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Abstract Let U be a unicyclic graph of order n, and mU (1) the multiplicity of Laplacian

eigenvalue 1 of U . It is well-known that 0 is a simple Laplacian eigenvalue of connected graph.

This means that if U has five Laplacian eigenvalues different from 0 and 1, then mU (1) = n− 6.

In this paper, we completely characterize all the unicyclic graphs with mU (1) = n− 6.
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1. Introduction

Throughout this paper we consider finite undirected simple graphs of order n. Let G = (V,E)

be a connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. Let

A(G) be the adjacency matrix of G. We denote by d(vi) the degree of vi in G. Let D(G) be the

diagonal matrix of the degrees of G. The Laplacian matrix of G is defined as L(G) = D(G) −

A(G). Clearly, L(G) is a real symmetric, positive semidefinite matrix. It is not difficult to find

that the row sum of L(G) is 0, and so the smallest eigenvalue is equivalent to 0. For convenience,

we always assume that the Laplacian eigenvalues of G are µ1 ≥ µ2 ≥ · · · ≥ µn = 0. In [1], it is

well known that µn−1 > 0 if and only if G is connected and hence is called algebraic connectivity

of G. The multiplicity of µi is denoted by mG(µ), and the number of Laplacian eigenvalues in

an interval I is denoted by mGI. The Laplacian spectrum of G is a multiple set of Laplacian

eigenvalues together with their multiplicities. We denote SpecL(G) = {µk1

1 , µk2

2 , . . . , µkr

r } where

µ1, µ2, . . . , µr−1 and µr are r distinct Laplacian eigenvalues and mG(µi) = ki is the multiplicity

of µi (1 ≤ i ≤ r) and
∑r

i=1 ki = n.

For a graph G of order n, a vertex of degree one is called a pendant vertex, and we write p(G)

for the number of pendant vertices of G. A vertex of G is quasipendant vertex if it is adjacent

to a pendant vertex, and we write q(G) for the number of quasipendant vertices of G. Let r(G)

be the number of inner vertices of G. Let

VP = {v ∈ V (G) | v is a pendent vertex },
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VQ = {v ∈ V (G) | v is a quasipendant vertex }

and

VR = V (G) \ (VP ∪ VQ).

Then VR is the set of the inner vertices of G which are not pendent vertices and quasipendant

vertices. Obviously, |VP | = p(G), |VQ| = q(G) and |VR| = r(G) = n− p(G) − q(G). Let LR(G)

be the principal submatrix of L(G) − En that corresponds to the inner vertices of G, where En

is an identity matrix of order n. The nullity of LR(G) denoted by ν(LR(G)), and Cn (n ≥ 3)

always represents the cycle. The diameter of G, denoted by diam(G), is the maximum distance

between any two vertices of G. Meanwhile, the girth of G, denoted by g, is the length of the

shortest cycle in G. A unicyclic graph is a connected graph with the same number of edges and

vertices. We denote by U(n, g) the set of all connected unicyclic graphs with girth g (g ≥ 3) on n

vertices. For graph theoretic notations and terminologies not defined here, we refer the readers

to [2].

In the past two decades, connected graphs with few distinct eigenvalues have been investigated

for several graph matrices since such graphs always have pretty combinatorial properties. This

problem was perhaps first raised by Doob [3]. Since then, a lot of publications (see [4–10]) have

focused on graphs with fewer eigenvalues. In fact, a graph with fewer eigenvalues means that it

has large multiplicity on some eigenvalues. Thus, characterizing graphs with largest multiplicity

of eigenvalues is important for graphs with few distinct eigenvalues.

The multiplicity of Laplacian eigenvalue of graphs has attracted plenty of attention. Faria [11]

proved that mG(1) is bounded by p(G)−q(G), that is, mG(1) ≥ p(G)−q(G), which is also called

Faria’s inequality. Then Andrade et al. [12] presented a unified approach on the Faria’s inequality

for the Laplacian and signless Laplacian spectra. In [13], it was shown that for a tree T with

order n, if an integer λ > 1 is a Laplacian eigenvalue of T , then mT (λ) = 1 and λ divides n.

Additionally, Guo, Feng and Zhang [14] characterized all trees with n − 6 ≤ mT (1) ≤ n. Also

Barik, Lal and Pati [15] investigated the multiplicities of Laplacian eigenvalue 1 of a graph.

Base on above, we consider mU (1) = n− 6 for a unicyclic graph U on n ≥ 7 vertices in this

paper, i.e., the unicyclic graph has five Laplcian eigenvalues different from 0 and 1 since 0 is a

simple Laplacian eigenvalue of a connected graph, and obtain the following result:

Theorem 1.1 Let U be a unicyclic graph on n ≥ 7 vertices. Then mU (1) = n − 6 if and

only if U is isomorphic to one of H1
3 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), H2

3 (a, c) (a ≥ 0, c ≥ 1),

H3
3 (a, c) (a ≥ 1, c ≥ 1), H4

3 (a, b) (a ≥ 0, b ≥ 1), H5
3 (a, b) (a ≥ 1, b ≥ 1), H1

4 (a, b) (a ≥ 1, b ≥ 1),

H2
4 (a, b) (a ≥ 0, b ≥ 1), H1

5 (a, c) (a ≥ 0, c ≥ 0), and H1
6 (a, b) (a ≥ 0, b ≥ 0). All of these graphs

are shown in Figure 1.

Moreover, we also present some unicyclic graphs with mU (1) = n− 7 (see Lemma 3.1).

2. Preliminaries

In this section, we introduce some lemmas which will be useful for the proof of main results.
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Lemma 2.1 ([2]) If e is an edge of the graph G and G′ = G− e, then

µ1(G) ≥ µ1(G
′) ≥ · · · ≥ µn−1(G) ≥ µn−1(G

′) ≥ µn(G) = µn(G
′) = 0.

{

...

︷ ︸︸ ︷

· · ·

...

}

H1
3(a, b, c)

a

b

c

︷ ︸︸ ︷ ︷ ︸︸ ︷

· · · · · ·

H2
3(a, c)

a c

{

...a
...

}

c

H3
3(a, c)

{

...a
...

}

b

H5
3(a, b)

· · · · · ·

H4
3(a, b)

a b
︷ ︸︸ ︷︷ ︸︸ ︷

{

...a
... b

H1
4(a, b)

}

...

}

b

H2
4(a, b)

a
...

{
{

a
...

...

}

c

H1
5(a, c)

...

}

b
{

...a

H1
6(a, b)

Figure 1 Graphs H1
3 ∼ H1

6

Lemma 2.2 ([13]) Let v be a pendant vertex of G̃ and let G = G̃\v. Then the Laplacian

eigenvalues of G interlace the Laplacian eigenvalues of G̃.

Lemma 2.3 ([13]) Let G be a connected graph with p pendant vertices and q quasipendant

vertices. Then mG(1) = p− q + ν(LR(G)).

Lemma 2.4 ( [16]) Let Cn be a cycle of order n. Then SpecL(Cn) = {2 − 2 cos 2πj
n
|j =

0, 1, . . . , n− 1}.

Lemma 2.5 ( [17]) If G is a connected graph with a cutpoint v, then µn−1(G) ≤ 1, where

equality holds if and only if v is adjacent to every vertex of G.

Let Gu : vH be the graph obtained from G and H by joining a vertex u of G to a vertex v

of H . In particular, if H = P2(= vw), we denote by Gu : vw for short.

Lemma 2.6 ([18]) Let H be a graph, and Sk a star on k ≥ 3 vertices. Set G = Hu : vSk.

(1) If v is a pendant vertex of Sk, then mG(1) = mH(1) + k − 3;

(2) If v is the center of Sk, then mG(1) = mHu:vw(1) + k − 2.

Lemma 2.7 ([12]) Let G be a connected graph on n vertices. If r(G) = 0, that is, any internal

vertex of G is also a quasi-pendant vertex, then mG(1) = p(G)− q(G).
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Lemma 2.8 Let Dn be the following determinant of order n.

Dn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −1 0 0 · · · 0 0

−1 1 −1 0 · · · 0 0

0 −1 1 −1 · · · 0 0

0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

0 0 0 0 · · · −1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n×n

Then

detDn =







(−1)
n

3 , if n ≡ 0 (mod 3);

(−1)
n−1

3 , if n ≡ 1 (mod 3);

0, otherwise.

Proof Applying Laplacian Expansion Theorem in the first column of Dn yields

Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 · · · 0 0

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n−1)×(n−1)

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 0 · · · 0 0

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n−1)×(n−1)

= Dn−1 −Dn−2 = −Dn−3

From the recurrence relation above we get

Dn = (−1)iDn−3i. (2.1)

For a fixed n, we by induction on i prove that the (2.1) holds. When i = 1, Dn = (−1)1Dn−3.

Clearly, (2.1) is true. Assume that the holds for i < k. If i = k, then

Dn = (−1)k−1Dn−3(k−1) = (−1)k−1(−1)Dn−3k = (−1)kDn−3k.

If n ≡ 0 (mod 3), then there exists a k, such that n = 3k, Dn = D3k = (−1)k = (−1)
n

3 ; Sim-

ilarly, if n ≡ 1 (mod 3), it draws Dn = (−1)
n−1

3 ; otherwise, Dn = 0. The proof is completed. 2

Lemma 2.9 Let Mm
n be the following determinant and m ∈ R.

Mm
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −1 0 0 · · · 0 −1

−1 1 −1 0 · · · 0 0

0 −1 1 −1 · · · 0 0

0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

−1 0 0 0 · · · −1 m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n×n
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Then

Mm
n =







−2((−1)
n−3

3 + 1) if n ≡ 0 (mod 3);

m · (−1)
n−1

3 − 2 if n ≡ 1 (mod 3);

(m− 2) · (−1)
n−2

3 − 2 otherwise.

Proof Applying Laplacian Expansion Theorem in the last column of Mm
n yields

Mm

n = mDn−1 + (−1)n+n
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 · · · 0 0

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

−1 0 0 · · · 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1

+ (−1)n+2
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

−1 0 0 · · · 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1

= mDn−1 + (−1)n+1
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 0 · · · 0 0

1 −1 0 · · · 0 0

−1 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−2

+ (−1)2n−1
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 · · · 0 0

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−2

+

(−1)2n+3
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 · · · 0 0

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−2

+ (−1)n+3
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 1 −1 · · · 0 0

0 −1 1 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−2

= mDn−1 − 2Dn−2 − 2

If n ≡ 1 (mod 3), then by Lemma 2.7 we get Dn−1 = (−1)
n−1

3 and Dn−2 = 0. Thus, Mm
n =

(−1)
n−1

3 m− 2. Similarly, if n ≡ 2 (mod 3), then Dn−1 = Dn−2 = (−1)
n−2

3 , it therefore follows

Mm
n = (−1)

n−2

3 (m − 2) − 2; if n ≡ 0 (mod 3), then Dn−1 = 0 and Dn−2 = (−1)
n−3

3 . Hence

Mm
n = −2((−1)

n−3

3 + 1). 2

Lemma 2.10 Let U be a unicyclic graph on n ≥ 4 vertices. If U ∼= S3
n (see Figure 2), then

mU (1) = n− 3.

.

.

.

Figure 2 Graph S3
n

Proof If U ∼= S3
n, one can get p(S3

n) = n − 3 and q(S3
n) = 1. Let LR(S

3
n) be the principal
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submatrix of L(S3
n)− En that corresponds to the inner vertices of S3

n, then

det(LR(S
3
n)) =

∣
∣
∣
∣
∣

1 −1

−1 1

∣
∣
∣
∣
∣
= D2.

It follows from Lemma 2.8 that det(LR(S
3
n)) = 0, which implies ν(LR(S

3
n)) = 1. Hence, from

Lemma 2.3 we get mS3
n

(1) = n− 3− 1 + 1 = n− 3. 2

Lemma 2.11 Let U be a unicyclic graph on n ≥ 7 vertices. If U is isomorphic to one of those

graphs C1
3 (a, b) (a ≥ 1, b ≥ 1), C2

3 (a, b) (a ≥ 0, b ≥ 1) and C4(a, b) (a ≥ 0, b ≥ 0), shown in

Figure 3, then mU (1) = n− 5.

· · ·
a

b

︷ ︸︸ ︷

}

...

C1
3(a, b)

︷ ︸︸ ︷

· · · · · ·

a b

C2
3(a, b) C4(a, b)

... a

}

... b

}

︷ ︸︸ ︷

Figure 3 Graphs C1
3(a, b), C

2
3(a, b) and C4(a, b)

Proof If U has the form C1
3 (a, b) on n = a + b + 3 vertices, where a ≥ 1, b ≥ 1. Clearly,

C1
3 (a, b) has only one inner vertex with degree 2, which implies det(LR(C

1
3 (a, b))) = 1, and so

ν(LR(C
1
3 (a, b))) = 0. Therefore, it follows from Lemma 2.3 that mC1

3
(a,b)(1) = n− 3− 2 = n− 5.

If U has the form C2
3 (a, b) on n = a+b+4 vertices, where a ≥ 1, b ≥ 1, then det(LR(C

2
3 (a, b))) =

D2 = 0, it leads to ν(LR(C
2
3 (a, b))) = 1. By Lemma 2.3, we havemC2

3
(a,b)(1) = n−4−2+1 = n−5.

Moreover, a = 0 implies U ∼= C2
3 (0, b) (b ≥ 1) with n = b + 4 vertices. And then, we obtain

det(LR(C
2
3 (0, b))) =

∣
∣
∣
∣
∣
∣
∣

1 −1 −1

−1 1 −1

−1 −1 2

∣
∣
∣
∣
∣
∣
∣

= M2
3 .

Thus, it follows from Lemma 2.9 that det(LR(C
2
3 (0, b))) = −4, which indicates ν(LR(C

2
3 (0, b))) =

0. Therefore, by Lemma 2.3 we have mC2
3
(0,b)(1) = n− 4− 1 = n− 5. By the similar method as

above, one can obtain mC4(a,b)(1) = n− 5 where a ≥ 0, b ≥ 0.

Sum up the above, we complete the proof. 2

3. Proof of the main result

Before proving Theorem 1.1, we give some useful lemmas which needs to be used in the

following.

Lemma 3.1 Let U be a unicyclic graph on n ≥ 7 vertices, if U is one of U2
3 (a, b, c) (a ≥

0, b ≥ 1, c ≥ 1), U3
3 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), U4

3 (a, b) (a ≥ 1, b ≥ 1), U5
3 (a, b, 0, d) (a ≥

1, b ≥ 1, c ≥ 0, d ≥ 1), U1
4 (a, b, c, 0) (a ≥ 1, b ≥ 1, c ≥ 1, d ≥ 0), U2

4 (a, b) (a ≥ 1, b ≥ 1),

U3
4 (a, b, c) (a ≥ 1, b ≥ 0, c ≥ 1) and U1

5 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 0), then mU (1) = n − 7 (see
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Figure 4).

︷ ︸︸ ︷

· · · · · ·
︷ ︸︸ ︷

U 2
3 (a, b, c)

︷ ︸︸ ︷

· · ·{

...
...

}

a b

b

ca

U 3
3 (a, b, c)

...

}

d

{

...a

U 1
4 (a, b, c, d)

...

}

c

{

...
... ba

}

U 4
3 (a, b)

...

}

c

{

...a

U 3
4 (a, b, c)

...

}

b

U 2
4 (a, b)

· · ·
︷ ︸︸ ︷
a

...

}

c

U 1
5 (a, b, c)

...

}

b

{

...

· · ·

a

b

...

}

d

︷ ︸︸ ︷

U 5
3 (a, b, c, d)

c

· · ·
︷ ︸︸ ︷

c
︷ ︸︸ ︷

· · ·

︷ ︸︸ ︷

· · ·
b

...a

{

b
...

{

Figure 4 Some related graphs

Proof Let U ∈ U(n, g) be a unicylic graph and let LR(U) be the principal submatrix of L(U)−En

corresponding to inner vertices of U .

If U ∼= U2
3 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), then n = a+ b+ c+ 5 and

det(LR(U
2
3 (a, b, c))) =

∣
∣
∣
∣
∣

1 −1

−1 1

∣
∣
∣
∣
∣
= D2

It follows from Lemma 2.8 that det(LR(U
2
3 (a, b, c))) = 0, which implies ν(LR(U

2
3 (a, b, c))) = 1.

From Lemma 2.3 we have mU2
3
(a,b,c)(1) = a+ b+ c− 3+ ν(LR(U

2
3 (a, b, c))) = n− 7. In addition,

a = 0 implies U ∼= U2
3 (0, b, c) (b ≥ 1, c ≥ 1) with n = b+ c+ 5, then

det(LR(U
2
3 (0, b, c))) =

∣
∣
∣
∣
∣
∣
∣

1 −1 −1

−1 1 −1

−1 −1 2

∣
∣
∣
∣
∣
∣
∣

= M2
3 .

It is deduced from Lemma 2.9 that det(LR(U
2
3 (0, b, c))) = −4, which means ν(LR(U

2
3 (0, b, c))) =

0. By Lemma 2.3 we have mU2
3
(0,b,c)(1) = b+ c− 2 = n− 7. Thus mU2

3
(a,b,c))(1) = n− 7 where

a ≥ 0, b ≥ 1, c ≥ 1. With the same argument, we can obtain mU4
3
(a,b)(1) = n− 7 where a ≥ 1,

b ≥ 1.

If U ∼= U3
3 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), then n = a+ b+ c+4. It is easy to see that the inner

vertex of U3
3 (a, b, c) is the unique vertex with degree 2, and so, ν(LR(U

3
3 (a, b, c))) = 0. Thus,
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mU3
3
(a,b,c)(1) = a+ b+ c− 3 = n− 7. It can be shown in a similar way that

mU5
3
(a,b,0,d)(1) = a+ b+ d− 3 = n− 7

where a ≥ 1, b ≥ 1, d ≥ 1 and mU1
4
(a,b,c,0) = n− 7 where a ≥ 1, b ≥ 1, c ≥ 1.

If U ∼= U2
4 (a, b) (a ≥ 1, b ≥ 1), then n = a+ b+ 5 and

det(LR(U
2
4 (a, b))) =

∣
∣
∣
∣
∣
∣
∣

1 −1 0

−1 1 −1

0 −1 1

∣
∣
∣
∣
∣
∣
∣

= D3

It follows from Lemma 2.8 that det(LR(U
2
4 (a, b))) = −1, which leads to ν(LR(U

2
4 (a, b))) = 0. So

we have mU2
4
(a,b)(1) = n− 7. In the same way, we can get U1

5 (a, b, c) = n− 7 where a ≥ 1, b ≥ 1,

c ≥ 0.

If U ∼= U3
4 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), then n = a + b + c + 5. Clearly, we can find that

det(LR(U
3
4 (a, b, c))) is D2. Then by Lemma 2.8, one can get det(LR(U

3
4 (a, b, c))) = 0, that is,

ν(LR(U
3
4 (a, b, c))) = 1. Therefore,

mU3
4
(a,b,c)(1) = a+ b+ c− 3 + ν(LR(U

3
4 (a, b, c))) = n− 7.

Moreover, b = 0 means U ∼= U3
4 (a, 0, c) (a ≥ 1, c ≥ 1) with n = a+ c+ 5 and

det(LR(U
3
4 (a, 0, c))) =

∣
∣
∣
∣
∣
∣
∣

1 −1 0

−1 1 −1

0 −1 2

∣
∣
∣
∣
∣
∣
∣

By direct calculation, det(LR(U
3
4 (a, 0, c))) = −1, so we have ν(LR(U

3
4 (a, 0, c))) = 0. Thus,

mU3
4
(a,0,c)(1) = n− 7 by Lemma 2.3 again. 2

Lemma 3.2 Let U ∈ U(n, g) be a unicyclic graph on n ≥ 7 vertices. If mU (1) = n− 6, then U

has no P8 as its induced subgraph.

Proof Assume that G contains P8 as its induced subgraph. Then by direct calculation we get

SpecL(P8) = {0, 0.1522, 0.5858, 1.2346, 2, 2.7654, 3.4142, 3.8478}. (3.1)

It is not difficult to find that G0 = P8 ∪ (n− 8)K1 is a spanning subgraph of U , and U can

be obtained from G0 by adding n− 7 edges: e1, e2, . . . , en−7 (say). Let Ui = G0 + {e1, . . . , ei} be

a spanning subgraph of U for i = 1, 2, . . . , n− 7. Obviously, U ∼= Un−7. Then we apply Lemma

2.1 repeatedly to get

µj(U) ≥ µj(Un−8) ≥ µj(Un−9) ≥ · · · ≥ µj(U1) ≥ µj(P8), (3.2)

for j = 1, 2, . . . , 8.

By (3.1) we know that mP8
(1, n] = 5, it therefore follows from (3.2) that mU (1, n] ≥ 5. In

addition, by Lemma 2.5 we get µn−1(U) < 1, and together with mU (0) = 1 we havemU [0, 1) ≥ 2.

Thus,

mU (1) = n−mU [0, 1)−mU (1, n] ≤ n− 7
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which contradicts mU (1) = n− 6, and so we complete the proof. 2

By Lemma 2.4 we can obtain that mCn
(1) ≤ 2, and if 1 is an eigenvalue of Cn, it implies

that 2 − 2 cos 2πj
n

= 1 for some j. Then we can deduce cos 2πj
n

= 1
2 , and further get j = n

6 or

j = 5n
6 , i.e., n = 6t for t ≥ 1. Hence, mCn

(1) = 2 if and only if n = 6t for t ≥ 1.

It is worth mentioning that if U is a cycle, then mU (1) = n− 6, then n− 6 = 2, i.e., n = 8,

but 6 ∤ 8, a contradiction. So we always suppose that U ≇ Cn in what follows.

Let U ∈ U(n, g) be a unicyclic graph with mU (1) = n − 6. If either diam(U) ≥ 6 or g ≥ 7,

then U must contain P8 as its induced subgraph. Thus, from Lemma 3.2 we have the following

corollary.

Corollary 3.3 Let U ∈ U(n, g) be a unicyclic graph on n ≥ 7 vertices. If mU (1) = n− 6, then

diam(U) ≤ 5 and g ≤ 6.

Lemma 3.4 Let U ∈ U(n, 3) be a unicyclic graph on n ≥ 7 vertices. Then mU (1) = n−6 if and

only if U is one of H1
3 (a, b, c) (a ≥ 1, b ≥ 1, c ≥ 1), H2

3 (a, c) (a ≥ 0, c ≥ 1), H3
3 (a, c) (a ≥ 1, c ≥ 1),

H4
3 (a, b) (a ≥ 0, b ≥ 1) and H5

3 (a, b) (a ≥ 1, b ≥ 1) (see Figure 1).

Proof Let U ∈ U(n, 3). Then diam(U) ≤ 5 by Corollary 3.3. For the sake of clarity, we here

discuss it by the diameter of U below.

Case 1. diam(U) ≤ 3.

When diam(U) = 2, one can find that U ∼= S3
n, it is clearly impossible since mS3

n

(1) = n− 3

by Lemma 2.10; when diam(U) = 3, U has one of forms C2
3 (a, b) (a ≥ 0, b ≥ 1) and H1

3 (a, b, c)

with n = a + b + c + 3. Then by Lemma 2.11, we can see that mC2
3
(a,b)(1) = n − 5, which is a

contradiction. Hence, U has just the form of H1
3 (a, b, c) (see Figure 1). Clearly, a ≥ 1, b ≥ 1 and

c ≥ 1 since if one or two of a, b, c equal(s) zero, then U has one of the forms S3
n and C1

3 (a, b).

From Lemmas 2.10 and 2.11, it is also impossible. We notice that H1
3 (a, b, c) has no inner vertex.

So, it follows from Lemma 2.7 that

mH1
3
(a,b,c)(1) = p(H1

3 (a, b, c))− q(H1
3 (a, b, c)) = a+ b+ c− 3 = n− 6.

Case 2. diam(U) = 4.

When diam(U) = 4, assume that U contains I1 as its induced subgraph (see Figure 5). Then

by simple computation we get

SpecL(I1) = {0, 0.3065, 0.3820, 1.6703, 2.6180, 3, 3.3297, 4.6935}.

By the same reasoning as P8, we get mU [0, 1) ≥ 2 and mU (1, n] ≥ 5. It follows

mU (1) = n−mU [0,1) −mU (1, n] ≤ n− 7

it is a contradiction. For the same reasoning as I1, one can prove that U does not contain I2 as

its induced subgraph from Table 1. Thus, U has one of forms U2
3 (a, b, c) (a ≥ 0, b ≥ 0, c ≥ 1),

U3
3 (a, b, c) (a ≥ 1, b ≥ 0, c ≥ 1) and U5

3 (a, b, c, d) (a ≥ 1, b ≥ 1, c ≥ 0, d ≥ 1). According to Lemma

3.1, one can easily get mU2
3
(a,b,c)(1) = n − 7 with a ≥ 0, b ≥ 1 and c ≥ 1, mU3

3
(a,b,c)(1) = n− 7

with a ≥ 1, b ≥ 1 and c ≥ 1, and mU5
3
(a,b,0,d)(1) = n− 7 with a ≥ 1, b ≥ 1 and d ≥ 1, which are



574 Mengyue YUAN, Fei WEN and Muchun LI

all impossible since mU (1) = n − 6. Furthermore, if U ∼= U5
3 (a, b, c, d) with a ≥ 1, b ≥ 1, c ≥ 1

and d ≥ 1, then mU5
3
(a,b,c,d)(1) = n− 8 by Lemma 2.3, it is also impossible. Consequently, U has

one of the forms U2
3 (a, 0, c) with a ≥ 0, c ≥ 1 and U3

3 (a, 0, c) with a ≥ 1, c ≥ 1.

For convenience, we denote by U2
3 (a, 0, c) = H2

3 (a, c) and U3
3 (a, 0, c) = H3

3 (a, c) (see Figure

1) now. For the graph H2
3 (a, c) (a ≥ 1, c ≥ 1), it can be obtained from S3

a+3 and Sc+2 by

joining the center of S3
a+3 to a pendant vertex of Sc+2. Thus, it follows from Lemma 2.6 (1) that

mH2
3
(a,c)(1) = mS3

a+3
(1) + c + 2 − 3 = n − 6. Moreover, a = 0 implies U ∼= H2

3 (0, c), it can be

obtained from C3 and Sc+2 by joining an arbitrary vertex of C3 to a pendant vertex of Sc+2. It

therefore follows from Lemma 2.6 (1) that mH2
3
(0,c)(1) = c− 1 = n− 6. For the graph H3

3 (a, c),

it is deduced from Lemma 2.3 that mH3
3
(a,c)(1) = n− 6.

Case 3. diam(U) = 5.

If diam(U) = 5, by similar reasoning as I1, one can prove that U does not contain I3, I4, I5,

I6, I7, I8 and I9 as its induced subgraphs in terms of Table 1. Therefore, U has one of forms

H4
3 (a, b) with a ≥ 0, b ≥ 1, H5

3 (a, b) with a ≥ 1, b ≥ 1 and U4
3 (a, b) with a ≥ 1, b ≥ 1.

If U ∼= U4
3 (a, b) (a ≥ 1, b ≥ 1), it follows from Lemma 3.1 that mU4

3
(1) = n − 7, which

contradicts mU (1) = n− 6. Further, if U ∼= H4
3 (a, b) (a ≥ 1, b ≥ 1), then n = a+ b+ 6 and

LR(H
4
3 (a, b)) =









1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1









By direct calculation, we can get ν(LR(H
4
3 (a, b))) = 2. It follows from Lemma 2.3 that

mH4
3
(a,b)(1) = a+ b− 2 + ν(LR(H

4
3 (a, b))) = n− 6.

If U ∼= H4
3 (0, b) (b ≥ 1) with n = b+ 6, then

LR(H
4
3 (0, b)) =











1 −1 −1 0 0

−1 1 −1 0 0

−1 −1 2 −1 0

0 0 −1 1 −1

0 0 0 −1 1











It follows ν(LR(H
4
3 (0, b))) = 1. By Lemma 2.3 again, we have mH4

3
(0,b)(1) = n− 6.

If U ∼= H5
3 (a, b) (a ≥ 1, b ≥ 1) with n = a+ b+ 5, then

LR(H
5
3 (a, b)) =






1 −1 0

−1 2 −1

0 −1 1






Similarly, we can get ν(LR(H
5
3 (a, b))) = 1, which leads to mH5

3
(a,b)(1) = a + b − 1 = n − 6 by

Lemma 2.3.

Conversely, from Lemma 2.3 the conclusion holds. The proof is completed. 2
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I5

I8 I9

I3

I4 I6

I7

I1 I2

Figure 5 Graphs Ii (1 ≤ i ≤ 9)

I1 0 0.3065 0.3820 1.6703 2.6180 3.0000 3.3297 4.6935

I2 0 0.3820 0.4280 1.2285 2.2799 2.6180 3.8123 5.2513

I3 0 0.2243 0.5858 1.4108 2.7237 3.0000 3.4142 4.6412

I4 0 0.2137 0.6177 1.4977 2.3537 3.0000 3.8408 4.4763

I5 0 0.2593 0.7150 1.3232 1.5891 3.1143 3.8086 5.1905

I6 0 0.2434 0.6972 1.1798 2.0000 3.1386 4.3028 4.4383

I7 0 0.2588 0.6436 1.1385 2.1603 3.1943 3.8943 4.7103

I8 0 0.3004 0.4915 1.3204 2.2391 2.8258 4.3623 4.4605

I9 0 0.2955 0.5979 1.1449 2.3295 2.4734 3.9635 5.1952

Table 1 The Laplacian spectra of Ii (1 ≤ i ≤ 9)

Lemma 3.5 Let U ∈ U(n, 4) be a unicyclic graph on n ≥ 7 vertices. Then mU (1) = n − 6 if

and only if U ∼= H1
4 (a, b) (a ≥ 1, b ≥ 1), or U ∼= H2

4 (a, b) (a ≥ 0, b ≥ 1) (see Figure 1).

Proof Let U be a unicyclic graph of U(n, 4) with order n ≥ 7. Then diam(U) ≤ 5 by Corollary

3.3. According to Table 2, we can deduce that U does not contain I10, I11, I12 and I13 (see

Figure 6) as its induced subgraphs by the same argument as I1. Then U must have one of forms

U1
4 (a, b, c, d) (a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0), U2

4 (a, b) (a ≥ 1, b ≥ 1), U3
4 (a, b, c) (a ≥ 1, b ≥ 0, c ≥ 1)

and H2
4 (a, b) (a ≥ 0, b ≥ 1) (see Figures 1 and 4).

When U has the form of U1
4 (a, b, c, d), if a ≥ 1, b ≥ 1, c ≥ 1 and d ≥ 1, then r(U1

4 (a, b,

c, d)) = 0. It follows from Lemma 2.7 that

mU1
4
(a,b,c,d)(1) = p(U1

4 (a, b, c, d))− q(U1
4 (a, b, c, d)) = a+ b+ c+ d− 4 = n− 8,

which contradicts mU (1) = n − 6; if one of a, b, c, d is equal to zero, without loss of generality,

we may assume d = 0, then U ∼= U1
4 (a, b, c, 0) (a ≥ 1, b ≥ 1, c ≥ 1). By Lemma 3.1, one can get
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mU1
4
(a,b,c,0)(1) = n − 7, it is also a contradiction. In addition, we see that U ≇ C4(a, b) (a ≥

0, b ≥ 0) due to mC4(a,b)(1) = n − 5 in terms of Lemma 2.11. Thus, U has just the form

H1
4 (a, b) (a ≥ 1, b ≥ 1). It follows from Lemma 2.3 that mH1

4
(a,b) = n− 6.

I10 I11 I12

I13 I14
I15

I16 I17

Figure 6 Graphs Ii (10 ≤ i ≤ 17)

I10 0 0.2765 1.3323 2.0000 2.5219 3.2920 4.5772

I11 0 0.3581 0.6918 1.2843 2.0000 2.4091 3.8877 5.3689

I12 0 0.3636 0.5858 1.3478 2.0000 3.2222 3.4142 5.0664

I13 0 0.3432 0.6639 1.1805 2.2491 2.9045 3.5994 5.0594

I14 0 0.3820 1.3820 1.5858 2.6180 3.6180 4.4142

I15 0 0.4915 0.6228 1.3204 1.7261 2.8258 4.3623 4.6511

I16 0 0.4679 0.7369 1.4843 1.6527 3.1826 3.8794 4.5962

Table 2 The Laplacian spectra of Ii (10 ≤ i ≤ 16)

When U has the form of U2
4 (a, b) (a ≥ 1, b ≥ 1) or U3

4 (a, b, c) (a ≥ 1, b ≥ 0, c ≥ 1), then by

Lemma 3.1 we find that it is impossible as mU2
4
(a,b)(1) = mU3

4
(a,b,c)(1) = n− 7.

When U has the form of H2
4 (a, b), if a ≥ 1, b ≥ 1, then

LR(H
2
4 (a, b)) =






1 −1 0

−1 2 −1

0 −1 1






By direct calculation, one can deduce ν(LR(H
2
4 (a, b))) = 1, and so, it follows from Lemma 2.3

that mH2
4
(a,b))(1) = a + b − 2 + ν(LR(H

2
4 (a, b))) = n − 6; if a = 0, then U ∼= H2

4 (0, b). Clearly,

H2
4 (0, b) can be obtained from C4 and Sb+1 by joining an arbitrary vertex of C4 to the center of

Sb+1. It therefore follows from Lemma 2.6 (2) that mH2
4
(b)(1) = mC4u:vw(1) + b+ 1− 2 = n− 6.
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Conversely, it follows by the discussion above. The proof is completed. 2

Lemma 3.6 Let U ∈ U(n, 5) be a unicyclic graph on n ≥ 7 vertices. Then mU (1) = n − 6 if

and only if U ∼= H1
5 (a, c) (a ≥ 0, c ≥ 0) (see Figure 1).

Proof Let U be a graph of U(n, 5) with order n ≥ 7. Then by Corollary 3.3 diam(U) ≤ 5.

Using the same argument as I1, we can obtain that U does not contain I14 and I15 as its induced

subgraphs from Table 2. Therefore, U has the form of U1
5 (a, b, c). By Lemma 3.1, one can

obtain that mU1
5
(a,b,c)(1) = n − 7 if a ≥ 1, b ≥ 1, c ≥ 0. Thus, U should only take the form of

H1
5 (a, c) (a ≥ 0, c ≥ 0). According to the symmetry, we may assume that a = 0 and c ≥ 1, then

U ∼= H1
5 (0, c) with n = c+ 5, and so

det(LR(H
1
5 (0, c))) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −1 0 0

−1 1 −1 0

0 −1 1 −1

0 0 −1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= D4

In light of Lemma 2.8, we have det(LR(H
1
5 (0, c))) = −1, which implies ν(LR(H

1
5 (0, c))) = 0.

Therefore, mH1
5
(0,c)(1) = c− 1+ ν(LR(H

1
5 (0, c))) = n− 6. If a ≥ 1 and c ≥ 1, adopting the same

way as above, we obtain mH1
5
(a,c)(1) = a+ c− 2 + ν(LR(H

1
5 (a, c))) = n− 6.

Conversely, it follows by Lemma 2.3. The proof is completed. 2

Lemma 3.7 Let U ∈ U(n, 6) be a unicyclic graph on n ≥ 7 vertices. Then mU (1) = n − 6 if

and only if U ∼= H1
6 (a, b) (a ≥ 0, b ≥ 0) (see Figure 1).

Proof Let U be a unicyclic graph of U(n, 6) with order n ≥ 7. Then diam(U) ≤ 5 by Corollary

3.3. It can be shown in the same way as I1, U does not contain I16 as its induced subgraph by

Table 2. Besides, from Lemma 3.2, U cannot include I17 as its induced subgraph either because

P8 is a subgraph of I17. Therefore, U can only take the form of H1
6 (a, b). If a = 0 or b = 0,

without loss of generality, we assume a = 0, then U ∼= H1
6 (0, b) with n = b + 6, which can be

obtained from C6 by attaching pendant vertices at any vertex of C6, and

det(LR(H
1
6 (0, b))) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −1 0 0 0

−1 1 −1 0 0

0 −1 1 −1 0

0 0 −1 1 −1

0 0 0 −1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= D5

It follows from Lemma 2.8 that det(LR(H
1
6 (0, b))) = 0, which implies ν(LR(H

1
6 (0, b))) = 1, and

so mH1
6
(0,b)(1) = n− 6; if a ≥ 1 and b ≥ 1, then U ∼= H1

6 (a, b) with n = a+ b+ 6. It also follows

from Lemma 2.3 that

mH1
6
(a,b)(1) = a+ b− 2 + ν(LR(U

1
6 (a, b))) = n− 6.

Conversely, it is obvious by the discussion above. The proof is completed. 2
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Proof of Theorem 1.1 Let U ∈ U(n, g) be a unicyclic graph on n ≥ 7 vertices. If U satisfies

g ≥ 7, then U must contain P8 as its subgraph due to U ≇ Cn, which obviously contradicts

Lemma 3.2. So we have 3 ≤ g ≤ 6. Furthermore, together with Lemmas 3.4–3.7, the proof

therefore follows. 2

Acknowledgements The authors would like to thank the referees for their valuable comments

which lead to an improvement of the original manuscript.

References

[1] M. FIEDLER. Algebraic connectivity of trees. Czechoslovak Math. J., 1987, 37(4): 660–670.
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