Journal of Mathematical Research with Applications Sept., 2021, Vol. 41, No. 5, pp. 531–536 DOI:10.3770/j.issn:2095-2651.2021.05.008 Http://jmre.dlut.edu.cn

Characterizations of Additive Jordan Left *-Derivations on C^* -Algebras

Ying YAO, Guangyu AN*

Department of Mathematics, Shaanxi University of Science and Technology, Shaanxi 710021, P. R. China

Abstract An additive mapping δ from a *-algebra \mathcal{A} into a left \mathcal{A} -module \mathcal{M} is called an additive Jordan left *-derivation if $\delta(A^2) = A\delta(A) + A^*\delta(A)$ for every A in \mathcal{A} . In this paper, we prove that every additive Jordan left *-derivation from a complex unital C^* -algebra into its unital Banach left module is equal to zero. An additive mapping δ from a *-algebra \mathcal{A} into a left \mathcal{A} -module \mathcal{M} is called left *-derivable at G in \mathcal{A} if $\delta(AB) = A\delta(B) + B^*\delta(A)$ for each A, B in \mathcal{A} with AB = G. We prove that every continuous additive left *-derivable mapping at the unit element I from a complex unital C^* -algebra into its unital Banach left module is equal to zero.

 ${ { { Keywords } } } additive mapping; Jordan left *-derivation; left *-derivable mapping; C^*-algebra }$

MR(2020) Subject Classification 47B47; 47C15

1. Introduction

Let \mathcal{R} be an associative ring. By an involution on \mathcal{R} , we mean a mapping * from \mathcal{R} into itself, such that $(AB)^* = B^*A^*$ and $(A^*)^* = A$ for each A, B in \mathcal{R} . A ring equipped with an involution is called a *-ring. In [1], Brešar and Vukman gave the concept of additive Jordan *-derivations. An additive mapping δ from a *-ring \mathcal{R} into its bimodule \mathcal{M} is called an additive Jordan *-derivation if

$$\delta(A^2) = \delta(A)A^* + A\delta(A)$$

for every A in \mathcal{R} . It is easy to show that an additive mapping δ from a *-algebra \mathcal{A} into its bimodule \mathcal{M} is an additive Jordan *-derivation if and only if

$$\delta(AB) = \delta(A)B^* + A\delta(B) + \delta(B)A^* + B\delta(A)$$

for each A, B in \mathcal{A} .

The study of additive Jordan *-derivations has been motivated by the problem of the representability of quasi-quadratic functionals by sesquilinear ones. It turns out that the question of

* Corresponding author

Received July 25, 2020; Accepted April 27, 2021

Supported by the National Natural Science Foundation of China (Grant No. 11801342), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693) and the Scientific Research Plan Projects of Shannxi Education Department (Grant No. 19JK0130).

E-mail address: anguangyu310@163.com (Guangyu AN)

whether each quasi-quadratic functional is generated by some sesquilinear functional is intimately connected with the structure of additive Jordan *-derivations. For the results concerning this problem we refer to [2–6].

In [1], the authors studied some algebraic properties of additive Jordan *-derivations. As a special case of [1, Theorem 1], we know that every additive Jordan *-derivation δ from a complex unital *-algebra \mathcal{A} into itself is of the form $\delta(A) = TA^* - AT$ for some T in \mathcal{A} . For non-unital *-algebras, Brešar and Zalar [7] proved that every additive Jordan *-derivation δ from an algebra of all compact linear operators on a complex Hilbert space \mathcal{H} into itself is of the form $\delta(A) = TA^* - AT$ for some T in $B(\mathcal{H})$. But it is also an open question whether above result in [7] remains true in the real case.

Roughly speaking, it is much more difficult to study additive Jordan *-derivations on real algebras than on complex algebras.

Nevertheless, Šemrl [8] proved that every additive Jordan *-derivation on $B(\mathcal{H})$ is of the form $\delta(A) = TA^* - AT$ for some T in $B(\mathcal{H})$, where \mathcal{H} is a real Hilbert space with dim $\mathcal{H} > 1$, and in [7], the authors gave a new proof of this result. Šemrl [9] showed that every additive Jordan *-derivation from a standard operator algebra \mathcal{A} on \mathcal{H} into $B(\mathcal{H})$ is of the form $\delta(A) = TA^* - AT$ for some T in $B(\mathcal{H})$, where \mathcal{H} is a real or complex Hilbert space with dim $\mathcal{H} > 1$.

Inspired by the definition of additive Jordan *-derivations, Ali et al. [10] gave the definitions of additive left *-derivations and additive Jordan left *-derivations. Suppose that \mathcal{R} is a *-ring and \mathcal{M} is a left \mathcal{R} -module. An additive mapping δ from \mathcal{R} into \mathcal{M} is called an additive left *-derivation if

$$\delta(AB) = A\delta(B) + B^*\delta(A)$$

for each A, B in \mathcal{R} ; δ is called an additive Jordan left *-derivation if

$$\delta(A^2) = A\delta(A) + A^*\delta(A)$$

for every A in \mathcal{R} . Obviously, every additive left *-derivation is an additive Jordan left *derivation. The converse is, in general, not true. Ali et al. [10] proved that every additive left *-derivation from a noncommutative prime *-ring into itself is equal to zero.

This paper is organized as follows. In Section 2, we prove that every additive Jordan left *-derivation from a complex unital C^* -algebra into its Banach left module is equal to zero.

An additive mapping δ from a *-algebra \mathcal{A} into a left \mathcal{A} -module \mathcal{M} is called left *-derivable at G in \mathcal{A} if

$$\delta(AB) = A\delta(B) + B^*\delta(A)$$

for each A, B in \mathcal{A} with AB = G.

In Section 3, we suppose that \mathcal{A} is a complex unital C^* -algebra and \mathcal{M} is a unital left \mathcal{A} -module, and we show that every continuous additive left *-derivable mapping at the unit element I in \mathcal{A} is equal to zero.

2. Jordan left *-derivations

Characterizations of additive Jordan left *-derivations on C^* -algebras

The following lemma will be used repeatedly in this section.

Lemma 2.1 Let \mathcal{A} be a *-algebra and \mathcal{M} be a left \mathcal{A} -module. If δ is an additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} , then for each A, B in \mathcal{A} , we have that

$$\delta(AB + BA) = (A + A^*)\delta(B) + (B + B^*)\delta(A).$$

Proof By the definition of additive Jordan left *-derivations, we can obtain that

$$\delta((A+B)^2) = (A+B)\delta(A+B) + (A+B)^*\delta(A+B)$$

for each A, B in \mathcal{A} . By a simple calculation, it follows that

$$\delta(AB + BA) = (A + A^*)\delta(B) + (B + B^*)\delta(A)$$

for each A, B in \mathcal{A} . \Box

Proposition 2.2 Let \mathcal{A} be a complex unital *-algebra and \mathcal{M} be a unital left \mathcal{A} -module. If δ is an additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} , then $\delta(A) = \frac{i}{2}(A^* - A)\delta(i)$ for every A in \mathcal{A} .

Proof By Lemma 2.1, we have that

$$2\delta(A) = \delta(2A) = \delta(i(-iA) + (-iA)i) = (-iA + iA^*)\delta(i) = i(A^* - A)\delta(i)$$

for every A in \mathcal{A} . \Box

By Proposition 2.2, we can obtain the following two results immediately.

Corollary 2.3 Let \mathcal{A} be a complex unital *-algebra and \mathcal{M} be a unital left \mathcal{A} -module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is real linear.

Corollary 2.4 Let \mathcal{A} be a complex unital C^* -algebra and \mathcal{M} be a unital Banach left \mathcal{A} -module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is automatically continuous.

The following theorem is the main result in this section.

Theorem 2.5 Let \mathcal{A} be a complex unital C^* -algebra and \mathcal{M} be a unital Banach left \mathcal{A} -module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is equal to zero.

Proof Denote by $\mathcal{A}^{\sharp\sharp}$ and $\mathcal{M}^{\sharp\sharp}$ the second dual space of \mathcal{A} and \mathcal{M} , respectively.

It is well known that $\mathcal{M}^{\sharp\sharp}$ turns into a Banach left $(\mathcal{A}^{\sharp\sharp}, \diamond)$ -module with the operation defined by

$$A^{\sharp\sharp} \cdot M^{\sharp\sharp} = \lim_{\lambda} \lim_{\mu} A_{\lambda} M_{\mu}$$

for every $A^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$ and every $M^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$, where (A_{λ}) is a net in \mathcal{A} with $||A_{\lambda}|| \leq ||A^{\sharp\sharp}||$ and $(A_{\lambda}) \to A^{\sharp\sharp}$ in the weak*-topology $\sigma(\mathcal{A}^{\sharp\sharp}, \mathcal{A}^{\sharp}), (M_{\mu})$ is a net in \mathcal{M} with $||M_{\mu}|| \leq ||M^{\sharp\sharp}||$ and $(M_{\mu}) \to M^{\sharp\sharp}$ in the weak*-topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$.

By [11, p. 26], we can define a product \diamond in $\mathcal{A}^{\sharp\sharp}$ by $A^{\sharp\sharp} \diamond B^{\sharp\sharp} = \lim_{\lambda} \lim_{\mu} A_{\lambda} B_{\mu}$ for each $A^{\sharp\sharp}$, $B^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$, where (A_{λ}) and (B_{μ}) are two nets in \mathcal{A} with $||A_{\lambda}|| \leq ||A^{\sharp\sharp}||$ and $||B_{\mu}|| \leq ||B^{\sharp\sharp}||$, such

533

that $A_{\lambda} \to A^{\sharp\sharp}$ and $B_{\mu} \to B^{\sharp\sharp}$ in the weak*-topology $\sigma(\mathcal{A}^{\sharp\sharp}, \mathcal{A}^{\sharp})$. Moreover, we can define an involution * in $\mathcal{A}^{\sharp\sharp}$ by

$$(A^{\sharp\sharp})^*(\rho) = \overline{A^{\sharp\sharp}(\rho^*)}, \quad \rho^*(A) = \overline{\rho(A^*)},$$

where $A^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$, ρ in A^{\sharp} and A in \mathcal{A} . By [12, p. 726], we know that $\mathcal{A}^{\sharp\sharp}$ is *-isomorphic to a von Neumann algebra under the product \diamond and the involution *, and so we may assume that $(\mathcal{A}^{\sharp\sharp}, \diamond)$ is a complex von Neumann algebra.

By Corollary 2.4, we know that $\delta^{\sharp\sharp} : (\mathcal{A}^{\sharp\sharp}, \diamond) \to \mathcal{M}^{\sharp\sharp}$ is the complex linear and weak*continuous extension of δ to the double duals of \mathcal{A} and \mathcal{M} .

Let $A^{\sharp\sharp}$ be in $\mathcal{A}^{\sharp\sharp}$, and let (A_{λ}) be a net in \mathcal{A} with $||A_{\lambda}|| \leq ||A^{\sharp\sharp}||$ and $A^{\sharp\sharp} = \lim_{\lambda} A_{\lambda}$ in $\sigma(\mathcal{A}^{\sharp\sharp}, \mathcal{A}^{\sharp})$. We have that

$$\delta^{\sharp\sharp}(A^{\sharp\sharp} \diamond A^{\sharp\sharp}) = \delta^{\sharp\sharp}(\lim_{\lambda} \lim_{\lambda} A_{\lambda}A_{\lambda}) = \lim_{\lambda} \lim_{\lambda} \delta(A_{\lambda}A_{\lambda})$$
$$= \lim_{\lambda} \lim_{\lambda} A_{\lambda}\delta(A_{\lambda}) + \lim_{\lambda} \lim_{\lambda} A_{\lambda}^{*}\delta(A_{\lambda})$$
$$= A^{\sharp\sharp}\delta^{\sharp\sharp}(A^{\sharp\sharp}) + (A^{\sharp\sharp})^{*}\delta^{\sharp\sharp}(A^{\sharp\sharp}).$$

It means that $\delta^{\sharp\sharp}$ is a Jordan left *-derivation from $\mathcal{A}^{\sharp\sharp}$ into $\mathcal{M}^{\sharp\sharp}$.

It is well known that every element $A^{\sharp\sharp}$ in complex von Neumann algebra $\mathcal{A}^{\sharp\sharp}$ can be expressed in the form $H^{\sharp\sharp} + iK^{\sharp\sharp}$, where $H^{\sharp\sharp}, K^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$ with $H^{\sharp\sharp} = (H^{\sharp\sharp})^*$ and $K^{\sharp\sharp} = (K^{\sharp\sharp})^*$. Since $\delta^{\sharp\sharp}$ is a complex linear mapping, and by Proposition 2.2, it is easy to show that

$$\delta^{\sharp\sharp}(A^{\sharp\sharp}) = 0$$

for every $A^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$; hence $\delta(A) = 0$ for every A in \mathcal{A} . \Box

3. Left *-derivable mappings

Recall an additive mapping δ from a *-algebra \mathcal{A} into a left \mathcal{A} -module \mathcal{M} is an additive left *-derivable mapping at G in \mathcal{A} if $\delta(AB) = A\delta(B) + B^*\delta(A)$ for each A, B in \mathcal{A} with AB = G.

For a unital algebra \mathcal{A} and a unital left \mathcal{A} -module \mathcal{M} , we call an element W in \mathcal{A} a left separating point of \mathcal{M} if WM = 0 implies M = 0 for every M in \mathcal{M} . It is easy to see that every left invertible element in \mathcal{A} is a left separating point of \mathcal{M} .

Theorem 3.1 Suppose that \mathcal{A} is a complex unital C^* -algebra, \mathcal{M} is a unital Banach left \mathcal{A} module and G is a left separating point of \mathcal{M} . If $G\mathcal{A} = \mathcal{A}G$ for every \mathcal{A} in \mathcal{A} and δ is a continuous
additive left *-derivable mapping at G from \mathcal{A} into \mathcal{M} , then δ is equal to zero.

Proof Since GI = G, it follows that $G\delta(I) + \delta(G) = \delta(G)$. By the definition of the left separating point, we know that $\delta(I) = 0$.

Let A be a non-zero element in \mathcal{A} . It is well known that I - tA is invertible in \mathcal{A} for every t in \mathbb{R} with $|t| < ||A||^{-1}$, and we have that

$$(I - tA)^{-1} = \sum_{n=0}^{\infty} (tA)^n = \sum_{n=0}^{\infty} t^n A^n.$$
(3.1)

534

Characterizations of additive Jordan left *-derivations on C^* -algebras

Since δ is a continuous additive mapping, it is easy to prove that δ is real linear. Thus $\delta(t^n B) = t^n \delta(B)$ for every B in \mathcal{A} and every positive integer n.

By $G(I - tA)(I - tA)^{-1} = G$, we can obtain that

$$(G - tGA)\delta((I - tA)^{-1}) + (I - tA^*)^{-1}\delta(G - tGA) = \delta(G)$$

By (2.1) we have that

$$(G - tGA)\delta(\sum_{n=0}^{\infty} t^n A^n) + \sum_{n=0}^{\infty} t^n (A^*)^n \delta(G - tGA) = \delta(G).$$

Since δ is a continuous additive mapping, it follows that

$$\begin{split} \delta(G) &= \sum_{n=0}^{\infty} t^n G \delta(A^n) - \sum_{n=0}^{\infty} t^{n+1} G A \delta(A^n) + \sum_{n=0}^{\infty} t^n (A^*)^n \delta(G) - \\ &\sum_{n=0}^{\infty} t^{n+1} (A^*)^n \delta(GA) \\ &= \sum_{n=1}^{\infty} t^n [G \delta(A^n) - G A \delta(A^{n-1}) + (A^*)^n \delta(G) - (A^*)^{n-1} \delta(GA)] + \\ &G \delta(I) + \delta(G). \end{split}$$

By $\delta(I) = 0$, it implies that

$$\sum_{n=1}^{\infty} t^n [G\delta(A^n) - GA\delta(A^{n-1}) + (A^*)^n \delta(G) - (A^*)^{n-1} \delta(GA)] = 0$$

for every t in \mathbb{R} with $|t| < ||A||^{-1}$. Consequently,

$$G\delta(A^n) - GA\delta(A^{n-1}) + (A^*)^n \delta(G) - (A^*)^{n-1} \delta(GA) = 0$$
(3.2)

for all n = 1, 2, ... In particular, choose n = 1 and n = 2 in (3.2), respectively, we have the following two identities:

$$G\delta(A) + A^*\delta(G) - \delta(GA) = 0 \tag{3.3}$$

and

$$G\delta(A^2) - GA\delta(A) + (A^*)^2\delta(G) - A^*\delta(GA) = 0.$$
(3.4)

Comparing (3.3) and (3.4), we can obtain that

$$G\delta(A^2) - GA\delta(A) - A^*G\delta(A) = 0.$$

Since GA = AG and by the definition of the left separating point, we have that

$$\delta(A^2) = A\delta(A) + A^*\delta(A).$$

Thus δ is a Jordan left *-derivation. By Theorem 2.5, we know that $\delta \equiv 0$. \Box

Corollary 3.2 Suppose that \mathcal{A} is a complex unital C^* -algebra and \mathcal{M} is a unital Banach left \mathcal{A} -module. If δ is a continuous additive left *-derivable mapping at I from \mathcal{A} into \mathcal{M} , then $\delta \equiv 0$.

Acknowledgements We thank the referees for their time and comments.

References

- M. BREŠAR, J. VUKMAN. On some additive mappings in rings with involution. Acquationes Math., 1989, 38(2-3): 178–185.
- [2] S. KUREPA. Quadratic and sesquilinear functionals. Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II, 1965, 20: 79–92.
- [3] P. ŠEMRL. On quadratic functionals. Bull. Austral. Math. Soc., 1988, **37**(1): 27–28.
- [4] P. ŠEMRL. Quadratic functionals and Jordan *-derivations. Studia Math., 1991, 97(3): 157–165.
- [5] P. VRBOVÁ. Quadratic functionals and bilinear forms. Časopis Pěst. Mat., 1973, 98: 159–161.
- J. VUKMAN. Some functional equations in Banach algebras and an application. Proc. Amer. Math. Soc., 1987, 100(1): 133–136.
- [7] M. BREŠAR, B. ZALAR. On the structure of Jordan *-derivations. Colloq. Math., 1992, 63(2): 163–171.
- [8] P. ŠEMRL. On Jordan *-derivations and an application. Colloq. Math., 1990, 59(2): 241-251.
- [9] P. ŠEMRL. Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc., 1994, 120(2): 515-518.
- [10] S. ALI, N. DAR, D. PAGON. On Jordan *-mappings in rings with involution. J. Egyptian Math. Soc., 2016, 24(1): 15–19.
- [11] H. DALES, F. GHAHRAMANI, N. GRØNBÆK. Derivations into iterated duals of Banach algebra. Studia Math., 1998, 128(1): 19–54.
- [12] R. KADISON, J. RINGROSE. Fundamentals of the Theory of Operator Algebras (I). Academic Press, Inc., New York, 1983.

536