Characterizations of Additive Jordan Left $*$-Derivations on C^{*}-Algebras

Ying YAO, Guangyu AN*
Department of Mathematics, Shaanxi University of Science and Technology, Shaanxi 710021, P. R. China

Abstract

An additive mapping δ from a $*$-algebra \mathcal{A} into a left \mathcal{A}-module \mathcal{M} is called an additive Jordan left $*$-derivation if $\delta\left(A^{2}\right)=A \delta(A)+A^{*} \delta(A)$ for every A in \mathcal{A}. In this paper, we prove that every additive Jordan left $*$-derivation from a complex unital C^{*}-algebra into its unital Banach left module is equal to zero. An additive mapping δ from a $*$-algebra \mathcal{A} into a left \mathcal{A}-module \mathcal{M} is called left $*$-derivable at G in \mathcal{A} if $\delta(A B)=A \delta(B)+B^{*} \delta(A)$ for each A, B in \mathcal{A} with $A B=G$. We prove that every continuous additive left $*$-derivable mapping at the unit element I from a complex unital C^{*}-algebra into its unital Banach left module is equal to zero.

Keywords additive mapping; Jordan left *-derivation; left *-derivable mapping; C^{*}-algebra
MR(2020) Subject Classification 47B47; 47C15

1. Introduction

Let \mathcal{R} be an associative ring. By an involution on \mathcal{R}, we mean a mapping $*$ from \mathcal{R} into itself, such that $(A B)^{*}=B^{*} A^{*}$ and $\left(A^{*}\right)^{*}=A$ for each A, B in \mathcal{R}. A ring equipped with an involution is called a $*$-ring. In [1], Brešar and Vukman gave the concept of additive Jordan *-derivations. An additive mapping δ from a $*$-ring \mathcal{R} into its bimodule \mathcal{M} is called an additive Jordan *-derivation if

$$
\delta\left(A^{2}\right)=\delta(A) A^{*}+A \delta(A)
$$

for every A in \mathcal{R}. It is easy to show that an additive mapping δ from a $*$-algebra \mathcal{A} into its bimodule \mathcal{M} is an additive Jordan $*$-derivation if and only if

$$
\delta(A B)=\delta(A) B^{*}+A \delta(B)+\delta(B) A^{*}+B \delta(A)
$$

for each A, B in \mathcal{A}.
The study of additive Jordan *-derivations has been motivated by the problem of the representability of quasi-quadratic functionals by sesquilinear ones. It turns out that the question of

[^0]whether each quasi-quadratic functional is generated by some sesquilinear functional is intimately connected with the structure of additive Jordan $*$-derivations. For the results concerning this problem we refer to [2-6].

In [1], the authors studied some algebraic properties of additive Jordan $*$-derivations. As a special case of [1, Theorem 1], we know that every additive Jordan $*$-derivation δ from a complex unital $*$-algebra \mathcal{A} into itself is of the form $\delta(A)=T A^{*}-A T$ for some T in \mathcal{A}. For non-unital $*$-algebras, Brešar and Zalar [7] proved that every additive Jordan $*$-derivation δ from an algebra of all compact linear operators on a complex Hilbert space \mathcal{H} into itself is of the form $\delta(A)=T A^{*}-A T$ for some T in $B(\mathcal{H})$. But it is also an open question whether above result in [7] remains true in the real case.

Roughly speaking, it is much more difficult to study additive Jordan $*$-derivations on real algebras than on complex algebras.

Nevertheless, Šemrl [8] proved that every additive Jordan $*$-derivation on $B(\mathcal{H})$ is of the form $\delta(A)=T A^{*}-A T$ for some T in $B(\mathcal{H})$, where \mathcal{H} is a real Hilbert space with $\operatorname{dim} \mathcal{H}>1$, and in [7], the authors gave a new proof of this result. Šemrl [9] showed that every additive Jordan *-derivation from a standard operator algebra \mathcal{A} on \mathcal{H} into $B(\mathcal{H})$ is of the form $\delta(A)=T A^{*}-A T$ for some T in $B(\mathcal{H})$, where \mathcal{H} is a real or complex Hilbert space with $\operatorname{dim} \mathcal{H}>1$.

Inspired by the definition of additive Jordan $*$-derivations, Ali et al. [10] gave the definitions of additive left $*$-derivations and additive Jordan left $*$-derivations. Suppose that \mathcal{R} is a $*$-ring and \mathcal{M} is a left \mathcal{R}-module. An additive mapping δ from \mathcal{R} into \mathcal{M} is called an additive left *-derivation if

$$
\delta(A B)=A \delta(B)+B^{*} \delta(A)
$$

for each A, B in $\mathcal{R} ; \delta$ is called an additive Jordan left $*$-derivation if

$$
\delta\left(A^{2}\right)=A \delta(A)+A^{*} \delta(A)
$$

for every A in \mathcal{R}. Obviously, every additive left $*$-derivation is an additive Jordan left $*-$ derivation. The converse is, in general, not true. Ali et al. [10] proved that every additive left $*$-derivation from a noncommutative prime $*$-ring into itself is equal to zero.

This paper is organized as follows. In Section 2, we prove that every additive Jordan left *-derivation from a complex unital C^{*}-algebra into its Banach left module is equal to zero.

An additive mapping δ from a $*$-algebra \mathcal{A} into a left \mathcal{A}-module \mathcal{M} is called left $*$-derivable at G in \mathcal{A} if

$$
\delta(A B)=A \delta(B)+B^{*} \delta(A)
$$

for each A, B in \mathcal{A} with $A B=G$.
In Section 3, we suppose that \mathcal{A} is a complex unital C^{*}-algebra and \mathcal{M} is a unital left \mathcal{A} module, and we show that every continuous additive left $*$-derivable mapping at the unit element I in \mathcal{A} is equal to zero.

2. Jordan left $*$-derivations

The following lemma will be used repeatedly in this section.
Lemma 2.1 Let \mathcal{A} be a $*$-algebra and \mathcal{M} be a left \mathcal{A}-module. If δ is an additive Jordan left *-derivation from \mathcal{A} into \mathcal{M}, then for each A, B in \mathcal{A}, we have that

$$
\delta(A B+B A)=\left(A+A^{*}\right) \delta(B)+\left(B+B^{*}\right) \delta(A)
$$

Proof By the definition of additive Jordan left $*$-derivations, we can obtain that

$$
\delta\left((A+B)^{2}\right)=(A+B) \delta(A+B)+(A+B)^{*} \delta(A+B)
$$

for each A, B in \mathcal{A}. By a simple calculation, it follows that

$$
\delta(A B+B A)=\left(A+A^{*}\right) \delta(B)+\left(B+B^{*}\right) \delta(A)
$$

for each A, B in \mathcal{A}.
Proposition 2.2 Let \mathcal{A} be a complex unital $*$-algebra and \mathcal{M} be a unital left \mathcal{A}-module. If δ is an additive Jordan left $*$-derivation from \mathcal{A} into \mathcal{M}, then $\delta(A)=\frac{i}{2}\left(A^{*}-A\right) \delta(i)$ for every A in \mathcal{A}.

Proof By Lemma 2.1, we have that

$$
2 \delta(A)=\delta(2 A)=\delta(i(-i A)+(-i A) i)=\left(-i A+i A^{*}\right) \delta(i)=i\left(A^{*}-A\right) \delta(i)
$$

for every A in \mathcal{A}.
By Proposition 2.2, we can obtain the following two results immediately.
Corollary 2.3 Let \mathcal{A} be a complex unital $*$-algebra and \mathcal{M} be a unital left \mathcal{A}-module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is real linear.

Corollary 2.4 Let \mathcal{A} be a complex unital C^{*}-algebra and \mathcal{M} be a unital Banach left \mathcal{A}-module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is automatically continuous.

The following theorem is the main result in this section.
Theorem 2.5 Let \mathcal{A} be a complex unital C^{*}-algebra and \mathcal{M} be a unital Banach left \mathcal{A}-module. Then every additive Jordan left *-derivation from \mathcal{A} into \mathcal{M} is equal to zero.

Proof Denote by $\mathcal{A}^{\sharp \sharp}$ and $\mathcal{M}^{\sharp \#}$ the second dual space of \mathcal{A} and \mathcal{M}, respectively.
It is well known that $\mathcal{M}^{\sharp \sharp}$ turns into a Banach left $\left(\mathcal{A}^{\sharp \#}, \diamond\right)$-module with the operation defined by

$$
A^{\sharp \sharp} \cdot M^{\sharp \#}=\lim _{\lambda} \lim _{\mu} A_{\lambda} M_{\mu}
$$

for every $A^{\sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}$ and every $M^{\sharp \sharp}$ in $\mathcal{M}^{\sharp \sharp}$, where $\left(A_{\lambda}\right)$ is a net in \mathcal{A} with $\left\|A_{\lambda}\right\| \leqslant\left\|A^{\sharp \sharp \|}\right\|$ and $\left(A_{\lambda}\right) \rightarrow A^{\sharp \sharp}$ in the weak*-topology $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right),\left(M_{\mu}\right)$ is a net in \mathcal{M} with $\left\|M_{\mu}\right\| \leqslant\left\|M^{\sharp \sharp}\right\|$ and $\left(M_{\mu}\right) \rightarrow M^{\sharp \sharp}$ in the weak ${ }^{*}$-topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$.

By [11, p. 26], we can define a product \diamond in $\mathcal{A}^{\sharp \sharp}$ by $A^{\sharp \sharp} \diamond B^{\sharp \sharp}=\lim _{\lambda} \lim _{\mu} A_{\lambda} B_{\mu}$ for each $A^{\sharp \sharp}$, $B^{\sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}$, where $\left(A_{\lambda}\right)$ and $\left(B_{\mu}\right)$ are two nets in \mathcal{A} with $\left\|A_{\lambda}\right\| \leqslant\left\|A^{\sharp \sharp}\right\|$ and $\left\|B_{\mu}\right\| \leqslant\left\|B^{\sharp \sharp}\right\|$, such
that $A_{\lambda} \rightarrow A^{\sharp \sharp}$ and $B_{\mu} \rightarrow B^{\sharp \sharp}$ in the weak*-topology $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$. Moreover, we can define an involution $*$ in $\mathcal{A}^{\sharp \#}$ by

$$
\left(A^{\sharp \sharp}\right)^{*}(\rho)=\overline{A^{\text {\#\# }}\left(\rho^{*}\right)}, \quad \rho^{*}(A)=\overline{\rho\left(A^{*}\right)},
$$

where $A^{\sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}, \rho$ in A^{\sharp} and A in \mathcal{A}. By [12, p. 726], we know that $\mathcal{A}^{\sharp \#}$ is $*$-isomorphic to a von Neumann algebra under the product \diamond and the involution $*$, and so we may assume that $\left(\mathcal{A}^{\sharp \sharp}, \diamond\right)$ is a complex von Neumann algebra.

By Corollary 2.4, we know that $\delta^{\sharp \#}:\left(\mathcal{A}^{\sharp \#}, \diamond\right) \rightarrow \mathcal{M}^{\sharp \#}$ is the complex linear and weak*continuous extension of δ to the double duals of \mathcal{A} and \mathcal{M}.

Let $A^{\sharp \#}$ be in $\mathcal{A}^{\sharp \sharp}$, and let $\left(A_{\lambda}\right)$ be a net in \mathcal{A} with $\left\|A_{\lambda}\right\| \leqslant\left\|A^{\sharp \sharp}\right\|$ and $A^{\sharp \#}=\lim _{\lambda} A_{\lambda}$ in $\sigma\left(\mathcal{A}^{\sharp \#}, \mathcal{A}^{\sharp}\right)$. We have that

$$
\begin{aligned}
\delta^{\sharp \sharp}\left(A^{\sharp \sharp} \diamond A^{\sharp \sharp}\right) & =\delta^{\sharp \#}\left(\lim _{\lambda} \lim _{\lambda} A_{\lambda} A_{\lambda}\right)=\lim _{\lambda} \lim _{\lambda} \delta\left(A_{\lambda} A_{\lambda}\right) \\
& =\lim _{\lambda} \lim _{\lambda} A_{\lambda} \delta\left(A_{\lambda}\right)+\lim _{\lambda} \lim _{\lambda} A_{\lambda}^{*} \delta\left(A_{\lambda}\right) \\
& =A^{\sharp \sharp \delta^{\sharp \#}}\left(A^{\sharp \sharp}\right)+\left(A^{\sharp \sharp}\right)^{*} \delta^{\sharp \#}\left(A^{\sharp \sharp}\right) .
\end{aligned}
$$

It means that $\delta^{\sharp \#}$ is a Jordan left $*$-derivation from $\mathcal{A}^{\sharp \#}$ into $\mathcal{M}^{\sharp \#}$.
It is well known that every element $A^{\sharp \sharp}$ in complex von Neumann algebra $\mathcal{A}^{\sharp \sharp}$ can be expressed in the form $H^{\sharp \sharp}+i K^{\sharp \sharp}$, where $H^{\sharp \sharp}, K^{\sharp \#}$ in $\mathcal{A}^{\sharp \sharp}$ with $H^{\sharp \sharp}=\left(H^{\sharp \sharp}\right)^{*}$ and $K^{\sharp \sharp}=\left(K^{\sharp \sharp}\right)^{*}$. Since $\delta^{\sharp \#}$ is a complex linear mapping, and by Proposition 2.2, it is easy to show that

$$
\delta^{\sharp \sharp}\left(A^{\sharp \sharp}\right)=0
$$

for every $A^{\sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}$; hence $\delta(A)=0$ for every A in \mathcal{A}.

3. Left *-derivable mappings

Recall an additive mapping δ from a $*$-algebra \mathcal{A} into a left \mathcal{A}-module \mathcal{M} is an additive left *-derivable mapping at G in \mathcal{A} if $\delta(A B)=A \delta(B)+B^{*} \delta(A)$ for each A, B in \mathcal{A} with $A B=G$.

For a unital algebra \mathcal{A} and a unital left \mathcal{A}-module \mathcal{M}, we call an element W in \mathcal{A} a left separating point of \mathcal{M} if $W M=0$ implies $M=0$ for every M in \mathcal{M}. It is easy to see that every left invertible element in \mathcal{A} is a left separating point of \mathcal{M}.

Theorem 3.1 Suppose that \mathcal{A} is a complex unital C^{*}-algebra, \mathcal{M} is a unital Banach left \mathcal{A} module and G is a left separating point of \mathcal{M}. If $G A=A G$ for every A in \mathcal{A} and δ is a continuous additive left *-derivable mapping at G from \mathcal{A} into \mathcal{M}, then δ is equal to zero.
Proof Since $G I=G$, it follows that $G \delta(I)+\delta(G)=\delta(G)$. By the definition of the left separating point, we know that $\delta(I)=0$.

Let A be a non-zero element in \mathcal{A}. It is well known that $I-t A$ is invertible in \mathcal{A} for every t in \mathbb{R} with $|t|<\|A\|^{-1}$, and we have that

$$
\begin{equation*}
(I-t A)^{-1}=\sum_{n=0}^{\infty}(t A)^{n}=\sum_{n=0}^{\infty} t^{n} A^{n} \tag{3.1}
\end{equation*}
$$

Since δ is a continuous additive mapping, it is easy to prove that δ is real linear. Thus $\delta\left(t^{n} B\right)=t^{n} \delta(B)$ for every B in \mathcal{A} and every positive integer n.

By $G(I-t A)(I-t A)^{-1}=G$, we can obtain that

$$
(G-t G A) \delta\left((I-t A)^{-1}\right)+\left(I-t A^{*}\right)^{-1} \delta(G-t G A)=\delta(G)
$$

By (2.1) we have that

$$
(G-t G A) \delta\left(\sum_{n=0}^{\infty} t^{n} A^{n}\right)+\sum_{n=0}^{\infty} t^{n}\left(A^{*}\right)^{n} \delta(G-t G A)=\delta(G)
$$

Since δ is a continuous additive mapping, it follows that

$$
\begin{aligned}
\delta(G)= & \sum_{n=0}^{\infty} t^{n} G \delta\left(A^{n}\right)-\sum_{n=0}^{\infty} t^{n+1} G A \delta\left(A^{n}\right)+\sum_{n=0}^{\infty} t^{n}\left(A^{*}\right)^{n} \delta(G)- \\
& \sum_{n=0}^{\infty} t^{n+1}\left(A^{*}\right)^{n} \delta(G A) \\
= & \sum_{n=1}^{\infty} t^{n}\left[G \delta\left(A^{n}\right)-G A \delta\left(A^{n-1}\right)+\left(A^{*}\right)^{n} \delta(G)-\left(A^{*}\right)^{n-1} \delta(G A)\right]+ \\
& G \delta(I)+\delta(G) .
\end{aligned}
$$

By $\delta(I)=0$, it implies that

$$
\sum_{n=1}^{\infty} t^{n}\left[G \delta\left(A^{n}\right)-G A \delta\left(A^{n-1}\right)+\left(A^{*}\right)^{n} \delta(G)-\left(A^{*}\right)^{n-1} \delta(G A)\right]=0
$$

for every t in \mathbb{R} with $|t|<\|A\|^{-1}$. Consequently,

$$
\begin{equation*}
G \delta\left(A^{n}\right)-G A \delta\left(A^{n-1}\right)+\left(A^{*}\right)^{n} \delta(G)-\left(A^{*}\right)^{n-1} \delta(G A)=0 \tag{3.2}
\end{equation*}
$$

for all $n=1,2, \ldots$. In particular, choose $n=1$ and $n=2$ in (3.2), respectively, we have the following two identities:

$$
\begin{equation*}
G \delta(A)+A^{*} \delta(G)-\delta(G A)=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G \delta\left(A^{2}\right)-G A \delta(A)+\left(A^{*}\right)^{2} \delta(G)-A^{*} \delta(G A)=0 \tag{3.4}
\end{equation*}
$$

Comparing (3.3) and (3.4), we can obtain that

$$
G \delta\left(A^{2}\right)-G A \delta(A)-A^{*} G \delta(A)=0
$$

Since $G A=A G$ and by the definition of the left separating point, we have that

$$
\delta\left(A^{2}\right)=A \delta(A)+A^{*} \delta(A)
$$

Thus δ is a Jordan left $*$-derivation. By Theorem 2.5, we know that $\delta \equiv 0$.
Corollary 3.2 Suppose that \mathcal{A} is a complex unital C^{*}-algebra and \mathcal{M} is a unital Banach left \mathcal{A}-module. If δ is a continuous additive left $*$-derivable mapping at I from \mathcal{A} into \mathcal{M}, then $\delta \equiv 0$.

Acknowledgements We thank the referees for their time and comments.

References

[1] M. BREŠAR, J. VUKMAN. On some additive mappings in rings with involution. Aequationes Math., 1989, 38(2-3): 178-185.
[2] S. KUREPA. Quadratic and sesquilinear functionals. Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II, 1965, 20: 79-92.
[3] P. ŠEMRL. On quadratic functionals. Bull. Austral. Math. Soc., 1988, 37(1): 27-28.
[4] P. ŠEMRL. Quadratic functionals and Jordan *-derivations. Studia Math., 1991, 97(3): 157-165.
[5] P. VRBOVÁ. Quadratic functionals and bilinear forms. Časopis Pěst. Mat., 1973, 98: 159-161.
[6] J. VUKMAN. Some functional equations in Banach algebras and an application. Proc. Amer. Math. Soc., 1987, 100(1): 133-136.
[7] M. BREŠAR, B. ZALAR. On the structure of Jordan *-derivations. Colloq. Math., 1992, 63(2): 163-171.
[8] P. ŠEMRL. On Jordan *-derivations and an application. Colloq. Math., 1990, 59(2): 241-251.
[9] P. ŠEMRL. Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc., 1994, 120(2): 515-518.
[10] S. ALI, N. DAR, D. PAGON. On Jordan *-mappings in rings with involution. J. Egyptian Math. Soc., 2016, 24(1): 15-19.
[11] H. DALES, F. GHAHRAMANI, N. GRØNBÆK. Derivations into iterated duals of Banach algebra. Studia Math., 1998, 128(1): 19-54.
[12] R. KADISON, J. RINGROSE. Fundamentals of the Theory of Operator Algebras (I). Academic Press, Inc., New York, 1983.

[^0]: Received July 25, 2020; Accepted April 27, 2021
 Supported by the National Natural Science Foundation of China (Grant No. 11801342), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693) and the Scientific Research Plan Projects of Shannxi Education Department (Grant No. 19JK0130).

 * Corresponding author

 E-mail address: anguangyu310@163.com (Guangyu AN)

