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Abstract In this paper, we study bounded (linear and anti-linear) weighted composition oper-

ators on the symmetric Fock space over a separable Hilbert space. The unitary and self-adjoint

weighted composition operators are characterized completely. A class of normal weighted com-

position operators is considered.
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1. Introduction

Let H be a complex separable Hilbert space. For each positive integer n, ⊗nsH denotes the

n-fold symmetric tensor product Hilbert space of H. The infinite direct sum Hilbert space

F(H) :=
∞⊕
n=0

⊗nsH

is called the symmetric Fock space (also referred to as the Segal-Bargmann space) over H,

where
⊗0

sH = C, the complex numbers. In quantum theory, a symmetric Fock space is used to

describe a Hilbert space of state for the system of a Bose field. When H = CN , the N-dimensional

Euclidean space, F(CN ) is the classical Fock space over CN . Let dV be the Lebesgue measure

on CN . It is known that

F(CN ) =
{
f is analytic on CN

∣∣∣∥f∥ =
( 1

πN

∫
CN

|f(z)|2e−|z|2dV (z)
) 1

2

<∞
}
.

Generally, each element f in F(H) can be identified as an entire function on H having a power

expansion of the form

f(z) =

∞∑
n=0

⟨zn, an⟩ for all z ∈ H,

and

∥f∥2 =
∞∑
n=0

n!∥an∥2,

Received July 1, 2020; Accepted April 6, 2021

Supported by the National Natural Science Foundation of China (Grant No. 11771401), Shanxi Scholarship Council

of China (Grant No. 2020-089) and Fund Program for the Scientific Activities of Selected Returned Overseas

Professionals in Shanxi Province (Grant No. 20200019).

* Corresponding author

E-mail address: liankuozhao@sina.com (Liankuo ZHAO)



Weighted composition operators on the symmetric Fock space 595

where z0 = 1, a0 ∈ C, zn = z ⊗ · · · ⊗ z and an ∈ ⊗nsH for n ≥ 1. Furthermore, F(H) has

reproducing kernels

Kw(z) = exp(⟨z, w⟩), z, w ∈ H.

Therefore, F(H) is identified as an analytic function space on H with reproducing kernels and

the set E = span{Kw | w ∈ H} is dense in F(H) (see [1]).

In the past thirty years, Toeplitz operators, Hankel operators and weighted composition

operators on F(CN ) have been studied intensively [2–6]. Since the study of F(H) over a separable

Hilbert space H is related to analysis on infinite dimensional spaces, there is little known about

these operators on F(H). In [7], a few basic properties of Toeplitz operators on F(H) were

discussed. In [1] and [8], bounded and unbounded composition operators on F(H) were studied

respectively. It seems that characterization of (weighted) composition operators on F(H) mainly

depends on properties of the operators acting on reproducing kernels. Directed by this idea, in

this paper, we will study some classes of bounded (linear and anti-linear) weighted composition

operators on F(H). The results extend the corresponding results in F(CN ) (see [9–13]).

Now we present the definitions of (linear and anti-linear) weighted composition operators on

F(H).

Let ψ ∈ F(H), ψ ̸= 0, φ be a mapping on H and J be a conjugation on H. The weighted

composition operator Cψ,φ and the anti-linear weighted composition operator Aψ,φ, Tψ,φ on

F(H) are defined as follows. For any f ∈ F(H),

(Cψ,φf)(z) = ψ(z)f(φ(z)),

(Aψ,φf)(z) = ψ(z)f(Jφ(z)), z ∈ H,

(Tψ,φf)(z) = ψ(Jz)f(φ(Jz)).

Recall that a conjugation on a Hilbert space H is an anti-linear mapping which satisfies the

following conditions:

J2 = I;

⟨Jz, Jw⟩ = ⟨w, z⟩ for all z, w ∈ H.

A linear operator A is called J-symmetric if JAJ = A∗. J induces a conjugation J on F(H),

that is, for any f ∈ F(H),

(J f)(z) = f(Jz), z ∈ H.

In fact, let J0a = ā for a ∈ C and Jn = J ⊗ · · · ⊗ J for any positive integer n. Then for

f(z) =
∑

⟨zn, an⟩ ∈ F(H),

(J f)(z) = f(Jz) =
∑

⟨(Jz)n, an⟩ =
∑

⟨Jnzn, an⟩ =
∑

⟨Jnan, zn⟩ =
∑

⟨zn, Jnan⟩.

In quantum theory, J is called the Boson Γ operator on F(H) for J .

It is easy to verify the following relationship between Aψ,φ, Tψ,φ and Cψ,φ.

Lemma 1.1 Let ψ ∈ F(H), ψ ̸= 0, and φ be a mapping on H. Then

Aψ,φ = Cψ,φJ , Tψ,φ = JCψ,φ, Tψ,φ = AJψ,J◦φ◦J .
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This paper is organized as follows. In Subsection 2.1, some elementary results on weighted

composition operators on F(H) are discussed. In Subsection 2.2, a class of bounded weighted

composition operators on F(H) is characterized. In Subsections 2.3 and 2.4, unitary and self-

adjoint weighted composition operators on F(H) are characterized respectively. In Subsection

2.5, a class of normal weighted composition operators is characterized.

2. Main results and proofs

In this section, the main results and their proofs are presented. Firstly, we study some

properties of bounded (linear or anti-linear) weighted composition operators on F(H). Then the

unitary, self-adjoint and a class of normal weighted composition operators are characterized.

2.1. Preliminaries

In this subsection, we consider some elementary results on weighted composition operators

on F(H). The letter I is used for the identity operator on either H or F(H).

Lemma 2.1 Let ψ ∈ F(H), ψ ̸= 0, and φ be a mapping on H.

(1) Aψ,φ is bounded if and only if Cψ,φ is bounded.

(2) Aψ,φ is isometric if and only if Cψ,φ is isometric.

(3) Aψ,φ is co-isometric if and only if Cψ,φ is co-isometric.

(4) Aψ,φ is anti-unitary if and only if Cψ,φ is unitary.

(5) Aψ,φ is self-adjoint if and only if Cψ,φ is J -symmetric.

(6) Tψ,φ = Aψ,φ if and only if Jψ = ψ and J ◦ φ ◦ J = φ.

Proof Since J is a conjugation, J ∗ = J and J 2 = I. It follows from Lemma 1.1 that the

statement (1) holds.

Again by Lemma 1.1, we have

A∗
ψ,φAψ,φ = JC∗

ψ,φCψ,φJ ,

Aψ,φA∗
ψ,φ = Cψ,φJJC∗

ψ,φ = Cψ,φC
∗
ψ,φ,

A∗
ψ,φ = JC∗

ψ,φ.

So A∗
ψ,φAψ,φ = I if and only if C∗

ψ,φCψ,φ = I; Aψ,φA∗
ψ,φ = I if and only if Cψ,φC

∗
ψ,φ = I and

Aψ,φ = A∗
ψ,φ if and only if Cψ,φJ = JC∗

ψ,φ.

The statements (2)–(5) follow from the reasoning above. (6) follows from Lemma 1.1. 2
It follows from Lemmas 1.1 that the properties of Tψ,φ can be obtained by the properties of

Cψ,φ and Aψ,φ. In the following, we only consider bounded weighted composition operator Cψ,φ

and anti-linear weighted composition operator Aψ,φ.

Lemma 2.2 Let ψ ∈ F(H) and φ be a mapping on H. If Cψ,φ is bounded on F(H), then

C∗
ψ,φKw = ψ(w)Kφ(w), A∗

ψ,φKw = ψ(w)KJφ(w).

The proof of Lemma 2.2 is routine. We omit the proof here.
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For any c ∈ H, let φc(z) = z − c and kc(z) = exp(⟨z, c⟩ − ∥c∥2

2 ) be the normalization of Kc.

Denote Uc = Ckc,φc .

Lemma 2.3 Uc is a unitary on F(H).

Proof A straightforward computation shows that

(UcKw)(z) =kc(z)Kw(z − c) = exp(⟨z, c⟩ − ∥c∥2

2
) exp(⟨z − c, w⟩)

= exp(−∥c∥2

2
− ⟨c, w⟩) exp(⟨z, c+ w⟩)

= exp(−∥c∥2

2
− ⟨c, w⟩)Kw+c(z), (2.1)

which implies that Kw is in the domain of Uc and UcKw ∈ E. Hence E is contained in the

domain of Uc, Uc is densely defined in F(H) and UcE ⊂ E.

For any f in the domain of Uc, we have

⟨Kw, Ucf⟩ =⟨Kw, kcf ◦ φc⟩ = kc(w)f(φc(w))

= exp(−∥c∥2

2
+ ⟨c, w⟩)f(w − c)

= exp(−∥c∥2

2
+ ⟨c, w⟩)⟨Kw−c, f⟩

=⟨exp(−∥c∥2

2
+ ⟨c, w⟩)Kw−c, f⟩,

which implies that Kw is in the domain of U∗
c and

U∗
cKw = exp(−∥c∥2

2
+ ⟨c, w⟩)Kw−c ∈ E. (2.2)

Hence E is contained in the domain of U∗
c and U∗

cE ⊂ E.

Moreover, we have

U∗
c UcKw =U∗

c (exp(−
∥c∥2

2
− ⟨c, w⟩)Kw+c) = exp(−∥c∥2

2
− ⟨c, w⟩)U∗

cKw+c

=exp(−∥c∥2

2
− ⟨c, w⟩) exp(−∥c∥2

2
+ ⟨c, w + c⟩)K(w+c)−c = Kw,

UcU
∗
cKw =Uc(exp(−

∥c∥2

2
+ ⟨c, w⟩)Kw−c)

= exp(−∥c∥2

2
+ ⟨c, w⟩) exp(−∥c∥2

2
− ⟨c, w − c⟩)K(w−c)+c = Kw.

So U∗
c Uc|E = UcU

∗
c |E = I|E . It follows from the density of E in F(H) that

U∗
c Uc = UcU

∗
c = I.

Thus Uc is a unitary on F(H). Combining with (2.1) and (2.2), we see that U∗
c = U−c. 2

2.2. Bounded weighted composition operators

In this subsection, we characterize a class of bounded weighted composition operators Cψ,φ

and Aψ,φ for ψ being a reproducing kernel in F(H).
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Theorem 2.4 Let ψ = kc and φ be a mapping on H. Then Cψ,φ is bounded on F(H) if and

only if

φ(z) = Az + b

for all z ∈ H, where A is a linear operator on H with ∥A∥ ≤ 1 and b ∈ H such that

A∗(b+Ac) ∈ ran(I −A∗A)
1
2 .

Moreover,

∥Cψ,φ∥ = exp(
1

2
∥v∥2 + 1

2
∥b+Ac∥2),

where v is the unique vector in H of minimum norm satisfying A∗(b+Ac) = (I −A∗A)
1
2 v.

Proof For f ∈ F(H), we have

(U−cCψ,φf)(z) =k−c(z)(Cψ,φf(z + c)) = k−c(z)ψ(z + c)f(φ(z + c))

= exp(⟨z,−c⟩ − ∥c∥2

2
) exp(⟨z + c, c⟩ − ∥c∥2

2
)f(φ(z + c))

=f(φ(z + c)) = (Cφ1f)(z),

where φ1(z) = φ(z + c). Hence U−cCψ,φ = Cφ1 .

By Lemma 2.3, we know that Cψ,φ is bounded if and only if Cφ1 is bounded. It follows

from [1, Theorem 1.3] that Cφ1 is bounded if and only if φ1(z) = Az + b1 for all z ∈ H, where

A is a linear operator on H with ∥A∥ ≤ 1 and b1 ∈ H such that A∗b1 ∈ ran(I − A∗A)
1
2 . Hence

Cψ,φ is bounded if and only if

φ(z) = φ1(z − c) = Az + b1 −Ac = Az + b

for all z ∈ H, where b = b1 −Ac ∈ H, A is a linear operator on H with ∥A∥ ≤ 1 such that

A∗(b+Ac) = A∗b1 ∈ ran(I −A∗A)
1
2 .

Again by Lemma 2.3 and [1, Theorem 1.3], we have

∥Cψ,φ∥ = ∥Cφ1∥ = exp(
1

2
∥v∥2 + 1

2
∥b+Ac∥2),

where v is the unique vector in H of minimum norm satisfying A∗(b+Ac) = (I −A∗A)
1
2 v. 2

By Lemma 2.1 (1) and Theorem 2.4, we have the corresponding result for anti-linear weighted

composition operators on F(H).

Corollary 2.5 Let ψ = kc and φ be a mapping on H. Then Aψ,φ is bounded on F(H) if

and only if φ(z) = Az + b for all z ∈ H, where A is a linear operator on H with ∥A∥ ≤ 1 and

A∗(b + Ac) ∈ ran(I − A∗A)
1
2 . Moreover, ∥Aψ,φ∥ = exp( 12∥v∥

2 + 1
2∥b + Ac∥2), where v is the

unique vector in H of minimum norm satisfying A∗(b+Ac) = (I −A∗A)
1
2 v.

Let ψ(z) = Kc(z) and φ(z) = Az + b such that Cψ,φ is bounded on F(H). In the following

subsections, we will see that many important bounded (linear and anti-linear) weighted compo-

sition operators on F(H) have the forms in Theorem 2.4 and Corollary 2.5, and the formulas
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below are used repeatedly.

(Cψ,φKw)(z) =ψ(z)Kw(φ(z)) = Kc(z)Kw(Az + b)

= exp(⟨z, c⟩) exp(⟨Az + b, w⟩)

= exp(⟨b, w⟩) exp(⟨z, c+A∗w⟩)

= exp(⟨b, w⟩)KA∗w+c(z), (2.3)

(C∗
ψ,φKw)(z) =⟨C∗

ψ,φKw,Kz⟩ = ⟨Kw, Cψ,φKz⟩

=ψ(w)Kz(φ(w)) = Kc(w)Kz(Aw + b)

= exp(⟨c, w⟩) exp(⟨z,Aw + b⟩)

= exp(⟨c, w⟩)KAw+b(z), (2.4)

(C∗
ψ,φCψ,φKw)(z) =⟨Cψ,φKw, Cψ,φKz⟩

=⟨exp(⟨b, w⟩)KA∗w+c, exp(⟨b, z⟩)KA∗z+c⟩

=exp(⟨b, w⟩+ ⟨z, b⟩)KA∗w+c(A
∗z + c)

= exp(⟨b, w⟩+ ⟨z, b⟩) exp(⟨A∗z + c, A∗w + c⟩)

= exp(⟨A∗z,A∗w⟩+ ⟨z,Ac+ b⟩+ ⟨Ac+ b, w⟩+ ⟨c, c⟩), (2.5)

(Cψ,φC
∗
ψ,φKw)(z) =⟨C∗

ψ,φKw, C
∗
ψ,φKz⟩

=⟨ψ(w)Kφ(w), ψ(z)Kφ(z)⟩

=ψ(z)ψ(w)Kφ(w)(φ(z))

= exp(⟨z, c⟩+ ⟨c, w⟩)KAw+b(Az + b)

= exp(⟨z, c⟩+ ⟨c, w⟩) exp(⟨Az + b, Aw + b⟩)

= exp(⟨Az,Aw⟩+ ⟨z,A∗b+ c⟩+ ⟨A∗b+ c, w⟩+ ⟨b, b⟩), (2.6)

(Aψ,φKw)(z) =ψ(z)Kw(Jφ(z)) = exp(⟨z, c⟩+ ⟨w, J(Az + b)⟩)

= exp(⟨z, c⟩+ ⟨Az + b, Jw⟩)

= exp(⟨z,A∗Jw + c⟩+ ⟨w, Jb⟩)

=KJb(w)KA∗Jw+c(z), (2.7)

(A∗
ψ,φKw)(z) =⟨A∗

ψ,φKw,Kz⟩ = ⟨Aψ,φKz,Kw⟩ = (Aψ,φKz)(w)

=KJb(z)KA∗Jz+c(w)

=Kc(w)KJAw+Jb(z), (2.8)

A∗
ψ,φAψ,φKw =A∗

ψ,φ(KJb(w)KA∗Jw+c) = KJb(w)(A∗
ψ,φKA∗Jw+c)

=Kw(Jb)Kc(A
∗Jw + c)KJA(A∗Jw+c)+Jb

=Kw(Jb)Kc(A
∗Jw + c)KJAA∗Jw+JAc+Jb, (2.9)

Aψ,φA∗
ψ,φKw =Aψ,φ(Kc(w)KJAw+Jb) = Kc(w)(Aψ,φKJAw+Jb)

=Kw(c)KJb(JAw + Jb)KA∗J(JAw+Jb)+c

=Kw(c)KJb(JAw + Jb)KA∗Aw+A∗b+c. (2.10)
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2.3 Unitary weighted composition operators

In this subsection, we completely characterize the unitary (linear and anti-linear) weighted

composition operators on F(H).

Proposition 2.6 Let ψ(z) = kc(z) and φ be a mapping on H such that Cψ,φ is bounded. Then

Cψ,φ is isometric if and only if there exists a co-isometric operator A on H such that

φ(z) = Az −Ac.

Proof It follows from the proof of Theorem 2.4 that

U−cCψ,φ = Cφ1 , φ1(z) = φ(z + c).

So, by Lemma 2.3,

C∗
φ1
Cφ1 = C∗

ψ,φU
∗
−cU−cCψ,φ = C∗

ψ,φCψ,φ.

Hence Cψ,φ is isometric if and only if Cφ1 is isometric. By [1, Proposition 5.1], Cφ1 is isometric

if and only if there exists a co-isometric operator A on H such that φ1(z) = Az. Therefore, Cψ,φ

is isometric if and only if there exists a co-isometric operator A on H such that

φ(z) = φ1(z − c) = Az −Ac. 2
By Lemma 2.1 (2) and Proposition 2.6, we have the following result for anti-linear weighted

composition operators.

Corollary 2.7 Let ψ(z) = kc(z) and φ be a mapping on H such that Aψ,φ is bounded.

Then Aψ,φ is isometric if and only if there exists a co-isometric operator A on H such that

φ(z) = Az −Ac.

Theorem 2.8 Let ψ ∈ F(H) and φ be a mapping on H such that Cψ,φ is bounded.

(1) Cψ,φ is co-isometric if and only if there exists an isometric operator A on H and a vector

b ∈ H such that

φ(z) = Az + b, ψ(z) = ψ(0)K−A∗b(z), |ψ(0)|2 exp(∥b∥2) = 1. (2.11)

(2) Cψ,φ is a unitary if and only if there exists a unitary operator A on H and a vector b ∈ H
such that (2.11) holds.

Proof (1) Suppose that Cψ,φ is co-isometric. Then Cψ,φC
∗
ψ,φ = I. Thus

Kw(z) = (Cψ,φC
∗
ψ,φKw)(z) = ψ(w)ψ(z)Kφ(w)(φ(z)). (2.12)

Let w = 0. Then we have

ψ(0)ψ(z)Kφ(0)(φ(z)) = 1.

Let z = 0. Then

ψ(0)ψ(0)Kφ(0)(φ(0)) = 1.

Hence

|ψ(0)|2 exp(∥φ(0)∥2) = 1
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and

ψ(z) = ψ(0) exp(∥φ(0)∥2 − ⟨φ(z), φ(0)⟩). (2.13)

Taking (2.13) into (2.12), we obtain

exp(⟨z, w⟩) = |ψ(0)|2 exp(2∥φ(0)∥2) exp(−⟨φ(z), φ(0)⟩ − ⟨φ(0), φ(w)⟩+ ⟨φ(z), φ(w)⟩)

= exp(⟨φ(z)− φ(0), φ(w)− φ(0)⟩).

Hence

⟨φ(z)− φ(0), φ(w)− φ(0)⟩ = ⟨z, w⟩.

Let Az = φ(z) − φ(0). Then ⟨Az,Aw⟩ = ⟨z, w⟩ for all z, w ∈ H. So A is an isometric operator

on H, and

φ(z) = Az + b

with b = φ(0). It follows form (2.13) that

ψ(z) = ψ(0)K−A∗b(z).

Suppose that A is an isometric operator on H, b ∈ H such that ψ, φ satisfy the condition

(2.11). Let c = −A∗b. It follows from (2.6) that

(Cψ,φC
∗
ψ,φKw)(z) = |ψ(0)|2 exp(⟨Az,Aw⟩+ ⟨z,A∗b−A∗b⟩+ ⟨A∗b−A∗b, w⟩+ ⟨b, b⟩)

= Kw(z).

Hence Cψ,φC
∗
ψ,φ = I and Cψ,φ is co-isometric.

(2) Suppose that Cψ,φ is a unitary. Then Cψ,φ is isometric and co-isometric. It follows from

(1) that there exists an isometric operator A on H and a vector b ∈ H such that ψ,φ satisfy the

condition (2.11).

Let c = −A∗b. It follows from (2.5) that

exp(⟨z, w⟩) = Kw(z) = (C∗
ψ,φCψ,φKw)(z)

= |ψ(0)|2 exp(⟨A∗z,A∗w⟩+ ⟨z,−AA∗b+ b⟩+ ⟨−AA∗b+ b, w⟩+ ⟨−A∗b,−A∗b⟩)

= |ψ(0)|2 exp(⟨b, w⟩+ ⟨z, b⟩) exp(⟨A∗(z − b), A∗(w − b)⟩)

= exp(−⟨b, b⟩+ ⟨b, w⟩+ ⟨z, b⟩) exp(⟨A∗(z − b), A∗(w − b)⟩).

Hence

⟨z − b, w − b⟩ = ⟨A∗(z − b), A∗(w − b)⟩

for all z, w ∈ H. So A∗ is an isometric operator. Therefore, A is a unitary.

Suppose A is a unitary on H, b ∈ H such that ψ,φ satisfy the condition (2.11). Let c = −A∗b.

It follows from (2.5) and (2.6) that

(C∗
ψ,φCψ,φKw)(z)

= |ψ(0)|2 exp(⟨A∗z,A∗w⟩+ ⟨−AA∗b+ b, w⟩+ ⟨z,−AA∗b+ b⟩+ ⟨−A∗b,−A∗b⟩)

= |ψ(0)|2 exp(⟨z, w⟩+ ⟨b, b⟩) = Kw(z),
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(Cψ,φC
∗
ψ,φKw)(z)

= |ψ(0)|2 exp(⟨Az,Aw⟩+ ⟨z,A∗b−A∗b⟩+ ⟨A∗b−A∗b, w⟩+ ⟨b, b⟩) = Kw(z).

Hence Cψ,φC
∗
ψ,φ = C∗

ψ,φCψ,φ = I and Cψ,φ is a unitary. 2
For anti-linear weighted composition operators on F(H), we have the following conclusions.

Corollary 2.9 Let ψ ∈ F(H) and φ be a mapping on H such that Aψ,φ is bounded.

(1) Aψ,φ is co-isometric if and only if there exists an isometric operator A on H and a vector

b ∈ H such that the condition (2.11) holds.

(2) Aψ,φ is an anti-unitary if and only if there exists a unitary operator A on H and a vector

b ∈ H such that the condition (2.11) holds.

2.4. Self-adjoint weighted composition operators

In this subsection, we give a complete characterization of (linear and anti-linear) self-adjoint

weighted composition operators on F(H).

Theorem 2.10 Let ψ ∈ F(H), ψ ̸= 0 and φ be a mapping on H such that Cψ,φ is bounded on

F(H). Then Cψ,φ is self-adjoint if and only if there exists a self-adjoint operator A on H with

∥A∥ ≤ 1 and a vector b ∈ H such that

A(I +A)b ∈ ran(I −A2)
1
2 ,

φ(z) = Az + b, ψ(z) = ψ(0)Kb(z), ψ(0) is a nonzero real number.
(2.14)

Proof Suppose that Cψ,φ is a self-adjoint operator. Then Cψ,φ = C∗
ψ,φ. So we have

ψ(z) exp(⟨φ(z), w⟩) =ψ(z)Kw(φ(z)) = (Cψ,φKw)(z) = (C∗
ψ,φKw)(z)

=ψ(w)Kφ(w)(z) = ψ(w) exp(⟨z, φ(w)⟩). (2.15)

Let w = 0. We have

ψ(z) = ψ(0) exp(⟨z, φ(0)⟩). (2.16)

Since ψ ̸= 0, ψ(0) ̸= 0. Let z = 0 in (2.16). We have ψ(0) = ψ(0), which implies that ψ(0) is a

real number. Let b = φ(0). Then ψ(z) = ψ(0)Kb(z).

Taking (2.16) into (2.15), we obtain

ψ(0) exp(⟨z, φ(0)⟩+ ⟨φ(z), w⟩) = ψ(0) exp(⟨φ(0), w⟩+ ⟨z, φ(w)⟩).

So exp(⟨z, φ(w)− φ(0)⟩) = exp(⟨φ(z)− φ(0), w⟩). It follows that

⟨z, φ(w)− φ(0)⟩ = ⟨φ(z)− φ(0), w⟩.

Let Az = φ(z)− φ(0). Then ⟨z,Aw⟩ = ⟨Az,w⟩ for all z, w ∈ H. So A is a self-adjoint operator

on H and φ(z) = Az + b with b = φ(0).

Since Cψ,φ is bounded, it follows from Theorem 2.4 that ∥A∥ ≤ 1 and

A(I +A)b = A∗(b+Ab) ∈ ran(I −A∗A)
1
2 = ran(I −A2)

1
2 .



Weighted composition operators on the symmetric Fock space 603

Suppose that A is a self-adjoint operator on H with ∥A∥ ≤ 1 and b ∈ H such that the

condition (2.14) holds. Let c = b. Then by (2.3) and (2.4), we have

(Cψ,φKw)(z) = ψ(0) exp(⟨b, w⟩)KA∗w+b(z),

(C∗
ψ,φKw)(z) = ψ(0) exp(⟨b, w⟩)KAw+b(z).

It follows from A = A∗ that Cψ,φKw = C∗
ψ,φKw. Hence Cψ,φ is self-adjoint. 2

Theorem 2.11 Let ψ ∈ F(H), ψ ̸= 0 and φ be a mapping on H such that Aψ,φ is bounded

on F(H). Then Aψ,φ is self-adjoint if and only if there exists a J-symmetric operator A on H
with ∥A∥ ≤ 1 and a vector b ∈ H such that

JA(I + JA)Jb ∈ ran(I − (JA)2)
1
2 ,

φ(z) = Az + b, ψ(z) = ψ(0)KJb(z).
(2.17)

Proof Suppose that Aψ,φ is a self-adjoint operator. Then Aψ,φ = A∗
ψ,φ. So we have

ψ(z) exp(⟨φ(z), Jw⟩) =ψ(z) exp(⟨w, Jφ(z)⟩) = ψ(z)exp(⟨Jφ(z), w⟩)

=ψ(z)Kw(Jφ(z)) = (Aψ,φKw)(z)

=(A∗
ψ,φKw)(z) = ψ(w)KJφ(w)(z)

=ψ(w) exp(⟨z, Jφ(w)⟩). (2.18)

Let w = 0. We have

ψ(z) = ψ(0) exp(⟨z, Jφ(0)⟩). (2.19)

Since ψ ̸= 0, ψ(0) ̸= 0. Let b = φ(0). Then

ψ(z) = ψ(0)KJb(z).

Taking (2.19) into (2.18), we obtain

ψ(0) exp(⟨z, Jφ(0)⟩+ ⟨φ(z), Jw⟩) = ψ(0) exp(⟨w, Jφ(0)⟩+ ⟨z, Jφ(w)⟩).

So exp(⟨z, J(φ(w)− φ(0))⟩) = exp(⟨w, J(φ(z)− φ(0))⟩). It follows that

⟨z, J(φ(w)− φ(0))⟩ = ⟨w, J(φ(z)− φ(0))⟩.

Let Bz = J(φ(z)− φ(0)). Then ⟨z,Bw⟩ = ⟨w,Bz⟩. So B is an anti-linear self-adjoint operator

on H. Let A = JB. Then

A∗ = JAJ, φ(z) = Az + b

with b = φ(0).

Since Aψ,φ is bounded, it follows from Corollary 2.5 that ∥A∥ ≤ 1 and

JA(I + JA)Jb = A∗(b+AJb) ∈ ran(I −A∗A)
1
2 = ran(I − (JA)2)

1
2 .

Suppose that A is a J-symmetric operator on H with ∥A∥ ≤ 1 and b ∈ H such that the

condition (2.17) holds. Then we have

(Aψ,φKw)(z) = ψ(z)Kw(Jφ(z)) = ψ(0) exp(⟨z, Jb⟩)exp(⟨J(Az + b), w⟩)
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= ψ(0) exp(⟨z, Jb⟩) exp(⟨w, J(Az + b)⟩),

(A∗
ψ,φKw)(z) = ψ(w)Kz(Jφ(w)) = ψ(0) exp(⟨w, Jb⟩)exp(⟨J(Aw + b), z⟩)

= ψ(0) exp(⟨w, Jb⟩) exp(⟨z, J(Aw + b)⟩).

It follows from A = JA∗J that Aψ,φKw = A∗
ψ,φKw. Hence Aψ,φ is self-adjoint. 2

Remark 2.12 By Lemma 2.1, we know that Aψ,φ is a bounded self-adjoint operator on F(H)

if and only if Cψ,φ is bounded on F(H) and

JCψ,φJ = C∗
ψ,φ.

That is, Aψ,φ is bounded and self-adjoint on F(H) if and only if Cψ,φ is bounded and J -

symmetric on F(H). Therefore, Theorem 2.11 is also the characterization for bounded weighted

composition operators Cψ,φ to be J -symmetric on F(H).

Since an anti-linear operator is a conjugation if and only if the operator is both unitary and

self-adjoint, we obtain the following result by Corollary 2.9 (2) and Theorem 2.11.

Corollary 2.13 Let ψ ∈ F(H) and φ be a mapping on H such that Aψ,φ is bounded on F(H).

Then Aψ,φ is a conjugation if and only if there exists a J-symmetric unitary operator A on H
and a vector b ∈ H such that

(I + JA)Jb = 0,

φ(z) = Az + b, ψ(z) = ψ(0)KJb(z), |ψ(0)|2 exp(∥b∥2) = 1.
(2.20)

2.5. Normal weighted composition operators

In this subsection, we characterize a class of normal weighted composition operators on F(H).

Theorem 2.14 Let ψ(z) = Kc(z) and φ be a mapping on H such that Cψ,φ is bounded on

F(H).

(1) Cψ,φ is normal if and only if there exists a normal operator A on H with ∥A∥ ≤ 1 and a

vector b ∈ H such that

φ(z) = Az + b,

A∗(b+Ac) ∈ ran(I −A∗A)
1
2 , ⟨c, c⟩ = ⟨b, b⟩, Ac+ b = A∗b+ c.

(2.21)

(2) Aψ,φ is normal if and only if there exists an operator A on H with ∥A∥ ≤ 1, JAA∗J =

A∗A and a vector b ∈ H such that

φ(z) = Az + b,

A∗(b+Ac) ∈ ran(I −A∗A)
1
2 , ⟨c, c⟩ = ⟨b, b⟩, J(Ac+ b) = A∗b+ c.

(2.22)

Proof (1) By Theorem 2.4, we know that

φ(z) = Az + b, A∗(b+Ac) ∈ ran(I −A∗A)
1
2 ,

where A is a linear operator on H with ∥A∥ ≤ 1 and b ∈ H.

Cψ,φ is normal if and only if

(C∗
ψ,φCψ,φKw)(z) = (Cψ,φC

∗
ψ,φKw)(z)
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for all z, w ∈ H. It follows from (2.5) and (2.6) that

(C∗
ψ,φCψ,φKw)(z) = exp(⟨A∗z,A∗w⟩+ ⟨Ac+ b, w⟩+ ⟨z,Ac+ b⟩+ ⟨c, c⟩),

(Cψ,φC
∗
ψ,φKw)(z) = exp(⟨Az,Aw⟩+ ⟨z,A∗b+ c⟩+ ⟨A∗b+ c, w⟩+ ⟨b, b⟩).

So Cψ,φ is normal if and only if

⟨A∗z,A∗w⟩+ ⟨Ac+ b, w⟩+ ⟨z,Ac+ b⟩+ ⟨c, c⟩

= ⟨Az,Aw⟩+ ⟨z,A∗b+ c⟩+ ⟨A∗b+ c, w⟩+ ⟨b, b⟩. (2.23)

Let z = w = 0 in (2.23). We have ⟨c, c⟩ = ⟨b, b⟩. Taking this equation into (2.23) and let

w = 0, we have

⟨z,Ac+ b⟩ = ⟨z,A∗b+ c⟩

for all z ∈ H, which implies that

Ac+ b = A∗b+ c.

Taking these equations into (2.23), we obtain

⟨A∗z,A∗w⟩ = ⟨Az,Aw⟩

for all z, w ∈ H, which implies that A is normal. The necessary conditions are completed.

Let A be a normal operator on H with ∥A∥ ≤ 1 and b ∈ H such that the condition (2.21)

holds. Then equation (2.23) is true, which implies that Cψ,φ is normal.

(2) By Corollary 2.5, we know that

φ(z) = Az + b, A∗(b+Ac) ∈ ran(I −A∗A)
1
2 ,

where A is a linear operator on H with ∥A∥ ≤ 1 and b ∈ H.

Aψ,φ is normal if and only if

(A∗
ψ,φAψ,φKw)(z) = (Aψ,φA∗

ψ,φKw)(z)

for all z, w ∈ H. It follows from (2.9) and (2.10) that

(A∗
ψ,φAψ,φKw)(z) = exp(⟨Jb, w⟩+ ⟨A∗Jw + c, c⟩+ ⟨z, JAA∗Jw + JAc+ Jb⟩)

= exp(⟨J(Ac+ b), w⟩+ ⟨c, c⟩+ ⟨z, JAA∗Jw⟩+ ⟨z, J(Ac+ b)⟩),

(Aψ,φA∗
ψ,φKw)(z) = exp(⟨c, w⟩+ ⟨JAw + Jb, Jb⟩+ ⟨z,A∗Aw +A∗b+ c⟩)

= exp(⟨A∗b+ c, w⟩+ ⟨Jb, Jb⟩+ ⟨z,A∗Aw⟩+ ⟨z,A∗b+ c⟩).

So Aψ,φ is normal if and only if

⟨J(Ac+ b), w⟩+ ⟨c, c⟩+ ⟨z, JAA∗Jw⟩+ ⟨z, J(Ac+ b)⟩

= ⟨A∗b+ c, w⟩+ ⟨Jb, Jb⟩+ ⟨z,A∗Aw⟩.+ ⟨z,A∗b+ c⟩. (2.24)

Let z = w = 0 in (2.24). We have

⟨c, c⟩ = ⟨Jb, Jb⟩ = ⟨b, b⟩.
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Taking the equation above into (2.24) and then let w = 0, we have

⟨J(Ac+ b), z⟩ = ⟨A∗b+ c, z⟩

for all z ∈ H, which implies that

J(Ac+ b) = A∗b+ c.

Taking these equations into (2.24), we obtain

JAA∗J = A∗A.

The necessary condition is proved.

Let A be an operator on H with ∥A∥ ≤ 1, JAA∗J = A∗A and b ∈ H such that the condition

(2.22) holds. Then equation (2.24) is true, which implies that Aψ,φ is normal. 2
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