\right]}$ be the orthogonal projection from $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$ onto $\left[z^{m}\right]$. Then (3.2) shows that

$$
\begin{aligned}
& T_{\varphi} z^{m+c_{1} k}=z^{m+\left(c_{1}+1\right) k}+\frac{\omega_{m+c_{1} k}}{\omega_{m+c_{1} k-l}} z^{m+c_{1} k-l} \in\left[z^{m}\right] \\
& T_{\varphi} z^{m+c_{1} k}=P_{\left[z^{m}\right]} T_{\varphi} z^{m+c_{1} k}=P_{\left[z^{m}\right]} z^{m+\left(c_{1}+1\right) k}+\frac{\omega_{m+c_{1} k}}{\omega_{m+c_{1} k-l}} P_{\left[z^{m}\right]} z^{m+c_{1} k-l}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
P_{\left[z^{m}\right]} z^{m+\left(c_{1}+1\right) k}-z^{m+\left(c_{1}+1\right) k}=\frac{\omega_{m+c_{1} k}}{\omega_{m+c_{1} k-l}}\left(z^{m+c_{1} k-l}-P_{\left[z^{m}\right]} z^{m+c_{1} k-l}\right) . \tag{3.3}
\end{equation*}
$$

By the definition of c_{1}, we also have $m+c_{1} k-l \nsucceq l$ and $m+\left(c_{1}-1\right) k \nsucceq l$, i.e., $m+c_{1} k-l \in \Omega_{1}$. It is easy to see $m+\left(c_{1}+1\right) k \in \Omega_{4}$. By Lemmas 2.3 and 2.5 , above equality shows that

$$
\begin{aligned}
\left\langle P_{\left[z^{m}\right]} z^{m+c_{1} k-l}, z^{m+\left(c_{1}+1\right) k}\right\rangle & =\left\langle P_{\left[z^{m}\right]} z^{m+c_{1} k-l}, P_{\left[z^{m}\right]} z^{m+\left(c_{1}+1\right) k}\right\rangle \\
& =\left\langle z^{m+c_{1} k-l}, P_{\left[z^{m}\right]} z^{m+\left(c_{1}+1\right) k}\right\rangle=0 .
\end{aligned}
$$

Clearly, $z^{m+c_{1} k-l} \perp z^{m+\left(c_{1}+1\right) k}$. Therefore, $z^{m+c_{1} k-l}-P_{\left[z^{m}\right]} z^{m+c_{1} k-l} \perp P_{\left[z^{m}\right]} z^{m+\left(c_{1}+1\right) k}-z^{m+\left(c_{1}+1\right) k}$ and (3.3) implies that

$$
z^{m+c_{1} k-l}=P_{\left[z^{m}\right]} z^{m+c_{1} k-l} \in\left[z^{m}\right],
$$

that is, (T2) holds when $n=1$. By $P_{\left[z^{m}\right]} T_{\varphi}^{*} z^{m+d_{1} l}=T_{\varphi}^{*} z^{m+d_{1} l}$, similarly, we can get (T3) holds when $n=1$.

Step 2. Assume (T1)-(T3) hold when $n \leq p$, we will prove that they also hold when $n=p+1$. Inductive hypothesis (T2) shows that

$$
T_{\varphi}^{j} z^{m+c_{p} k-p l}=z^{m+c_{p} k-p l+j k} \in\left[z^{m}\right], \quad \forall j \in\left[0, c_{p+1}-c_{p}\right] .
$$

That is $\left[c_{p}, c_{p+1}\right] \times\{-p\} \subseteq \widetilde{\Omega}$. Note that

$$
\begin{equation*}
T_{\varphi} z^{m+u k+v l}=z^{m+(u+1) k+v l}+\frac{\omega_{m+u k+v l}}{\omega_{m+u k+(v-1) l}} z^{m+u k+(v-1) l} \in\left[z^{m}\right], \quad \forall(u, v-1) \in \Omega \tag{3.4}
\end{equation*}
$$

By (3.4), we can verify the following fact for $j=0,1, \ldots, c_{p+1}-c_{p}-1$ one by one: since $\left(c_{p}+j,-p+1\right),\left(c_{p}+j,-p\right) \in \widetilde{\Omega}$, there is $\left(c_{p}+j+1,-p+1\right) \in \widetilde{\Omega}$.

Furthermore, the following statement holds for $j \in\left[0, c_{p+1}-c_{p}-1\right], h \in\left[0, d_{p}+p-1\right]$:

$$
\text { since }\left(c_{p}+j,-p+h+1\right),\left(c_{p}+j,-p+h\right) \in \widetilde{\Omega}, \text { there is }\left(c_{p}+j+1,-p+1+h\right) \in \widetilde{\Omega}
$$

Combining inductive hypothesis (T1) with $n \leq p$, we have that $\left(\left[-p, c_{p+1}\right] \times\left[-p, d_{p}\right]\right) \cap \Omega \subseteq \widetilde{\Omega}$.
Similarly, by inductive hypothesis (T3), we have

$$
T_{\varphi}^{* i} z^{m-p k+d_{p} l}=z^{m-p k+d_{p} l+i l} \in\left[z^{m}\right], \quad \forall i \in\left[0, d_{p+1}-d_{p}\right]
$$

Together with $\left(\left[-p, c_{p+1}\right] \times\left\{d_{p}\right\}\right) \cap \Omega \subseteq \widetilde{\Omega}$, by (3.2) many times, we can prove that

$$
\left(\left[-p, c_{p+1}\right] \times\left\{d_{p}+i\right\}\right) \bigcap \Omega \subseteq \widetilde{\Omega} \text { for } i=1, \ldots, d_{p+1}-d_{p}
$$

So (T1) holds when $n=p+1$.
In particular, statement (T1) shows that $z^{m+c_{p+1} k-p l}, z^{m+d_{p+1} l-p k} \in\left[z^{m}\right]$. Note that

$$
\begin{aligned}
& T_{\varphi} z^{m+c_{p+1} k-p l}=z^{m+\left(c_{p+1}+1\right) k-p l}+\frac{\omega_{m+c_{p+1}} k-p l}{\omega_{m+c_{p+1} k-(p+1) l}} z^{m+c_{p+1} k-(p+1) l} \in\left[z^{m}\right], \\
& T_{\varphi}^{*} z^{m+d_{p+1} l-p k}=z^{m+\left(d_{p+1}+1\right) l-p k}+\frac{\omega_{m+d_{p+1} l-p k}}{\omega_{m+d_{p+1} l-(p+1) k}} z^{m+d_{p+1} l-(p+1) k} \in\left[z^{m}\right],
\end{aligned}
$$

where $m+c_{p+1} k-(p+1) l, m+d_{p+1} l-(p+1) k \in \Omega_{1}$ and $m+c_{p+1} k-p l, m+d_{p+1} l-p k \in \Omega_{4}$. By Lemmas 2.3 and 2.5, we can get the desired results as in step 1 .

Theorem 3.3 Assume ω satisfies (P1)-(P7). Given $m \in \Delta$. Then L_{m} is a minimal reducing subspace for T_{φ}.

Proof Suppose $M \subseteq L_{m}$ is a reducing subspace. Let P_{M} be the orthogonal projection from $\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right)$ onto M. Then $P_{M} T_{\varphi}=T_{\varphi} P_{M}$ and $P_{M} T_{\varphi}^{*}=T_{\varphi}^{*} P_{M}$. Note that $m \in \Delta \subseteq \Omega_{1}$. If $Q_{m}(p) \equiv 0$, Lemma 2.3 shows that $P_{M} z^{m}=c z^{m} \in M$ for $c \in \mathbb{C}$.

If $Q_{m}(p) \not \equiv 0$, Lemma 2.5 shows

$$
\begin{equation*}
P_{M} z^{m}=\sum_{\beta \in \Omega_{1}, \lambda_{m}=\lambda_{\beta}} a_{\beta} z^{\beta} \tag{3.5}
\end{equation*}
$$

with $a_{\beta} \in \mathbb{C}$. If $a_{\beta} \neq 0$, then $\Delta_{m, \beta}=\{0\}$. Lemmas 2.2 and 2.4 induce that

$$
\begin{equation*}
\Delta_{m+p(k+l), \beta}=\{p\}, \quad \forall p \in \mathbb{Z}_{+} \tag{3.6}
\end{equation*}
$$

Thus $P_{M} z^{m+p(k+l)}=\sum_{\beta \in \Omega_{1}, \lambda_{m}=\lambda_{\beta}} a_{\beta, p} z^{\beta+p(k+l)}, \forall p \in \mathbb{Z}_{+}$. In the following, we prove that

$$
a_{\beta, p}=a_{\beta, q}, \forall p, q \in \mathbb{Z}_{+}
$$

Clearly, it holds when $p=0$. For $p \in \mathbb{Z}_{+}$, suppose $a_{\beta, h}=a_{\beta, q}, 0 \leq h, q \leq p$. By $T_{\varphi}^{*} T_{\varphi} P_{M} z^{m+p(k+l)}$ $=P_{M} T_{\varphi}^{*} T_{\varphi} z^{m+p(k+l)}$, we get

$$
\begin{aligned}
& P_{M}\left(z^{m+(p+1)(k+l)}+\rho z^{m+p(k+l)}+\frac{\omega_{m+p(k+l)}}{\omega_{m+(p-1)(k+l)}} z^{m+(p-1)(k+l)}\right) \\
& \quad=\sum_{\beta \in \Omega_{1}, \lambda_{m}=\lambda_{\beta}} a_{\beta, p}\left(z^{\beta+(p+1)(k+l)}+\eta z^{\beta+p(k+l)}+\frac{\omega_{\beta+p(k+l)}}{\omega_{\beta+(p-1)(k+l)}} z^{\beta+(p-1)(k+l)}\right)
\end{aligned}
$$

where $\rho, \eta>0$. By (3.6), we have $P_{M} z^{m+p(k+l)} \perp z^{\beta+(p+1) k+l}, P_{M} z^{m+(p-1)(k+l)} \perp z^{\beta+(p+1) k+l}$, $P_{M} z^{m+(p+1)(k+l)} \perp z^{\beta+p k+l}$ and $P_{M} z^{m+(p+1)(k+l)} \perp z^{\beta+(p-1) k+l}$. Therefore,

$$
P_{M} z^{m+(p+1)(k+l)}=\sum_{\beta \in \Omega_{1}, \lambda_{m}=\lambda_{\beta}} a_{\beta, p} z^{\beta+(p+1)(k+l)}
$$

i.e., $a_{\beta, p}=a_{\beta, p+1}$.

Furthermore, by the expression of $P_{M} z^{m+(p-1)(k+l)}$, we have

$$
\frac{\omega_{m+p(k+l)}}{\omega_{m+(p-1)(k+l)}}=\frac{\omega_{\beta+p(k+l)}}{\omega_{\beta+(p-1)(k+l)}}, \quad \forall p \in \mathbb{N} .
$$

So (P1) shows that

$$
\frac{\omega_{m}}{\omega_{n}}=\frac{\omega_{m+p(k+l)}}{\omega_{n+p(k+l)}}=\lim _{p \rightarrow+\infty} \frac{\omega_{m+p(k+l)}}{\omega_{n+p(k+l)}}=1 .
$$

For $p=0, P_{M} T_{\varphi}^{*} T_{\varphi} z^{m}=T_{\varphi}^{*} T_{\varphi} P_{M} z^{m}$ implies that

$$
P_{M}\left(z^{m+k+l}+\frac{\omega_{m+k}}{\omega_{m}} z^{m}\right)=\sum_{\beta \in \Omega_{1}, \lambda_{m}=\lambda_{\beta}} a_{\beta}\left(z^{\beta+k+l}+\frac{\omega_{\beta+k}}{\omega_{\beta}} z^{\beta}\right)
$$

Thus $\frac{\omega_{m+k}}{\omega_{m}}=\frac{\omega_{\beta+k}}{\omega_{\beta}}$ and $\omega_{m+k}=\omega_{n+k}$. By (P7), we have $P_{M} z^{m}=c z^{m}$ for some $c \in \mathbb{C}$. By Theorem 3.2, we get $M=L_{m}$ or $M=\{0\}$.
4. Reducing subspaces for $T_{z^{k}+\bar{z}^{l}}$ on Dirichlet space

In this section, we focus on a class of weighted Dirichlet space $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)(\delta>0)$,

$$
\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)=\mathcal{H}_{\omega}^{2}\left(\mathbb{D}^{2}\right) \text { with } \omega=\left\{\omega_{n}=\left(n_{1}+1\right)^{\delta}\left(n_{2}+1\right)^{\delta}, n \in \mathbb{Z}_{+}^{2}\right\}
$$

We also suppose that $0<k_{1}<l_{1}$. In this case,

$$
\lambda_{n}= \begin{cases}\prod_{i=1}^{2} \frac{\left(n_{i}+k_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+l_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}, & n \in \Omega_{1}, \\ \prod_{i=1}^{2} \frac{\left(n_{i}+k_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+l_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+1\right)^{\delta}}{\left(n_{i}-k_{i}+1\right)^{\delta}}, & n \in \Omega_{2}, \\ \prod_{i=1}^{2} \frac{\left(n_{i}+k_{i}+1\right)^{\delta}}{\left(n_{i}+\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+l_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}+\prod_{i=1}^{2} \frac{\left(n_{i}+1\right)^{\delta}}{\left(n_{i}-l_{i}+1\right)^{\delta}}, & n \in \Omega_{3}, \\ \prod_{i=1}^{2} \frac{\left(n_{i}+k_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+l_{i}+1\right)^{\delta}}{\left(n_{i}+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+1\right)^{\delta}}{\left(n_{i}-k_{i}+1\right)^{\delta}}+\prod_{i=1}^{2} \frac{\left(n_{i}+1\right)^{\delta}}{\left(n_{i}-l_{i}+1\right)^{\delta}}, & n \in \Omega_{4},\end{cases}
$$

and

$$
\begin{aligned}
Q_{n}(p)= & \prod_{i=1}^{2} \frac{\left(n_{i}+k_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}{\left(n_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}-\prod_{i=1}^{2} \frac{\left(n_{i}+l_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}{\left(n_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}- \\
& \prod_{i=1}^{2} \frac{\left(n_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}{\left(n_{i}-k_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}+\prod_{i=1}^{2} \frac{\left(n_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}{\left(n_{i}-l_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{\delta}}
\end{aligned}
$$

Firstly, we will show in this case ω satisfies (P1)-(P7). Clearly, (P1) holds. The next Lemma shows that (P2) holds.

Lemma 4.1 Let $n \in \mathbb{Z}_{+}^{2}$. Then the following statements are equivalent:
(i) $A_{n} \triangleq\left(k_{2}-l_{2}\right)\left(n_{1}+1\right)+\left(k_{1}-l_{1}\right)\left(n_{2}+1\right)=0$ and $k_{1} k_{2}=l_{1} l_{2}$;
(ii) $\frac{k_{1}}{n_{1}+1}=\frac{l_{2}}{n_{2}+1}, \frac{l_{1}}{n_{1}+1}=\frac{k_{2}}{n_{2}+1}$ and $k_{1} k_{2}=l_{1} l_{2}$;
(iii) $Q_{n}(p) \equiv 0$;
(iv) There exist $\left\{p_{j}\right\} \subseteq \mathbb{N}$ such that $\lim _{j \rightarrow+\infty} p_{j}=+\infty$ and $Q_{n}\left(p_{j}\right)=0$ for $j \in \mathbb{N}$.

Proof Firstly, we prove that (i) holds if and only if (ii) holds. Note that (ii) \Rightarrow (i) is obvious. Conversely, if (i) holds,

$$
k_{1}\left(k_{2}-l_{2}\right)\left(n_{1}+1\right)+k_{1}\left(k_{1}-l_{1}\right)\left(n_{2}+1\right)=l_{2}\left(l_{1}-k_{1}\right)\left(n_{1}+1\right)+k_{1}\left(k_{1}-l_{1}\right)\left(n_{2}+1\right)=0
$$

Since $k_{1}<l_{1}$, we get $\frac{k_{1}}{n_{1}+1}=\frac{l_{2}}{n_{2}+1}$, and then $\frac{l_{1}}{n_{1}+1}=\frac{k_{2}}{n_{2}+1}$, i.e., (ii) holds.
Secondly, we prove that (ii) \Rightarrow (iii). By computation, we have $Q_{n}(p)=0$ if and only if

$$
\begin{aligned}
& \prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)-k_{i}+1\right)^{\delta}\left(n_{i}+p\left(k_{i}+l_{i}\right)-l_{i}+1\right)^{\delta} \times \\
& \quad\left[\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)+k_{i}+1\right)^{\delta}-\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)+l_{i}+1\right)^{\delta}\right] \\
& =\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)+1\right)^{2 \delta}\left[\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)-l_{i}+1\right)^{\delta}-\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)-k_{i}+1\right)^{\delta}\right] .
\end{aligned}
$$

If (ii) holds, then

$$
\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)+k_{i}+1\right)^{\delta}-\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)+l_{i}+1\right)^{\delta}
$$

Reducing subspaces for $T_{z_{1}^{k_{1}} z_{2}^{k_{2}}+\bar{z}_{1}^{l_{1}} \bar{z}_{2}^{l_{2}}}$ on weighted Hardy space over bidisk

$$
=\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)-l_{i}+1\right)^{\delta}-\prod_{i=1}^{2}\left(n_{i}+p\left(k_{i}+l_{i}\right)-k_{i}+1\right)^{\delta}=0 .
$$

Therefore, (iii) holds.
Since (iii) \Rightarrow (iv) is obvious, we only need to prove that (iv) \Rightarrow (i). Let

$$
\begin{aligned}
& h_{1}(t)=\prod_{i=1}^{2}\left(a_{i} t+1\right)^{\delta}\left(b_{i} t+1\right)^{\delta}\left(\prod_{i=1}^{2}\left(c_{i} t+1\right)^{\delta}-\prod_{i=1}^{2}\left(d_{i} t+1\right)^{\delta}\right), \\
& h_{2}(t)=\prod_{i=1}^{2}\left(e_{i} t+1\right)^{2 \delta}\left(\prod_{i=1}^{2}\left(b_{i} t+1\right)^{\delta}-\prod_{i=1}^{2}\left(a_{i} t+1\right)^{\delta}\right), \quad t>0
\end{aligned}
$$

where

$$
e_{i}=\frac{n_{i}+1}{k_{i}+l_{i}}, a_{i}=e_{i}-\frac{k_{i}}{k_{i}+l_{i}}, b_{i}=e_{i}-\frac{l_{i}}{k_{i}+l_{i}}, c_{i}=e_{i}+\frac{k_{i}}{k_{i}+l_{i}}, \quad d_{i}=e_{i}+\frac{l_{i}}{k_{i}+l_{i}}, \quad i=1,2 .
$$

Let $x=\frac{k_{1} k_{2}-l_{1} l_{2}}{\left(k_{1}+l_{1}\right)\left(k_{2}+l_{2}\right)}$. Then

$$
\begin{align*}
& c_{1}+c_{2}-d_{1}-d_{2}=b_{1}+b_{2}-a_{1}-a_{2}=2 x \\
& c_{1} c_{2}-d_{1} d_{2}=e_{1} \frac{k_{2}-l_{2}}{k_{2}+l_{2}}+e_{2} \frac{k_{1}-l_{1}}{k_{1}+l_{1}}+x \tag{4.1}\\
& b_{1} b_{2}-a_{1} a_{2}=e_{1} \frac{k_{2}-l_{2}}{k_{2}+l_{2}}+e_{2} \frac{k_{1}-l_{1}}{k_{1}+l_{1}}-x
\end{align*}
$$

It follows that $\lim _{t \rightarrow 0^{+}}\left(h_{1}^{\prime}(t)-h_{2}^{\prime}(t)\right)=0$. Since (iv) holds, the definition of $Q_{n}\left(p_{j}\right)$ shows that

$$
\begin{equation*}
h_{1}\left(t_{j}\right)=h_{2}\left(t_{j}\right) \text { for } t_{j}=\frac{1}{p_{j}} . \tag{4.2}
\end{equation*}
$$

By L'Hospital's Rule, we have

$$
\lim _{t \rightarrow 0^{+}} \frac{h_{1}(t)-h_{2}(t)}{t^{2}}=\lim _{t \rightarrow 0^{+}} \frac{h_{1}^{\prime}(t)-h_{2}^{\prime}(t)}{2 t}=\lim _{t \rightarrow 0^{+}} \frac{h_{1}^{\prime \prime}(t)-h_{2}^{\prime \prime}(t)}{2}
$$

Moreover,

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{h_{1}^{\prime \prime}(t)}{2} \\
& =\left(\delta^{2}\left(a_{1}+a_{2}+b_{1}+b_{2}\right)+\frac{\delta(\delta-1)}{2}\left(c_{1}+c_{2}+d_{1}+d_{2}\right)\right)\left(c_{1}+c_{2}-d_{1}-d_{2}\right)+\delta\left(c_{1} c_{2}-d_{1} d_{2}\right) \\
& =\left(\left(3 \delta^{2}-\delta\right)\left(e_{1}+e_{2}\right)-\delta^{2}-\delta\right) 2 x+\delta\left(e_{1} \frac{k_{2}-l_{2}}{k_{2}+l_{2}}+e_{2} \frac{k_{1}-l_{1}}{k_{1}+l_{1}}+x\right) \\
& \lim _{t \rightarrow 0^{+}} \frac{h_{2}^{\prime \prime}(t)}{2} \\
& =\left(2 \delta^{2}\left(e_{1}+e_{2}\right)+\frac{\delta(\delta-1)}{2}\left(b_{1}+b_{2}+a_{1}+a_{2}\right)\right)\left(b_{1}+b_{2}-a_{1}-a_{2}\right)+\delta\left(b_{1} b_{2}-a_{1} a_{2}\right) \\
& =\left(\left(3 \delta^{2}-\delta\right)\left(e_{1}+e_{2}\right)-\delta^{2}+\delta\right) 2 x+\delta\left(e_{1} \frac{k_{2}-l_{2}}{k_{2}+l_{2}}+e_{2} \frac{k_{1}-l_{1}}{k_{1}+l_{1}}-x\right)
\end{aligned}
$$

By (4.2), we get

$$
\lim _{t \rightarrow 0^{+}} \frac{h_{1}(t)}{t^{2}}=\lim _{t \rightarrow 0^{+}} \frac{h_{2}(t)}{t^{2}} .
$$

Since $\delta>0$, we get $x=0$, i.e., $k_{1} k_{2}=l_{1} l_{2}$.

Furthermore,

$$
\begin{aligned}
& c_{1}+c_{2}=d_{1}+d_{2}=e_{1}+e_{2}+\frac{k_{1}}{k_{1}+l_{1}}+\frac{k_{2}}{k_{2}+l_{2}} \\
& a_{1}+a_{2}=b_{1}+b_{2}=e_{1}+e_{2}-\frac{k_{1}}{k_{1}+l_{1}}-\frac{k_{2}}{k_{2}+l_{2}} \\
& c_{1} c_{2}-d_{1} d_{2}=b_{1} b_{2}-a_{1} a_{2}
\end{aligned}
$$

Case 1. $\delta=1$. L'Hospital's Rule shows that

$$
\lim _{t \rightarrow 0^{+}} \frac{h_{1}(t)-h_{2}(t)}{t^{3}}=\lim _{t \rightarrow 0^{+}} \frac{h_{1}^{\prime \prime \prime}(t)-h_{2}^{\prime \prime \prime}(t)}{6}
$$

On the basis of careful calculation, we get

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{h_{1}^{\prime \prime \prime}(t)}{6}=2 \delta^{2}\left(e_{1}+e_{2}-1\right)\left(c_{1} c_{2}-d_{1} d_{2}\right), \\
& \lim _{t \rightarrow 0^{+}} \frac{h_{2}^{\prime \prime \prime}(t)}{6}=2 \delta^{2}\left(e_{1}+e_{2}\right)\left(b_{1} b_{2}-a_{1} a_{2}\right) .
\end{aligned}
$$

Therefore, $2\left(e_{1}+e_{2}-1\right)\left(c_{1} c_{2}-d_{1} d_{2}\right)=2\left(e_{1}+e_{2}\right)\left(c_{1} c_{2}-d_{1} d_{2}\right)$, i.e., $c_{1} c_{2}-d_{1} d_{2}=0$.
Case 2. $\delta \neq 1$. Dividing both sides of (4.2) by $\prod_{i=1}^{2}\left(e_{i} t_{j}+1\right)^{2 \delta}$, we get

$$
f_{1}\left(t_{j}\right) f_{2}\left(t_{j}\right)=f_{3}\left(t_{j}\right)
$$

where

$$
\begin{aligned}
& f_{1}(t)=\prod_{i=1}^{2}\left(\frac{\left(a_{i} t+1\right)\left(b_{i} t+1\right)}{\left(e_{i} t+1\right)^{2}}\right)^{\delta}, \\
& f_{2}(t)=\prod_{i=1}^{2}\left(c_{i} t+1\right)^{\delta}-\prod_{i=1}^{2}\left(d_{i} t+1\right)^{\delta}, \\
& f_{3}(t)=\prod_{i=1}^{2}\left(b_{i} t+1\right)^{\delta}-\prod_{i=1}^{2}\left(a_{i} t+1\right)^{\delta}, \quad t>0 .
\end{aligned}
$$

Similarly, by $\lim _{t \rightarrow 0^{+}} f_{1}(t)=1$, we get $\lim _{t \rightarrow 0^{+}}\left(f_{2}^{\prime}(t)-f_{3}^{\prime}(t)\right)=\lim _{t \rightarrow 0^{+}}\left(f_{2}^{\prime \prime}(t)-f_{3}^{\prime \prime}(t)\right)=0$. By L'Hospital's Rule again, we have

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{f_{2}(t)-f_{3}(t)}{t^{3}}=\lim _{t \rightarrow 0^{+}} \frac{f_{2}^{\prime \prime \prime}(t)-f_{3}^{\prime \prime \prime}(t)}{6} \\
& \quad=\delta(\delta-1)\left(c_{1}+c_{2}\right)\left(c_{1} c_{2}-d_{1} d_{2}\right)-\delta(\delta-1)\left(b_{1}+b_{2}\right)\left(b_{1} b_{2}-a_{1} a_{2}\right) \\
& =\delta(\delta-1)\left(c_{1} c_{2}-d_{1} d_{2}\right)\left(c_{1}+c_{2}-b_{1}-b_{2}\right) \\
& =2 \delta(\delta-1)\left(c_{1} c_{2}-d_{1} d_{2}\right)
\end{aligned}
$$

So $c_{1} c_{2}-d_{1} d_{2}=0$.
Finally, equality (4.1) implies that $A_{n}=\left(n_{1}+1\right)\left(k_{2}-l_{2}\right)+\left(n_{2}+1\right)\left(k_{1}-l_{1}\right)=0$. So we complete the proof.

Lemma 4.2 The property $(P 3)$ holds on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$. That is, if $Q_{n}(p) \equiv 0$, then $Q_{n+l}(p) \not \equiv 0$ and $Q_{n+k}(p) \not \equiv 0$.

Proof If $Q_{n}(p) \equiv 0$, Lemma 4.1 deduces that $A_{n}=\left(k_{2}-l_{2}\right)\left(n_{1}+1\right)+\left(k_{1}-l_{1}\right)\left(n_{2}+1\right)=0$ and $k_{1} k_{2}=l_{1} l_{2}$. By $k_{1}<l_{1}$, we have $k_{2}>l_{2}$. Then $A_{n+l}=A_{n}+\left(k_{2}-l_{2}\right)\left(l_{1}-k_{1}\right) \neq 0$. It follows that $Q_{n+l}(p) \not \equiv 0$. Similarly, we have $Q_{n+k}(p) \not \equiv 0$.

Lemma 4.3 The property (P4) holds on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$. That is, if $Q_{n}(p) \equiv 0$, then

$$
\lim _{p \rightarrow+\infty} p\left(\frac{r(n+p(k+l)+l, k)}{r(n+p(k+l), l)}-1\right)=0
$$

Proof Let

$$
e_{i}=\frac{n_{i}+1}{k_{i}+l_{i}}, b_{i}=e_{i}+1, c_{i}=e_{i}+\frac{l_{i}}{k_{i}+l_{i}} .
$$

By the definition of function $r(n, m)$, we have

$$
\frac{r(n+p(k+l)+l, k)}{r(n+p(k+l), l)}-1=\frac{\omega_{n+(p+1)(k+l)}}{\omega_{n+p(k+l)+l}} \frac{\omega_{n+p(k+l)}}{\omega_{n+p(k+l)+l}}-1=\frac{f_{1}\left(\frac{1}{p}\right)-f_{2}\left(\frac{1}{p}\right)}{f_{2}\left(\frac{1}{p}\right)},
$$

where

$$
f_{1}(t)=\prod_{i=1}^{2}\left(e_{i} t+1\right)^{\delta}\left(b_{i} t+1\right)^{\delta}, f_{2}(t)=\prod_{i=1}^{2}\left(c_{i} t+1\right)^{2 \delta}, \quad \forall t>0 .
$$

By L'Hospital's Rule, we get

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{f_{1}(t)-f_{2}(t)}{t f_{2}(t)}=\lim _{t \rightarrow 0^{+}} \frac{f_{1}^{\prime}(t)-f_{2}^{\prime}(t)}{\left(t f_{2}(t)\right)^{\prime}} \\
& =\delta\left(e_{1}+e_{2}+b_{1}+b_{2}-2 c_{1}-2 c_{2}\right)=2 \delta \frac{k_{1} k_{2}-l_{1} l_{2}}{\left(k_{1}+l_{1}\right)\left(k_{2}+l_{2}\right)}
\end{aligned}
$$

By $Q_{n}(p) \equiv 0$, Lemma 4.1 shows that $k_{1} k_{2}=l_{1} l_{2}$. Hence,

$$
\lim _{p \rightarrow+\infty} p\left(\frac{r(n+p(k+l)+l, k)}{r(n+p(k+l), l)}-1\right)=\lim _{t \rightarrow 0^{+}} \frac{f_{1}(t)-f_{2}(t)}{t f_{2}(t)}=0
$$

Lemma 4.4 The property (P5) holds on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$. That is, for $n \in \Omega_{1}, m \in \Omega_{4}$, if $Q_{n}(p) \not \equiv 0$ and $\lambda_{n}=\lambda_{m}$, then $Q_{m}(p) \not \equiv 0$.

Proof Suppose $Q_{m}(p) \equiv 0$, Lemma 4.1 shows that $l_{1} l_{2}=k_{1} k_{2}$. Since $m \in \Omega_{4}$, we get $\lambda_{m}=$ $Q_{m}(0)=0$. Therefore, $\lambda_{n}=\lambda_{m}=0$. By the definition of λ_{n} with $n \in \Omega_{1}$, there is $w_{n+k}=w_{n+l}$, i.e., $\left(n_{1}+k_{1}+1\right)\left(n_{2}+k_{2}+1\right)=\left(n_{1}+l_{1}+1\right)\left(n_{2}+l_{2}+1\right)$. Together with $l_{1} l_{2}=k_{1} k_{2}$, we obtain that

$$
A_{n}=\left(k_{2}-l_{2}\right)\left(n_{1}+1\right)+\left(k_{1}-l_{1}\right)\left(n_{2}+1\right)=0
$$

Lemma 4.1 implies that $Q_{n}(p) \equiv 0$, which contradicts the assumption.
Lemma 4.5 The property (P6) holds on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$. That is, if $Q_{n}(p) \equiv Q_{m}(p)$ with $n, m \in \mathbb{Z}_{+}^{2}$ and $n \neq m$, then the following statements hold:
(i) If $Q_{n+l}(p) \equiv Q_{m+l}(p)$, then $Q_{n+l}(p) \not \equiv 0, Q_{n}(p) \not \equiv 0$;
(ii) If $Q_{n+k}(p) \equiv Q_{m+k}(p)$, then $Q_{n+k}(p) \not \equiv 0, Q_{n}(p) \not \equiv 0$.

Proof If $k_{1} k_{2} \neq l_{1} l_{2}$, Lemma 4.1 implies that (P6) holds.

If $k_{1} k_{2}=l_{1} l_{2}$, then $l_{2} k_{1} \neq k_{2} l_{1}$. Otherwise, $k_{2}^{2} k_{1}=k_{2} l_{1} l_{2}=l_{2}^{2} k_{1}$. It is easy to see $k_{2}=l_{2}$ and $k_{1}=l_{1}$, which contradicts $k \neq l$.

Here, we only prove that if $Q_{n}(p) \equiv Q_{m}(p)$ and $Q_{n+l}(p) \equiv Q_{m+l}(p)$, then $Q_{n+l}(p) \not \equiv 0$, since the proof of others is similar.

Suppose $Q_{n+l}(p) \equiv 0$. Then $Q_{m+l}(p) \equiv 0$. Lemma 4.1 implies that

$$
\begin{align*}
& \left(k_{1}-l_{1}\right)\left(n_{2}+l_{2}+1\right)+\left(k_{2}-l_{2}\right)\left(n_{1}+l_{1}+1\right)=0 \\
& \left(k_{1}-l_{1}\right)\left(m_{2}+l_{2}+1\right)+\left(k_{2}-l_{2}\right)\left(m_{1}+l_{1}+1\right)=0 \\
& \left(k_{1}-l_{1}\right)\left(n_{2}-m_{2}\right)+\left(k_{2}-l_{2}\right)\left(n_{1}-m_{1}\right)=0 \tag{4.3}
\end{align*}
$$

Let $\nu_{n}(t)=\prod_{i=1}^{2}\left(\frac{n_{i}+1}{k_{i}+l_{i}} t+1\right)^{\delta}$ for $t>0$. By $Q_{n}(p) \equiv Q_{m}(p)$, there is

$$
\begin{equation*}
\nu_{m}(t) \nu_{m-k}(t) \nu_{m-l}(t) g_{n}(t) \equiv \nu_{n}(t) \nu_{n-k}(t) \nu_{n-l}(t) g_{m}(t), \quad \forall t=\frac{1}{p} \tag{4.4}
\end{equation*}
$$

where

$$
g_{n}(t)=\nu_{n-k}(t) \nu_{n-l}(t)\left[\nu_{n+k}(t)-\nu_{n+l}(t)\right]+\nu_{n}^{2}(t)\left[\nu_{n-k}(t)-\nu_{n-l}(t)\right]
$$

Denote

$$
e_{i}=\frac{n_{i}+1}{k_{i}+l_{i}}, \widetilde{e}_{i}=\frac{m_{i}+1}{k_{i}+l_{i}}, x_{i}=\frac{k_{i}}{k_{i}+l_{i}}, y_{i}=\frac{l_{i}}{k_{i}+l_{i}}, \quad i=1,2 .
$$

Set $\xi=e_{1}\left(x_{2}-y_{2}\right)+e_{2}\left(x_{1}-y_{1}\right)$. By (4.3) and $k_{1} k_{1}=l_{1} l_{2}$, there is

$$
\xi=\widetilde{e}_{1}\left(x_{2}-y_{2}\right)+\widetilde{e}_{2}\left(x_{1}-y_{1}\right)=\frac{\left(l_{1}-k_{1}\right)\left(l_{2}-k_{2}\right)}{\prod_{i=1}^{2}\left(k_{i}+l_{i}\right)} \neq 0
$$

By computation, we have the following equalities:

$$
\begin{aligned}
& x_{1}+x_{2}=y_{1}+y_{2}=1 \\
& \lim _{t \rightarrow 0^{+}} \nu_{n}^{(1)}(t)=\delta\left(e_{1}+e_{2}\right) \\
& \lim _{t \rightarrow 0^{+}} \nu_{n}^{(2)}(t)=\delta(\delta-1)\left(e_{1}+e_{2}\right)^{2}+2 \delta e_{1} e_{2} \\
& \lim _{t \rightarrow 0^{+}}\left(\nu_{n \pm k}-\nu_{n \pm l}\right)^{(1)}(t)=0 \\
& \lim _{t \rightarrow 0^{+}}\left(\nu_{n \pm k}-\nu_{n \pm l}\right)^{(2)}(t)= \pm 2 \delta \xi \\
& \lim _{t \rightarrow 0^{+}}\left[\left(\nu_{n \pm k}-\nu_{n \pm l}\right)^{(3)}(t)=6 \delta(\delta-1)\left(\pm\left(e_{1}+e_{2}\right)+1\right) \xi\right.
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} g_{n}(t)=\lim _{t \rightarrow 0^{+}} g_{n}^{(1)}(t)=\lim _{t \rightarrow 0^{+}} g_{n}^{(2)}(t)=0, \quad \lim _{t \rightarrow 0^{+}} g_{n}^{(3)}(t)=-12 \delta \xi \tag{4.5}
\end{equation*}
$$

Note that $\lim _{t \rightarrow 0^{+}} \frac{\nu_{m} \nu_{m-k} \nu_{m-l}}{\nu_{n} \nu_{n-k} \nu_{n-l}}(t)=1$ and $\lim _{t \rightarrow 0^{+}}\left(g_{n}^{(3)}(t)-g_{m}^{(3)}(t)\right)=0$. As in Lemma 4.1, equality (4.4) deduces that $\lim _{t \rightarrow 0^{+}} \frac{g_{n}(t)}{t^{4}}=\lim _{t \rightarrow 0^{+}} \frac{g_{m}(t)}{t^{4}}$. Combining L'Hospital Rule, we get $\lim _{t \rightarrow 0^{+}} \frac{g_{n}(t)-g_{m}(t)}{t^{4}}=\lim _{t \rightarrow 0^{+}} \frac{g_{n}^{(4)}(t)-g_{m}^{(4)}(t)}{24}=0$. Similarly, by

$$
\frac{\left(\nu_{m-k} \nu_{m-l}\right)(t)}{\left(\nu_{n-k} \nu_{n-l}\right)(t)} \frac{\left(\nu_{m} g_{n}\right)(t)}{t^{4}}=\frac{\left(\nu_{n} g_{m}\right)(t)}{t^{4}}
$$

we get

$$
\lim _{t \rightarrow 0^{+}} \frac{\left(\nu_{m} g_{n}\right)(t)-\left(\nu_{n} g_{m}\right)(t)}{t^{4}}=\lim _{t \rightarrow 0^{+}} \frac{\left(\nu_{m} g_{n}\right)^{(4)}(t)-\left(\nu_{n} g_{m}\right)^{(4)}(t)}{24}=0 .
$$

Since

$$
\left(\nu_{m} g_{n}\right)^{(4)}(t)=\nu_{m}^{(4)} g_{n}+4 \nu_{m}^{(3)} g_{n}^{(1)}+6 \nu_{m}^{(2)} g_{n}^{(2)}+4 \nu_{m}^{(1)} g_{n}^{(3)}+\nu_{m} g_{n}^{(4)},
$$

equality (4.5) shows that

$$
\lim _{t \rightarrow 0^{+}}\left(\nu_{m} g_{n}-\nu_{n} g_{m}\right)^{(4)}(t)=4 \lim _{t \rightarrow 0^{+}}\left(\nu_{m}^{(1)} g_{n}^{(3)}-\nu_{n}^{(1)} g_{m}^{(3)}\right)(t)=-48 \delta^{2}\left(\widetilde{e}_{1}+\widetilde{e}_{2}-e_{1}-e_{2}\right) \xi=0,
$$

we obtain $\left(k_{1}+l_{1}\right)\left(n_{2}-m_{2}\right)+\left(k_{2}+l_{2}\right)\left(n_{1}-m_{1}\right)=0$. Together with (4.3), we have

$$
\begin{aligned}
& k_{1}\left(n_{2}-m_{2}\right)=k_{2}\left(m_{1}-n_{1}\right), \\
& l_{2}\left(n_{1}-m_{1}\right)=l_{1}\left(m_{2}-n_{2}\right), \\
& \left(k_{1} l_{2}-k_{2} l_{1}\right)\left(n_{1}-m_{1}\right)\left(n_{2}-m_{2}\right)=0 .
\end{aligned}
$$

Since $k_{1} l_{2} \neq k_{2} l_{1}$, there must be $n_{1}=m_{1}, n_{2}=m_{2}$, which contradicts $n \neq m$.
Lemma 4.6 The property $(P 7)$ holds on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$. That is, if $n, m \in \Delta$ such that $n \neq m$, $\omega_{m+k}=\omega_{n+k}$ and $\omega_{m+h(k+l)}=\omega_{n+h(k+l)}\left(\forall h \in \mathbb{Z}_{+}\right)$, then $z^{n} \notin L_{m}$.

Proof In fact, we will prove that $l_{1} k_{2} \neq l_{2} k_{1}$ and $n=\left(\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1, \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1\right)$. By $\omega_{m}=\omega_{n}, \omega_{m+k}=\omega_{n+k}$, and $\omega_{m+k+l}=\omega_{n+k+l}$, we get respectively

$$
\begin{align*}
& \left(m_{1}+1\right)\left(m_{2}+1\right)=\left(n_{1}+1\right)\left(n_{2}+1\right) \tag{4.6}\\
& \left(m_{1}+k_{1}+1\right)\left(m_{2}+k_{2}+1\right)=\left(n_{1}+k_{1}+1\right)\left(n_{2}+k_{2}+1\right) \tag{4.7}\\
& \left(m_{1}+k_{1}+l_{1}+1\right)\left(m_{2}+k_{2}+l_{2}+1\right)=\left(n_{1}+k_{1}+l_{1}+1\right)\left(n_{2}+k_{2}+l_{2}+1\right) \tag{4.8}
\end{align*}
$$

Putting (4.6) into (4.7), we have

$$
\begin{equation*}
k_{1}\left(m_{2}-n_{2}\right)+k_{2}\left(m_{1}-n_{1}\right)=0 . \tag{4.9}
\end{equation*}
$$

Putting (4.7) into (4.8), we have

$$
\begin{equation*}
l_{1}\left(m_{2}-n_{2}\right)+l_{2}\left(m_{1}-n_{1}\right)=0 . \tag{4.10}
\end{equation*}
$$

By (4.9) and (4.10), we get $k_{1} l_{2}\left(m_{1}-n_{1}\right)\left(m_{2}-n_{2}\right)=k_{2} l_{1}\left(m_{1}-n_{1}\right)\left(m_{2}-n_{2}\right)$.
If $k_{1} l_{2} \neq k_{2} l_{1}$, then $m_{1}=n_{1}, m_{2}=n_{2}$, which contradicts $n \neq m$.
If $k_{1} l_{2}=k_{2} l_{1}$, equality (4.6) implies

$$
\begin{equation*}
m_{2}+1=\frac{\left(n_{1}+1\right)\left(n_{2}+1\right)}{m_{1}+1} \tag{4.11}
\end{equation*}
$$

Now putting (4.11) into (4.10), it means

$$
l_{1}\left(\frac{\left(n_{1}+1\right)\left(n_{2}+1\right)}{m_{1}+1}-\left(n_{2}+1\right)\right)+l_{2}\left(m_{1}-n_{1}\right)=0
$$

Thus,

$$
l_{1} \frac{n_{2}+1}{m_{1}+1}\left(n_{1}-m_{1}\right)=l_{2}\left(n_{1}-m_{1}\right) .
$$

Therefore,

$$
n_{2}=\frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1, \quad n_{1}=\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1 .
$$

Assume $z^{n} \in L_{m}$. There are $u, v \in \mathbb{Z}$ such that

$$
\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1=m_{1}+u k_{1}+v l_{1} \text { and } \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1=m_{2}+u k_{2}+v l_{2} .
$$

That is, $u k_{1}+v l_{1}=-\frac{l_{1}}{l_{2}}\left(u k_{2}+v l_{2}\right)$. Together with $l_{1} k_{2}=k_{1} l_{2}$, we get $u k_{1}+v l_{1}=u k_{2}+v l_{2}=0$ and $m_{1}=m_{2}$, which contradicts $n \neq m$.

Let \mathcal{M} be a nonzero reducing subspace for T_{φ}. Let P be the orthogonal projection from $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$ onto \mathcal{M}. By Lemma 4.6, we have $P z^{m}=a z^{m}+b z^{m^{\prime}}$, where $a, b \in \mathbb{C}$ and $m^{\prime}=$ $\left(\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1, \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1\right)$. In particular, if $k_{1} l_{2} \neq k_{2} l_{1}$, then $b=0$; if $k_{1} l_{2}=k_{2} l_{1}$ and $m^{\prime} \notin \mathbb{Z}_{+}^{2}$, then $b=0$. And $\left[a z^{m}+b z^{m^{\prime}}\right] \bigoplus\left[b z^{m}-a z^{m^{\prime}}\right]=L_{m} \bigoplus L_{m^{\prime}}$ when $a^{2}+b^{2} \neq 0$. Since $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)=\bigoplus_{m \in \Delta} L_{m}$ and \mathcal{M} is nonzero, there exists $m_{0} \in \Delta$ such that $P z^{m_{0}} \neq 0$, and

$$
\left[P z^{m_{0}}\right]=\overline{\operatorname{span}}\left\{\left(P z^{m_{0}}\right) z^{u k+v l}: u, v \in \mathbb{Z}, m+u k+v l \succeq 0\right\} \subseteq \mathcal{M}
$$

If \mathcal{M} is minimal, $\mathcal{M}=\left[P z^{m_{0}}\right]$. As in [27, Theorem 3.8] and [28, Lemma 2.5], we can prove that \mathcal{M} is the orthogonal sum of some minimal reducing subspaces. Therefore, we get Theorem 1.2.

Next, we consider the unitary equivalence of L_{m} and $L_{m^{\prime}}$, where $m, m^{\prime} \in \Delta$. Recall that two reducing subspaces M_{1} and M_{2} for T_{φ} are called unitarily equivalent if there exists an operator U on $\mathcal{D}_{\delta}\left(\mathbb{D}^{2}\right)$ such that $\left.U\right|_{M_{1}}$ is unitary from M_{1} onto $M_{2},\left.U\right|_{M_{1}^{\perp}}=0$ and U commutes with both T_{φ} and T_{φ}^{*}. On the basis of the results given in section 2 and section 3 , we can obtain the following results as in [27].

Lemma 4.7 Let $k \neq l\left(k, l \in \mathbb{N}^{2}\right)$. Suppose $m, m^{\prime} \in \Delta$, then the following statements hold:
(i) If $k_{1} l_{2} \neq k_{2} l_{1}$, then L_{m} and $L_{m^{\prime}}$ are unitarily equivalent if and only if $m=m^{\prime}$.
(ii) If $k_{1} l_{2}=k_{2} l_{1}$, then L_{m} and $L_{m^{\prime}}$ are unitarily equivalent if and only if $m^{\prime}=m$ or $m^{\prime}=\left(\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1, \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1\right)$. In particular, if $m^{\prime} \notin \Delta$, then L_{m} and $L_{m^{\prime}}$ are unitarily equivalent if and only if $m^{\prime}=m$.

Proof Let $U \in \mathcal{V}^{*}(\varphi)$ and $\left.U\right|_{L_{m}}$ be unitary from L_{m} onto $L_{m^{\prime}}$. If $Q_{n}(p) \equiv 0$, Lemma 2.3 shows that $m=m^{\prime}$ and $U z^{m}=c z^{m}$ for $c \in \mathbb{C}$. By $\left\|U z^{m}\right\|=\left\|z^{m}\right\|$, we get $c=1$. If $Q_{n}(p) \not \equiv 0$, Lemma 4.6 shows that if $k_{1} l_{2} \neq k_{2} l_{1}$, then $m=m^{\prime}$; if $k_{1} l_{2}=k_{2} l_{1}$, then $m^{\prime} \in$ $\left\{m,\left(\frac{l_{1}}{l_{2}}\left(m_{2}+1\right)-1, \frac{l_{2}}{l_{1}}\left(m_{1}+1\right)-1\right)\right\}$.

Conversely, the sufficiency of (i) is obvious. Set $\left.U\right|_{L_{m}^{\perp}}=0$ and

$$
U\left(\frac{z^{m+i k+j l}}{\sqrt{\omega_{m+i k+j l}}}\right)=\left(\frac{z^{m^{\prime}+i k+j l}}{\sqrt{\omega_{m^{\prime}+i k+j l}}}\right) .
$$

It is easy to check that $\left.U\right|_{L_{m}}$ is unitary from L_{m} onto $L_{m^{\prime}}$. So we get the sufficiency of (ii).
Finally, by above Lemma and [7, Corollary 8.2.6], we can prove Theorem 1.3 as follows.
Proof of Theorem 1.3 If $k_{1} l_{2} \neq k_{2} l_{1}$, then L_{m} and $L_{m^{\prime}}$ are not unitarily equivalent when $m \neq m^{\prime}$. Since the number of elements in Δ is $\left|l_{1} k_{2}-k_{1} l_{2}\right|$, we have $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to $\bigoplus_{i=1}^{j} \mathbb{C}$, where $j=\left|l_{1} k_{2}-l_{2} k_{1}\right|$.

If $k_{1} l_{2}=k_{2} l_{1}$, let $s_{i}=\operatorname{gcd}\left\{k_{i}, l_{i}\right\}, k_{i}=s_{i} p_{i}, l_{i}=s_{i} q_{i}$, for $i=1,2$. Then $p_{1} q_{2}=p_{2} q_{1}$. Since $\operatorname{gcd}\left\{p_{1}, q_{1}\right\}=1, p_{2}=s p_{1}$ for some $s \in \mathbb{Z}_{+}$. Similarly, $q_{1}=t q_{2}$ for some $t \in \mathbb{Z}_{+}$. So $p_{1} q_{2}=s t p_{1} q_{2}$.

It means that $s=t=1$, i.e., $p_{2}=p_{1}$ and $q_{2}=q_{1}$.
Case 1. $s_{1}=s_{2}=r$. Let $m^{\prime}, m \in \Delta$ such that $m^{\prime} \neq m$. Then L_{m} and $L_{m^{\prime}}$ are unitarily equivalent if and only if $m^{\prime}=\left(m_{2}, m_{1}\right)$. So

$$
\begin{gathered}
\left\{\left(m_{1}, m_{2}\right) \in \Delta ; m_{1}=m_{2}=s, s=0,1,2, \ldots, r-1\right\}=\left\{m \in \Delta ; m=m^{\prime}\right\} \\
\left\{m \in \Delta ; m_{1} \neq m_{2}\right\} \subseteq\left\{m \in \Delta ; m^{\prime} \in \Delta, m \neq m^{\prime}\right\}
\end{gathered}
$$

Therefore, $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to $\bigoplus_{j=1}^{\infty} M_{2}(\mathbb{C}) \oplus \bigoplus_{i=1}^{r} \mathbb{C}$.
Case 2. $s_{1} \neq s_{2}$. Without loss of generality, we assume $s_{2}>s_{1}$.

$$
\begin{gathered}
\left\{\left(t s_{1}-1,0\right): t \in \mathbb{N}\right\} \subseteq\left\{m \in \Delta: m^{\prime}=\left(\frac{s_{1}}{s_{2}}-1, t s_{2}-1\right) \notin \Delta\right\} \\
\left\{\left(s_{1}-1, t s_{2}-1\right): t \in \mathbb{N}\right\} \subseteq\left\{m \in \Delta: m^{\prime}=\left(t s_{1}-1, s_{2}-1\right) \in \Delta\right\}
\end{gathered}
$$

Therefore, $\mathcal{V}^{*}(\varphi)$ is $*$-isomorphic to the direct sum of countably many $M_{2}(\mathbb{C}) \oplus \mathbb{C}$.
Acknowledgements The authors thank the reviewers very much for their helpful suggestions which led to the present version of this paper.

References

[1] M. STESSIN, Kehe ZHU. Reducing subspaces of weighted shift operators. Proc. Amer. Math. Soc., 2002, 130(9): 2631-2639.
[2] Shanli SUN, Yuejian WANG. Reducing subspaces of certain analytic Toeplitz operators on the Bergman space. Northeast. Math. J., 1998, 14(2): 147-158.
[3] Kehe ZHU. Reducing subspaces for a class of multiplication operators. J. Lond. Math. Soc., 2000, $62(2)$: 553-568.
[4] Junyun HU, Shunhua SUN, Xianmin XU, et al. Reducing subspace of analytic Toeplitz operators on the Bergman space. Integral Equations Operator Theory, 2004, 49(3): 387-395.
[5] R. G. DOUGLAS, Shunhua SUN, Dechao ZHENG. Multiplication operators on the Bergman space via analytic continuation. Adv. Math., 2011, 226(1): 541-583.
[6] R. G. DOUGLAS, M. PUTINAR, Kai WANG. Reducing subspaces for analytic multipliers of the Bergman space. J. Funct. Anal., 2012, 263(6): 1744-1765.
[7] Kunyu GUO, Hansong HUANG. Multiplication Operators on the Bergman Space. Springer, Heidelberg, 2015.
[8] Liankuo ZHAO. Reducing subspaces for a class of multiplication operators on the Dirichlet space. Proc. Amer. Math. Soc., 2009, $137(9)$: 3091-3097.
[9] Caixing GU, Shuaibing LUO, Jie XIAO. Reducing subspaces of multiplication operators on the Dirichlet space via local inverses and Riemann surfaces. Complex Manifolds, 2017, 4: 84-119.
[10] Shuaibing LUO. Reducing subspaces of multiplication operators on the Dirichlet space. Integral Equations Operator Theory, 2016, 85(4): 539-554.
[11] Caixing GU, Shuaibing LUO. Composition and multiplication operators on the derivative Hardy space $S^{2}(\mathbb{D})$. Complex Var. Elliptic Equ., 2018, 63(5): 599-624.
[12] Yufeng LU, Xiaoyang ZHOU. Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J. Math. Soc. Japan, 2010, 62 (3): 745-765.
[13] Yanyue SHI, Yufeng LU. Reducing subspaces for Toeplitz operators on the polydisk. Bull. Korean Math. Soc., 2013, 50(2): 687-696.
[14] Hongzhao LIN, Yinyin HU, Yufeng LU. Reducing subspaces of Toeplitz operators on the weighted Dirichlet space of the bidisk. Chinese Ann. Math. Ser. A, 2016, 37(3): 311-328. (in Chinese)
[15] Hongzhao LIN. Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk. Turkish J. Math., 2018, 42(1): 227-242.
[16] Hui DAN, Hansong HUANG. Multiplication operators defined by a class of polynomials on $L_{a}^{2}\left(\mathbb{D}^{2}\right)$. Integral Equations Operator Theory, 2014, 80(4): 581-601.
[17] Xudi WANG, Hui DAN, Hansong HUANG. Reducing subspaces of multiplication operators with the symbol $\alpha z^{k}+\beta w^{l}$ on $L_{a}^{2}\left(\mathbb{D}^{2}\right)$. Sci. China Math., 2015, 58(10): 2167-2180.
[18] Kunyu GUO, Xudi WANG. Reducing subspaces of tensor products of weighted shifts. Sci. China Math., 2016, 59(4): 715-730.
[19] Kunyu GUO, Xudi WANG. The graded structure induced by operators on a Hilbert space. J. Math. Soc. Japan., 2018, 70(2): 853-875.
[20] Kunyu GUO, Hansong HUANG. Commutants, Reducing Subspaces and Von Neumann Algebras Associated with Multiplication Operators. CRC Press, Boca Raton, FL, 2019.
[21] Caixing GU. Reducing subspaces of weighted shifts with operator weights. Bull. Korean Math. Soc., 2016, 53(5): 1471-1481.
[22] Caixing GU. Common reducing subspaces of several weighted shifts with operator weights. J. Math. Soc. Japan., 2018, 70(3): 1185-1225.
[23] M. ALBASEER, Yufeng LU, Yanyue SHI. Reducing subspaces for a class of Toeplitz operators on the Bergman space of the bidisk. Bull. Korean Math. Soc., 2015, 52(5): 1649-1660.
[24] Jia DENG, Yufeng LU, Yanyue SHI. Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk. J. Math. Anal. Appl., 2017, 445(1): 784-796.
[25] Caixing GU. Reducing subspaces of non-analytic Toeplitz operators on weighted Hardy and Dirichlet spaces of the bidisk. J. Math. Anal. Appl., 2018, 459(2): 980-996.
[26] Xu TANG, Caixing GU, Yufeng LU, et al. Reducing subspaces for the product of a forward and a backward operator-weighted shifts. J. Math. Anal. Appl., 2021, 501(2): 125206.
[27] Jia DENG, Yufeng LU, Yanyue SHI, et al. Reducing subspaces for a class of non-analytic Toeplitz operators. Banach J. Math. Anal. Appl., 2018, 12(2): 456-480.
[28] Rebo KOU, Yanyue SHI, Xiaoping XU. Reducing subspaces of weighted shift operators on weighted Hardy space. Sci Sin Math, doi: 10.1360/SSM-2020-0076. (in Chinese)

[^0]: Received October 14, 2020; Accepted January 28, 2021
 Supported by Fundamental Research Funds for the Central Universities (Grant No. 201964007) and the National Natural Science Foundation of China (Grant Nos. 11701537; 12071253).

 * Corresponding author

 E-mail address: renbian0908@163.com (Bian REN); shiyanyue@163.com (Yanyue SHI)

