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Abstract In this paper, the shadowing property for 1-dimensional subsystems of Zk-actions is

investigated. The concepts of pseudo orbit and shadowing property for 1-dimensional subsystems

of Zk-actions are introduced in two equivalent ways. For a smooth Zk-action T on a closed

Riemannian manifold, we propose a notion of Anosov direction via the induced nonautonomous

dynamical system. Adapting Bowen’s geometric method to our case, we show that T has the

Lipschitz shadowing property along any Anosov direction.
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1. Introduction

It is well known that the structural stability is a classical theory of smooth dynamical systems

(i.e., smooth actions of the groups Z or R), which has led to the development of shadowing theory.

The shadowing property describes the behaviour of pseudo orbits on or near a hyperbolic set.

The classical shadowing lemma states that every pseudo orbit lying in a small neighborhood of

a hyperbolic set stays uniformly close to some true orbit (with slightly altered initial position).

At present, shadowing theory is a well developed branch of the theory of dynamical systems, for

the general theory of shadowing theory, we refer to the books [1–3].

Recent years, global qualitative properties of actions of groups more general than Z and R
have been extensively investigated. For the shadowing theory, there are several recent works

for the Abelian group actions in [4–6]. For example, Pilyugin and Tikhomirov [4] considered

the characterization of a classical linear Zk-action T on Cm generated by pairwise commuting

matrices which has the shadowing property [4, Theorem 2]. Precisely, a linear Zk-action on

Cm has the Lipschitz shadowing property if and only if there exists at least one hyperbolic 1-

dimensional rational subspace of Rk, here a 1-dimensional subspace L of Rk is said to be rational

if L passes through some integer lattices except for the origin
−→
0 . When each of the above
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generators Ai, 1 ≤ i ≤ k, has integer entries and whose determinant is equal to ±1, we can get,

from the above result, a characterization of the induced Zk-action T on the torus Tm which

has the shadowing property. A natural question is: for more general Zk-actions on compact

metric spaces or Riemannian manifolds, how can we consider the shadowing property along

1-dimensional subspaces, including rational and irrational cases, of Rk?

The main aim of this paper is to answer the above question for certain Zk-actions. Let (X, d)

be a compact metric space and T be a continuous Zk-action on X. Given a nonzero vector
−→v ∈ Rk, let L−→v be the 1-dimensional subspace of Rk in which −→v lies.

In Section 2, we introduce the definitions of pseudo orbit and shadowing property for T along

L−→v in two ways. One way is based on the “thickening” technique which was introduced by Boyle

and Lind [7] to investigate the expansive subdynamics of T . For irrational L−→v , this technique

makes it “visible” in Zk via thickening L−→v by a positive number t, and hence pseudo orbit and

shadowing property are defined via these visible elements in Zk. The other way is to choose a

sequence of maps {gn}n∈Z along L−→v and define the pseudo orbit and shadowing property via the

induced nonautonomous dynamical system. It is shown that the shadowing properties defined

in these two ways are equivalent (Theorem 2.6).

In Section 3, we investigate the Lipschitz shadowing property for smooth Zk-actions. Let

X = M be a closed Riemannian manifold and T be a differentiable Zk-action. It is well known

that in the classical theory of smooth Z1 actions, we often require that the system have cer-

tain hyperbolicity when the shadowing property is considered. For a smooth Zk-action T , we

propose a notion of hyperbolic (Anosov) direction via the induced nonautonomous dynamical

system. Adapting Bowen’s geometric method in [8] to our case, we show that T has the Lipschitz

shadowing property along any Anosov direction (Theorem 3.4).

2. Shadowing for 1-dimensional subsystems of Zk-actions

Let (X, d) be a compact metric space and denote the group of homeomorphisms on X with

Homeo(X,X). Fix k > 1. A continuous Zk-action T on X is a homomorphism from Zk to

Homeo(X,X) satisfying the following properties:

• T
−→n (·) ∈ Homeo(X,X) for −→n ∈ Zk;

• T
−→
0 (x) = x for x ∈ X;

• T
−→n+−→m(·) = T

−→n (T
−→m(·)) for −→n ,−→m ∈ Zk.

Note that T is generated by k pairwise commuting homeomorphisms, we denote the collection

of generators by

G = {fi = T (−→ei ) = T
−→ei : 1 ≤ i ≤ k}, (2.1)

where −→ei = (0, . . . , 1(i), . . . , 0) is the standard i-th generator of Zk. A Borel probability measure

µ on X is said to be T -invariant, if µ is fi-invariant for 1 ≤ i ≤ k. We say a subset Γ ⊂ X is

T -invariant if fi(Γ) = Γ for each i.

In [4], Pilyugin and Tikhomirov introduced the notions of pseudo orbits and shadowing

property for T . Here we state them in the following equivalent forms. Let δ > 0 and ε > 0. A
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set of points ξ = {x−→n : −→n ∈ Zk} is called a δ-pseudo orbit of T on Γ if ξ ⊂ Γ and

sup
−→n∈Zk

max
1≤i≤k

d(x−→n+−→e i
, fi(x−→n )) ≤ δ.

A point x ∈ X is called ε-shadows the above pseudo orbit ξ if

sup
−→n∈Zk

d(x−→n , T
−→n (x)) ≤ ε.

Definition 2.1 Let T be a Zk-action on X and Γ be a T -invariant set.

(1) We say that T has the shadowing property on Γ provided for any ε > 0 there exists

δ > 0 such that every δ-pseudo orbit for T in Γ can be ε-shadowed by some point x ∈ X. In

particular, when Γ = X, we say that T has the shadowing property.

(2) We say that T has the Lipschitz shadowing property for T on Γ provided there exist

δ0, L̂ > 0 such that any δ-pseudo orbit of T in Γ with δ ≤ δ0 can be L̂δ-shadowed by some point

x ∈ X. In particular, when Γ = X, we say that T has the Lipschitz shadowing property for T .

Combining with another important property “expansiveness”, Pilyugin and Tikhomirov [4]

showed that if there exists−→n ∈ Zk such that the homeomorphism T
−→n has the shadowing property

(in another word, T has the shadowing property along a 1-dimensional rational subspace of Rk),

then T has the shadowing property [4, Theorem 1]. And then they gave a characterization of a

classical linear Zk-action T on Cm which has the Lipschitz shadowing property, as we mentioned

in the Introduction section. Their work inspires us to consider how to introduce the definitions

of pseudo orbits and shadowing property for T along irrational 1-dimensional subspaces of Rk

and use them to investigate the shadowing property for general smooth Zk-actions.

Given a nonzero vector −→v = (v1, . . . , vk) ∈ Rk, and denote L−→v = {
−→
v′ :

−→
v′ = k−→v ,−→v ∈ Rk, k ∈

R}, which is a 1-dimensional subspace of Rk. Here, let the direction of L−→v be the direction of

vector −→v . We call L−→v (or −→v ) is rational if L−→v ∩ Zk\{−→0 } ≠ ∅, i.e., the 1-dimensional subspace

L−→v passes through some integer lattices except for
−→
0 . Otherwise, we say L−→v (or −→v ) is irrational.

Since a subspace L−→v of Rk may be “invisible” within Zk, we use the technique of thickening L−→v

by a positive number t to make L−→v be “visible”. The following notations concerning thickening

are derived from [7].

For a subspace L−→v of Rk, let |·| denote the Euclidean norm on Rk and πL−→v denote orthogonal

projection to L−→v along its orthogonal complement L⊥−→v , so that πL−→v + πL⊥−→v
= id. Then the set

Lt−→v = {
−→
v′ ∈ Rk : |πL⊥−→v

(
−→
v′ )| ≤ t}

is the result of thickening L−→v by t.

For any L−→v , we can select t > 0 such that Lt−→v ∩ Zk\{−→0 } ̸= ∅. Given −→n = (n1, . . . , nk) ∈
Lt−→v ∩Zk, for each 1 ≤ i ≤ k, let −→n i+ (resp., −→n i−) be the element of Lt−→v ∩Zk which is nearest to
−→n in the i-th positive (resp., negative) direction, and if no such −→n i+ (resp., −→n i−) exists, then

let −→n i+ = −→n (resp., −→n i− = −→n ). Hence, the set

{−→n } ∪ {−→n i+ ,
−→n i− : 1 ≤ i ≤ k}

is a “small” neighborhood of −→n in Lt−→v ∩Zk consisting of −→n and its adjacent elements along the
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axis directions.

Let Γ be a T -invariant set. Fix δ > 0 and ε > 0. A set of points ξ = {x−→n : −→n ∈ Lt−→v ∩ Zk} is

called a δ-pseudo orbit of Lt−→v for T on Γ if ξ ⊂ Γ and

sup
−→n∈Lt−→v ∩Zk

max
1≤i≤k

{d(x−→n , T
−→n−−→n i− (x−→n i−

)), d(x−→n i+
, T

−→n i+
−−→n (x−→n ))} ≤ δ.

A point x ∈ X is called ε-shadows the above pseudo orbit ξ if

sup
−→n∈Lt−→v ∩Zk

d(x−→n , T
−→n (x)) ≤ ε.

Definition 2.2 Let T be a Zk-action on X and Γ be a T -invariant set.

(1) We say that L−→v has the shadowing property for T on Γ provided there exists t > 0

satisfying the following property: for any ε > 0 there exists δ > 0 such that every δ-pseudo orbit

of Lt−→v for T in Γ can be ε-shadowed by some point x ∈ X. In particular, when Γ = X, we say

that L−→v has the shadowing property for T .

(2) We say that L−→v has the Lipschitz shadowing property for T on Γ provided there exist

t, δ0, L̂ > 0 such that any δ-pseudo orbit of Lt−→v for T in Γ with δ ≤ δ0 can be L̂δ-shadowed by

some point x ∈ X. In particular, when Γ = X, we say that L−→v has the Lipschitz shadowing

property for T .

Via the thickening technique, we have given the definitions of pseudo orbits and shadowing

property for T along 1-dimensional subspaces, especially the irrational cases, of Rk. Now we

redefine these notions via the nonautonomous dynamical systems along L−→v and discuss the

equivalence of these two kinds of definitions.

Given −→v = (v1, . . . , vk) ̸= −→
0 , we define the nonautonomous dynamical systems along L−→v .

Firstly define a sequence of {−→mn}n∈Z ⊂ Zk as follows: choose −→mn to be any integer vector in

{−→m : |−→m − n
−→v
|−→v |

| = min−→
l ∈Zk

|
−→
l − n

−→v
|−→v |

|}

with the smallest norm, where |−→v | =
√

v21 + · · ·+ v2k. Obviously, −→m0 = (0, . . . , 0) and for any
−→mn = (mn,1, . . . ,mn,k),

−→mn′ = (mn′,1, . . . ,mn′,k) and 1 ≤ i ≤ k, if n < n′ then mn,i ≤ mn′,i for

vi ≥ 0 (or mn,i ≥ mn′,i for vi ≤ 0).

Definition 2.3 Let gn = T
−→mn+1−−→mn for n ∈ Z. Note that gn = id when −→mn+1 = −→mn. Then we

call g
−→v
−∞,+∞ = {gn}n∈Z is a nonautonomous dynamical system along L−→v .

Clearly, the sequence {−→mn}n∈Z and hence the induced nonautonomous dynamical system

g
−→v
−∞,+∞ along L−→v , may not be unique. However, we can see that for any such {−→mn}n∈Z, we

have

lim
n→∞

(
mn,1√∑k
i=1(mn,i)2

, . . . ,
mn,k√∑k
i=1(mn,i)2

) =
1

|−→v |
(v1, . . . , vk). (2.2)

Remark 2.4 Fix a nonautonomous dynamical system g
−→v
−∞,∞ = {gn}n∈Z along L−→v as above.

Note that if −→mn+1 = −→mn, then gn = id. By the definition of g
−→v
−∞,∞, there are at most [

√
k]

adjacent identity mappings between any two non-identity mappings in g
−→v
−∞,∞. In the long run,
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these identity mappings do not affect the dynamic behavior of g
−→v
−∞,∞, particularly the shadowing

property of g
−→v
−∞,∞ discussed below. Take such gn = id away successively from g

−→v
−∞,∞, we get a

modified nonautonomous dynamical system (g
−→v
−∞,∞)′ along L−→v . Without loss of generality, we

always assume in the rest of this paper that no element in g
−→v
−∞,∞ = {gn}n∈Z is equal to id.

Let α, ε > 0. A sequence of points ξ = {xn}+∞
n=−∞ is said to be an α-pseudo orbit for

g
−→v
−∞,+∞ = {gn}n∈Z on Γ if ξ ⊂ Γ and

sup
n∈Z

d(gn(xn), xn+1) ≤ α.

We say that x ∈ X ε-shadows an α-pseudo orbit ξ = {xn}+∞
n=−∞ if

max{sup
n≥0

d(gn0 (x), xn), sup
n<0

d((g−1
n )−1(x), xn)} ≤ ε,

where gn0 = gn−1 ◦ · · · ◦ g0 for n ≥ 1, gn0 = id for n = 0 and g−1
n = g−1 ◦ · · · ◦ gn for n ≤ −1.

Definition 2.5 Let T be a Zk-action on X and Γ be a T -invariant set.

(1) We say that g
−→v
−∞,+∞ has the shadowing property on Γ provided that for any ε > 0 there

exists α > 0 such that every α-pseudo orbit for g
−→v
−∞,+∞ in Γ can be ε-shadowed by some point

x ∈ X. In particular, when Γ = X, we say that g
−→v
−∞,+∞ has the shadowing property.

(2) We say that g
−→v
−∞,+∞ has the Lipschitz shadowing property on Γ provided there exist

α0, L > 0 such that any α-pseudo orbit (with α ≤ α0) for g
−→v
−∞,+∞ in Γ can be Lα-shadowed by

some point x ∈ X. In particular, when Γ = X, we say that g
−→v
−∞,+∞ has the Lipschitz shadowing

property.

The sequence of the generators {fi : 1 ≤ i ≤ k} is said to be equi-Lipschitz continuous if

there exists a constant L′
1 such that d(fi(x), fi(y)) ≤ L′

1d(x, y) for any x, y ∈ X, 1 ≤ i ≤ k.

Theorem 2.6 Let T be a continuous Zk-action on X and Γ be a T -invariant set. Fix a nonzero
−→v ∈ Rk and let g

−→v
−∞,+∞ = {gn}n∈Z be a nonautonomous dynamical system along L−→v . Then

the following statements are equivalent:

(1) L−→v has the shadowing property for T on Γ.

(2) g
−→v
−∞,+∞ has the shadowing property on Γ.

Moreover, if the family of generators {fi : 1 ≤ i ≤ k} is equi-Lipschitz continuous on X, then

for any −→v ∈ Rk the following statements are equivalent:

(1’) L−→v has the Lipschitz shadowing property for T on Γ.

(2’) g
−→v
−∞,+∞ has the Lipschitz shadowing property on Γ.

Proof By Definition 2.3, there is a sequence of {−→mn}n∈Z ⊂ Zk such that gn = T
−→mn+1−−→mn .

(1)⇒(2). Suppose L−→v has the shadowing property for T on Γ, i.e., there exists t > 0 satisfying

the following property: for any ε > 0 there exists δ(ε) > 0 such that

every δ(ε)-pseudo orbit of Lt−→v in Γ can be ε-shadowed by some point x ∈ X. (2.3)

Here t may be less than
√
k or greater than or equal to

√
k. When t ≥

√
k, then clearly

{−→mn}n∈Z ⊂ Lt−→v ∩Zk. Otherwise, we can choose t1 >
√
k > t and show in the following that L−→v
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has the shadowing property for T on Γ with the thickness t1. Let ξ = {x−→n : −→n ∈ Lt1−→v ∩ Zk} be

a δ-pseudo orbit of Lt1−→v on Γ for some δ > 0, then clearly its subset ξ′ = {x−→n : −→n ∈ Lt−→v ∩ Zk}
is also a δ-pseudo orbit of Lt−→v . By equicontinuity of {fi : 1 ≤ i ≤ k}, for any ε > 0 there exists

ε′ > 0 such that if ξ′ is ε′ shadowed by a point x, then ξ can be ε shadowed by the same point.

For ε′, take δ(ε′) > 0 such that (2.3) holds. So any δ(ε′)-pseudo orbit ξ = {x−→n : −→n ∈ Lt1−→v ∩ Zk}
on Γ can be ε shadowed by some point, and hence we get that L−→v has the shadowing property

for T on Γ with the thickness t1. For simplicity of notations, we therefore assume that t ≥
√
k

and then

{−→mn}n∈Z ⊂ Lt−→v ∩ Zk. (2.4)

Now we show that g
−→v
−∞,+∞ has the shadowing property on Γ. Given ε > 0, take δ(ε) > 0

such that (2.3) holds. By equicontinuity of {fi : 1 ≤ i ≤ k} and (2.4), for the above δ(ε) there

exists α > 0 such any α-pseudo orbit ξ for g
−→v
−∞,+∞ can be extended to a δ(ε)-pseudo orbit η(ξ)

of Lt−→v . Therefore, by (2.3) η(ξ) can be ε-shadowed by some point x ∈ X with respect to Lt−→v ,

and hence clearly ξ can be ε-shadowed by x with respect to g
−→v
−∞,+∞. This shows that g

−→v
−∞,+∞

has the shadowing property on Γ.

(2)⇒(1). We choose t >
√
k such that (2.4) holds, and show in the following that L−→v has

the shadowing property for T on Γ with the thickness t.

Let ξ = {x−→n : −→n ∈ Lt−→v ∩Zk} be a pseudo orbit of Lt−→v and its subsequence η = {x−→mn
}+∞
n=−∞

be a pseudo orbit for g
−→v
−∞,+∞. By equicontinuous of {fi : 1 ≤ i ≤ k}, for any ε > 0 there

exists ε0 > 0 such that if η is ε0-shadowed by a point x ∈ X then ξ can be ε-shadowed by the

same point x. Suppose g
−→v
−∞,+∞ has the shadowing property on Γ, then for ε0 > 0 there exists

α > 0 such that any α-pseudo orbit η for g
−→v
−∞,+∞ can be ε0-shadowed by some point x ∈ X.

By equicontinuous of {fi : 1 ≤ i ≤ k} and (2.4), for α > 0 there exists δ > 0 such that if ξ

is a δ-pseudo orbit of Lt−→v , then its subsequence η is an α-pseudo orbit for g
−→v
−∞,+∞. So any

δ-pseudo orbit of Lt−→v can be ε-shadowed by some point x ∈ X, and hence we get that L−→v has

the shadowing property on Γ.

Now suppose that the family of generators {fi : 1 ≤ i ≤ k} is equi-Lipschitz continuous on

X. Then it is clear that g
−→v
−∞,∞ is also equi-Lipschitz continuous.

(1’)⇒(2’). Suppose L−→v has the Lipschitz shadowing property for T on Γ, then there exist

t > 0, δ0, L̂ > 0 such that any δ-pseudo orbit of Lt−→v for T in Γ with δ ≤ δ0 can be L̂δ-shadowed

by some point x ∈ X. By a similar discussion as in (1)⇒(2), we can get L̂ increases while as t

increases. Without loss of generality, we assume that t ≥
√
k and then (2.4) holds.

Now we show that g
−→v
−∞,+∞ has the Lipschitz shadowing property on Γ. By equi-Lipschitz

continuity of {fi : 1 ≤ i ≤ k} and (2.4), there exists K > 0 such that any α-pseudo orbit ξ

for g
−→v
−∞,+∞ can be extended to a Kα-pseudo orbit η(ξ) of Lt−→v for T . Therefore, by Lipschitz

shadowing property of L−→v , the Kα-pseudo orbit(Kα ≤ δ0) η(ξ) can be L̂Kα-shadowed by some

point x ∈ X with respect to Lt−→v , and hence clearly the α-pseudo orbit(α ≤ α0) ξ can be Lα-

shadowed by x with respect to g
−→v
−∞,+∞, where α0 = δ0

K and L = L̂K. This shows that g
−→v
−∞,+∞

has the Lipschitz shadowing property on Γ.
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(2’)⇒(1’). We choose t >
√
k such that (2.4) holds, and show in the following that L−→v has

the Lipschitz shadowing property for T on Γ with the thickness t. Let ξ = {x−→n : −→n ∈ Lt−→v ∩Zk}
be a δ-pseudo orbit of Lt−→v for T on Γ, by equi-Lipschitz continuity of {fi : 1 ≤ i ≤ k} and (2.4),

there exists K ′(L′
1) > 0 such that its subsequence η = {x−→mn

}+∞
n=−∞ is a K ′δ-pseudo orbit for

g
−→v
−∞,+∞. Suppose g

−→v
−∞,+∞ has the Lipschitz shadowing property, then η can be LK ′δ-shadowed

by some point x ∈ X if K ′δ ≤ α0. By equi-Lipschitz continuity of {fi : 1 ≤ i ≤ k} again,

there exists L̂(L′
1, L) such that ξ is L̂δ-shadowed by the same point. Thus L−→v has the Lipschitz

shadowing property on Γ with constants δ0 = α0

K′ , L̂ > 0. 2
3. Shadowing along an Anosov direction for smooth Zk-actions

In this section, we investigate the shadowing property of 1-dimensional subsystems for smooth

Zk-actions. Let M be an m-dimensional closed Riemannian manifold. We denote by ∥ · ∥ and

d(·, ·), respectively, the norm on TM and the metric on M induced by the Riemmanian metric.

Let T : Zk →Diffr(M,M), r ≥ 1, be a Cr Zk-action on M , where Diffr(M,M) is the space

of Cr diffeomorphisms equipped with the Cr-topology. We still denote the generators of T by

fi, 1 ≤ i ≤ k. A Borel probability measure µ on M is said to be T -invariant (resp., ergodic), if

µ is fi-invariant (resp., ergodic) for each i.

In the classical theory of smooth Z1 actions, we often require that the system has certain

hyperbolicity when the shadowing property is considered [2, 3]. For example, any Anosov dif-

feomorphism has the Lipschitz shadowing property and, more generally, any diffeomorphism has

the Lipschitz shadowing property on its hyperbolic sets.

Definition 3.1 Let T be a smooth Zk-action on M and Γ be a T -invariant set. We say that T

has a hyperbolic direction on Γ provided there exists a nonzero −→v ∈ Rk such that any induced

nonautonomous dynamical system g
−→v
−∞,+∞ = {gn}n∈Z is uniformly hyperbolic on Γ in the fol-

lowing sense: there exist an invariant splitting TΓM = Es
⊕

Eu and constants 0 < λ < 1, N > 0

such that for any x ∈ Γ, t ∈ Z we have

∥D(gt+N−1 ◦ · · · ◦ gt)(x)v∥ ≤ λ∥v∥, v ∈ Es(x),

∥D(gt+N−1 ◦ · · · ◦ gt)−1(x)v∥ ≤ λ∥v∥, v ∈ Eu(x).

Particularly, when Γ = M , we say that T has an Anosov direction.

Example 3.2 Let T be the Z2-action on the torus T2 with the generators induced by the

matrices {A1, A2}, where

A1 =

(
2 1

1 1

)
and A2 = A−1

1 =

(
1 −1

−1 2

)
.

Clearly, they are both hyperbolic. The eigenvalues of A1 are λ1 = 3+
√
5

2 and λ2 = 3−
√
5

2 , and

let E1 and E2 be the corresponding eigenspaces in R2. Since A2 is the inverse of A1, A2 has

eigenvalues µ1 = λ2 and µ2 = λ1, with eigenspaces F1 = E2 and F2 = E1. Denote by G1 the set
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of all 1-dimensional subspaces (or 1-planes) of R2. Let L1 be the line in G1 with slope 1. We

can see that any direction of L−→v ∈ G1 \ {L1} is an Anosov direction.

Example 3.3 Let T be a Cr, r ≥ 1,Zk-action on M with the generators {fi, 1 ≤ i ≤ k} and

µ a T -ergodic measure. By the Multiplicative Ergodic Theorem for T (see [9]), there exist a

measurable T -invariant set Γ ∈ M with µ(Γ) = 1, an invariant splitting TΓM =
⊕s

j=1 Ej , and

numbers λi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ s, satisfying the following properties:

(1) for 0 ̸= u ∈ Ej , 1 ≤ j ≤ s,

lim
n→±∞

1

n
log ∥Dfn

i (x)u∥ = λi,j , x ∈ Γ. (3.1)

(2) for each −→n = (n1, . . . , nk) ∈ Zk, each 1 ≤ j ≤ s and any 0 ̸= u ∈ Ej , we have

lim
t→±∞

1

t
log ∥D(fn1

1 ◦ · · · ◦ fnk

k )t(x)u∥ =

k∑
i=1

niλi,j , x ∈ Γ. (3.2)

For a nonzero vector −→v = (v1, . . . , vk) ∈ Rk and a nonautonomous dynamical system

g
−→v
−∞,∞ = {gn}n∈Z along L−→v , by the proof of [10, Theorem 3.3], we can see

lim
n→∞

1

n
log ∥D(gn+t−1 ◦ · · · ◦ gt)(x)u∥ =

k∑
i=1

vi
|−→v |

λij , t ∈ Z, x ∈ Γ, u ∈ Ej .

If the limit in (3.1) is uniform in x ∈ Γ, then we can see that any nonzero vector −→v =

(v1, . . . , vk) ∈ Rk with
∑k

i=1 viλi,j ̸= 0, 1 ≤ j ≤ s, can determine a hyperbolic direction on

Γ.

Now we give the main result of this paper.

Theorem 3.4 Let T be a Cr, r ≥ 1,Zk-action on M . If T has an Anosov direction, then there

exists L−→v which has the Lipschitz shadowing property for T on M .

Since M is compact, ∥Dfi∥ is bounded for any i ∈ {1, . . . , k}, then the family {fi : 1 ≤ i ≤ k}
is equi-Lipschitz continuous. By Theorem 2.6, we only need to prove that any nonautonomous

dynamical system g
−→v
−∞,+∞ along L−→v has the Lipschitz shadowing property on M .

Lemma 3.5 For a fixed N > 0, there exists a constant L∗
1 such that if a sequence of points

ξ = {xk}+∞
k=−∞ is an α-pseudo orbit for g

−→v
−∞,∞ = {gn}n∈Z, then the subsequence of points

ξ′ = {xkN}+∞
k=−∞ is a L∗

1α-pseudo orbit for {g(k+1)N−1 ◦ · · · ◦ gkN}k∈Z.

Proof Clearly, the sequence g
−→v
−∞,+∞ = {gn}n∈Z of maps is equi-Lipschitz continuous, i.e., there

exists a constant L1 such that d(gn(x), gn(y)) ≤ L1d(x, y) for any x, y ∈ Γ, n ∈ Z.
Since ξ = {xn}+∞

n=−∞ is an α-pseudo orbit, we have d(gn(xn), xn+1) ≤ α. By Lipschitz conti-

nuity, d(g0(x0), x1) ≤ α implies d(g1◦g0(x0), g1(x1)) ≤ L1d(g0(x0), x1) ≤ L1α, and d(g1(x1), x2) ≤
α, then we have d(g1 ◦ g0(x0), x2) ≤ L1α+ α. Inductively, we can get

d(gN−1 ◦ · · · ◦ g0(x0), xN ) ≤ LN−1
1 α+ LN−2

1 α+ · · ·+ L1α+ α =
LN
1 − 1

L1 − 1
· α.

Denote L∗
1 =

LN
1 −1

L1−1 , then we have d(gN−1 ◦ · · · ◦ g0(x0), xN ) ≤ L∗
1α.
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The same reasoning as above shows that

d(g(k+1)N−1 ◦ · · · ◦ gkN (xkN ), x(k+1)N ) ≤ L∗
1α k ∈ Z.

Hence, the subsequence of points ξ′ = {xkN}+∞
k=−∞ is a L∗

1α-pseudo orbit. 2
Proof of Theorem 3.4 Suppose T has an Anosov direction. Then we can choose a uniform

hyperbolic nonautonomous dynamical system g
−→v
−∞,+∞ = {gn}n∈Z induced by a nonzero −→v ∈ Rk.

By Proposition 3.6, there exists N > 0 such that {g(k+1)N−1 ◦ · · · ◦ gkN}k∈Z has the Lipschitz

shadowing property.

Let ξ = {xn}+∞
n=−∞ be an α-pseudo orbit for g

−→v
−∞,∞ = {gn}n∈Z. Then by Lemma 3.5, its

subsequence {xkN}+∞
k=−∞ is an L∗

1α-pseudo orbit for {g(k+1)N−1◦· · ·◦gkN}k∈Z. Since {g(k+1)N−1◦
· · · ◦gkN}k∈Z has the Lipschitz shadowing property, there exist numbers δ0 > 0, L2 > 0 such that

any δ-pseudo orbit (with δ ≤ δ0) {xkN}+∞
k=−∞ for {g(k+1)N−1◦· · ·◦gkN}k∈Z can be L2δ-shadowed

by a point x ∈ M , i.e.,

d(x, x0) ≤ L2δ, (3.3)

d(g(k+1)N−1 ◦ · · · ◦ g0(x), x(k+1)N ) ≤ L2δ, k ≥ 0,

and

d((g−1 ◦ · · · ◦ gkN )−1(x), xkN ) ≤ L2δ, k ≤ −1.

Take δ = L∗
1α. By equi-Lipschitz continuity and (3.3), we have

d(g0(x), g0(x0)) ≤ L1d(x, x0) ≤ L1L2δ = L1L2L
∗
1α,

then we get

d(g0(x), x1) ≤ d(g0(x), g0(x0)) + d(g0(x0), x1) = L1L2L
∗
1α+ α

by triangle inequality. By the same ways as above, we have

d(g1g0(x), x2) ≤ L2
1L2L

∗
1α+ L1α+ α,

· · ·

d(gN−2 ◦ · · · ◦ g0(x), xN−1) ≤ LN−1
1 L2L

∗
1α+ LN−2

1 α+ · · ·+ L1α+ α

= LN−1
1 L2L

∗
1α+ (L∗

1 − LN−1
1 )α

≤ L∗
1(L

N−1
1 L2 + 1)α.

Inductively, for any k ≥ 1, we can get

d(g(k+1)N−1 ◦ · · · ◦ g0(x), x(k+1)N ) ≤ L2L
∗
1α,

d(g(k+1)N ◦ g(k+1)N−1 ◦ · · · ◦ g0(x), x(k+1)N+1) ≤ L1L2L
∗
1α+ α,

d(g(k+1)N+1 ◦ g(k+1)N ◦ g(k+1)N−1 ◦ · · · ◦ g0(x), x(k+1)N+2) ≤ L2
1L2L

∗
1α+ L1α+ α,

· · ·

d(g(k+2)N−2 ◦ · · · ◦ g(k+1)N−1 ◦ · · · ◦ g0(x), x(k+2)N−1) ≤ L∗
1(L

N−1
1 L2 + 1)α.
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By the same discussion, for any k ≤ −1, we can get

d(g−1
kN ◦ · · · ◦ g−1

−1(x), xkN ) ≤ L2L
∗
1α,

d(g−1
kN+1 ◦ · · · ◦ g

−1
−1(x), xkN+1) ≤ L1L2L

∗
1α+ α,

d(g−1
kN+2 ◦ · · · ◦ g

−1
−1(x), xkN+2) ≤ L2

1L2L
∗
1α+ L1α+ α,

· · ·

d(g−1
kN+N−1 ◦ · · · ◦ g

−1
−1(x), xkN+N−1) ≤ L∗

1(L
N−1
1 L2 + 1)α.

Denote L = L∗
1(L

N−1
1 L2 + 1), α0 = δ0

L∗
1
, and we can see that x ∈ M Lα-shadows the α-pseudo

orbit ξ = {xn}+∞
n=−∞. Hence, g

−→v
−∞,+∞ has the Lipschitz shadowing property on Γ.

The proof of the theorem is completed. 2
Now, we give the following Proposition, which is crucial to Theorem 3.4.

Proposition 3.6 Let T be a Cr, r ≥ 1,Zk-action on M and g
−→v
−∞,+∞ = {gn}n∈Z be uniformly

hyperbolic on M (see Definition 3.1). Then there exists N > 0 such that the nonautonomous

dynamical system {g(k+1)N−1 ◦ · · · ◦ gkN}k∈Z has the Lipschitz shadowing property in the follow-

ing sense: there exist numbers δ0 > 0, L2 > 0 such that for any δ-pseudo orbit ξ = {xkN}+∞
k=−∞,

δ ≤ δ0, xkN ∈ M , there exists a point x ∈ M that L2δ-shadows ξ.

Proof Here, we shall adapt Bowen’s method as in [8] to prove this Proposition. Since g
−→v
−∞,+∞ =

{gn}n∈Z is uniformly hyperbolic on M , there exists N > 0 such that the nonautonomous dynam-

ical {g(k+1)N−1 ◦ · · · ◦ gkN}k∈Z is uniformly hyperbolic on M in the following sense: there exist

an invariant splitting TM = Es
⊕

Eu and constant 0 < λ < 1 such that for any x ∈ Γ, k ∈ Z
we have

∥D(g(k+1)N−1 ◦ · · · ◦ gkN )(x)v∥ ≤ λ∥v∥, v ∈ Es(x),

∥D(g(k+1)N−1 ◦ · · · ◦ gkN )−1(x)v∥ ≤ λ∥v∥, v ∈ Eu(x).

Let ξ = {xkN}+∞
k=−∞ be a δ-pseudo orbit for {g(k+1)N−1 ◦ · · · ◦ gkN}k∈Z in M . To simplify the

notation during the proof, denote hk = g(k+1)N−1 ◦ · · · ◦ gkN and yk = xkN .

Using the standard graph transform method, we can establish the stable manifold theorem

for {hk}k∈Z on M . For any x ∈ M , denote the local stable manifold

W s
ρ (x) := {y ∈ M : sup

k≥0
d(hk

0(x), h
k
0(y)) ≤ ρ}

and the local unstable manifold

Wu
ρ (x) := {y ∈ M : sup

k≤0
d((h−1

k )−1(x), (h−1
k )−1(y)) ≤ ρ},

where hk
0 = hk−1 ◦ · · · ◦ h0 for k ≥ 1, hk

0 = id for k = 0 and h−1
k = h−1 ◦ · · · ◦ kk for k ≤ −1.

Clearly, the local stable manifolds and unstable manifolds have the local transversal intersection

property, i.e., there exist H > 0 and ρM > 0 such that for x, y ∈ M with d(x, y) ≤ ρ ≤ ρM the

intersection W s
Hρ(x) ∩ Wu

Hρ(y) consists of a single point in M which is denoted by [x, y], and

similarly let W s
Hρ(y) ∩Wu

Hρ(x) = [y, x].
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Take a δ1 > 0 such that

d(hk(x), hk(y)) < λd(x, y) for y ∈ W s
δ1(x), k ∈ Z,

d(h−1
k (x), h−1

k (y)) < λd(x, y) for y ∈ Wu
δ1(x), k ∈ Z.

(3.4)

We can assume the hyperbolicity constant λ is small enough to meet our needs. (Otherwise, we

can find a P ∈ N such that λP is small enough to meet our needs, and transform the problem of

{hk}k∈Z into the problem of {h(t+1)P−1 ◦ · · · ◦ htP }t∈Z. It is easy to prove that {hk}k∈Z has the

Lipschitz shadowing property if and only if {h(t+1)P−1 ◦ · · · ◦ htP }t∈Z so does.)

Let δ0 = min{ δ1
2H + 1

,
δ1
4H

,
ρM
4

}, and take λ small enough satisfying

2λ < 1, 2λH < 1. (3.5)

Note that ξ = {yk}+∞
k=−∞ is a δ-pseudo orbit(δ ≤ δ0) for {hk}k∈Z in M . We will find a sequence

{y∗k}
+∞
k=−∞ which L2δ-shadows ξ in three steps.

Step 1. Find a sequence {yuk}
+∞
k=0, which (2H+2)δ-shadows the positive half sequence {yk}+∞

k=0.

Firstly, we consider a finite piece {yk}nk=0 of ξ for n ≥ 1. In the following, we will define two

sequences {zk}nk=1, and {y′k}
n−1
k=1 successively. The existence and uniqueness of these points are

ensured by the property of local transversal intersection. The first sequence {zk}nk=1 is defined

as follows. Since d(h0(y0), y1) < δ, take

{z1} = [y1, h0(y0)] ∈ W s
Hδ(y1).

Note that z1 ∈ W s
Hδ(y1), by the invariance of local stable manifolds we obtain that h1(z1) ∈

W s
λHδ(h1(y1)). As h1(z1), y2 ∈ M and d(y2, h1(y1)) < δ, then by (3.4) and (3.5), we get

d(h1(z1), y2) ≤ d(h1(z1), h1(y1)) + d(h1(y1), y2) < λHδ + δ < 2δ.

It follows from the property of local transversal intersection that

{z2} = [y2, h1(z1)] ∈ W s
2Hδ(y2).

Now assume that for any 2 ≤ k ≤ n− 1,

{zk} = [yk, hk−1(zk−1)] ∈ W s
2Hδ(yk).

Note that zk ∈ W s
2Hδ(yk), by the invariance of local stable manifolds, we obtain that hk(zk) ∈

W s
2λHδ(hk(yk)). As hk(zk), yk+1 ∈ M and d(yk+1, hk(yk)) < δ, then by (3.4) and (3.5), we get

d(hk(zk), yk+1) ≤ d(hk(zk), hk(yk)) + d(hk(yk), yk+1) < 2λHδ + δ < 2δ.

It follows from the property of local transversal intersection that

{zk+1} = [yk+1, hk(zk)] ∈ W s
2Hδ(yk+1).

Now we define the last sequence {y′k}
n−1
k=1 as follows. Let y′n−1 = h−1

n−1(zn). Since zn ∈
Wu

2Hδ(hn−1(zn−1)), by hyperbolicity, we have y′n−1 ∈ Wu
2Hδ(zn−1). Assume for any 2 ≤ k ≤ n−1,

y′k is defined. Then take y′k−1 = h−1
k−1(y

′
k). Finally let y′0 = h−1

0 (y′1). Hyperbolicity and (3.5) are

the guarantee of the above steps. From the definition of these two sequences, we can see that
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each element in the family

{{y0, y′0}, {h0(y0), z1, y
′
1}, {h1(z1), z2, y

′
2}, . . . , {hn−2(zn−2), zn−1, y

′
n−1}, {hn−1(zn−1), zn}}

lies in a local unstable manifold. Moreover, {y′k}
n−1
k=0 shadows {yk}n−1

k=0 . Now we estimate, for 1 ≤
k ≤ n−1, the distance between yk and y′k. Since zn ∈ Wu

2Hδ(hn−1(zn−1)), and y′n−1 = h−1
n−1(zn),

by hyperbolicity, we have y′n−1 ∈ Wu
2λHδ(zn−1), that is to say

d(zn−1, y
′
n−1) < 2λHδ < δ (by (3.5)).

So

d(yn−1, y
′
n−1) ≤ d(yn−1, zn−1) + d(zn−1, y

′
n−1) < 2Hδ + δ.

Then

d(hn−2(zn−2), y
′
n−1) ≤ d(hn−2(zn−2), zn−1) + d(zn−1, y

′
n−1) < 2Hδ + δ.

Hence,

d(zn−2, y
′
n−2) < λd(hn−2(zn−2), y

′
n−1) < λ(2Hδ + δ)

< δ + λδ < 2δ, (by (3.4) and (3.5))

so we have

d(yn−2, y
′
n−2) ≤ d(yn−2, zn−2) + d(zn−2, y

′
n−2) < 2Hδ + 2δ.

Now assume that for 3 ≤ i ≤ n − 3, d(zn−i, y
′
n−i) < 2δ, so we have d(xn−i, yn−i) < 2Hδ + 2δ.

Then

d(hn−i−1(zn−i−1), y
′
n−i) ≤ d(hn−i−1(zn−i−1), zn−i) + d(zn−i, y

′
n−i) < 2Hδ + 2δ.

Hence,

d(zn−i−1, y
′
n−i−1) < λd(hn−i−1(zn−i−1), y

′
n−i)

< λ(2Hδ + 2δ) < δ + 2λδ < 2δ (by (3.4), (3.5)),

so we have

d(yn−i−1, y
′
n−i−1) ≤ d(yn−i−1, zn−i−1) + d(zn−i−1, y

′
n−i−1) < 2Hδ + 2δ.

Note that d(z1, y
′
1) < 2δ, so we have d(y1, y

′
1) < d(y1, z1) + d(z1, y

′
1) < Hδ + 2δ. Then

d(h0(y0), y
′
1) < d(h0(y0), z1) + d(z1, y

′
1) < Hδ + 2δ,

and

d(y0, y
′
0) < λ(d(h0(y0), y

′
1)) < λ(Hδ + 2δ) < 2δ.

Therefore, we prove that {y′k}
n−1
k=0 (2H + 2)δ-shadows {yk}n−1

k=0 . In fact, by the construction, we

can see that the sequence {y′k}
n−1
k=0 is uniquely determined by {yk}n−1

k=0 , and y′0 ∈ Wu
2δ(y0). For

convenience, we relabel {y′k}
n−1
k=1 by {y′k,n}

n−1
k=1 to indicate its dependence on n. Let yu0 be one

limit point of {y′0,n}+∞
n=0. Obviously, yu0 ∈ Wu

2δ(x0). Now we define sequences {yuk}
+∞
k=0 successively

as follows. Let yu1 = h0(y
u
0 ). Inductively define yuk+1 = hk(y

u
k ) for k ≥ 2. It is easy to see that
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yuk ∈ Wu
2δ(zk), zk ∈ W s

2Hδ(yk) for any k ≥ 1 and the sequence {yuk}
+∞
k=0 (2H + 2)δ-shadows

{yk}+∞
k=0.

Step 2. Find a sequence {ysk}0k=−∞ which (2H + 2)δ-shadows the negative half sequence

{yk}0k=−∞.

Since the strategy in this step is similar to that in Step 1 except for the type of local manifold

in which the shadowing sequence lies, we only give the outline of the construction of {ysk}0k=−∞.

For simplicity, we assume that for any k ≤ 0, d(h−1
k−1(yk), yk−1) < δ (otherwise, we can take

0 < δ′ < δ such that for any δ′-pseudo orbit {yk}+∞
k=−∞, we have d(yk, hk−1(yk−1)) < δ′ for k ≤ 0

and show that {yk}+∞
k=−∞ can be L2δ

′-shadowed by some sequence of points). Firstly, for any

finite piece {yk}0k=n(n ≤ −1) of ξ, we define two sequences {zi}−1
i=n and {y′i}

−1
i=n+1 successively

as follows by the property of local transversal intersection, hyperbolicity, (3.5). Let

{z−1} = [(h−1
−1(y0)), y−1] ∈ Wu

Hδ(y−1),

{z−2} = [(h−2
−1(z−1)), y−2] ∈ Wu

2Hδ(y−2),

· · ·

{zn} = [(hn
−1(zn+1)), yn] ∈ Wu

2Hδ(yn).

Let y′n+1 = hn(zn). Inductively define y′k = hk−1(y
′
k−1) for any n + 2 ≤ k ≤ −1, and let

y′0 = h−1(y
′
−1). From the construction, we can see that each element in the family

{{y0, y′0}, {h−1
−1(y0), z−1, y

′
−1}, {h−1

−2(z−1), z−2, y
′
−2},

. . . , {h−1
n+1(zn+2), zn+1, y

′
n+1}, {h−1

n (zn+1), zn}}

lies in a local stable manifold. Moreover {yk}0k=n+1 shadows {yk}0k=n+1. Now we estimate the

distance between yk and y′k for any n + 1 ≤ k ≤ 0. Since zn ∈ W s
2Hδ(h

−1
n (zn+1)), we have

d(h−1
n (zn+1), zn) < 2Hδ. By hyperbolicity, we get

d(zn+1, y
′
n+1) < λd(h−1

n (zn+1), zn) < 2λHδ < δ.

And then

d(yn+1, y
′
n+1) ≤ d(yn+1, zn+1) + d(zn+1, y

′
n+1) ≤ 2Hδ + δ.

Similarly, we have d(zk, y
′
k) < 2δ, d(yk, y

′
k) < 2Hδ + 2δ for any n + 2 ≤ k ≤ −2. Moreover,

d(z−1, y
′
−1) < 2δ, d(y−1, y

′
−1) < Hδ + 2δ,

d(y0, y
′
0) < λd(h−1

−1(y0), y
′
−1) ≤ λ[d(h−1

−1(y0), z−1) + d(z−1 + y′−1)] < λ(Hδ + 2δ) < 2δ.

Therefore, we prove that {y′k}0k=n+1 (2H + 2)δ-shadows {yk}0k=n+1.

Relabel {y′k}0k=n+1 by {y′k,n}0k=n+1 and let ys0 be one limit point of {y′0,n}0n=−∞. Obviously,

ys0 ∈ W s
2δ(y0). Now define the sequence {ysk}0k=−∞ as follows. Let ys−1 = h−1

−1(y
s
0). Inductively

define ysk = h−1
k (ysk+1) for any k ≤ −2. Clearly, ysk ∈ W s

2δ(zk) and zk ∈ Wu
2Hδ(yk) for any k ≤ −1,

and {ysk)}0k=−∞(2H + 2)δ-shadows {yk}0k=−∞.

Step 3. Construct the desired sequence {y∗k}
+∞
k=−∞.
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Note that

ys0 ∈ W s
2δ(y0), y

u
0 ∈ Wu

2δ(y0),

so we have d(ys0, y
u
0 ) ≤ d(ys0, y0)+d(y0, y

u
0 ) < 4δ. By the property of local transversal intersection,

we can take

y∗0 = [yu0 , (y
s
0)] ∈ W s

4Hδ(y
u
0 ).

We now define the sequence {y∗k}
+∞
k=−∞ as follows. For the positive direction, inductively define

y∗k = hk−1(y
∗
k−1) for k ≥ 1. By hyperbolicity, d(yuk , y

∗
k) < λd(yuk−1, y

∗
k−1) for k ≥ 1, i.e.,

d(yu0 , y
∗
0) < 4Hδ and d(yuk , y

∗
k) < 4λkHδ for k ≥ 1. Therefore, d(y∗0 , y0) ≤ d(yu0 , y

∗
0) + d(y0, y

u
0 ) <

4Hδ + 2δ and for k ≥ 1,

d(y∗k, yk) ≤ d(yuk , y
∗
k) + d(yk, y

u
k ) < 4λkHδ + 2Hδ + 2δ < 4Hδ + 2δ. (3.6)

For the negative direction, inductively define y∗k = h−1
k (y∗k+1) for k ≤ −1. By hyperbolicity,

d(ysk, y
∗
k) < λd(ysk+1, y

∗
k+1) for k ≤ −1, i.e., d(ys0, y

∗
0) < 4Hδ and d(ysk, y

∗
k) < 4λ−kHδ for k ≤ −1.

Hence, d(y∗0 , y0) ≤ d(ys0, y
∗
0) + d(y0, y

s
0) < 4Hδ + 2δ and for k ≤ −1,

d(y∗k, yk) ≤ d(ysk, y
∗
k) + d(yk, y

s
k) < 4λ−kHδ + 2Hδ + 2δ < 4Hδ + 2δ. (3.7)

Also note

d(y0, y
∗
0) < 4Hδ + 2δ. (3.8)

Denote L2 = 4H +2. By (3.6)–(3.8), we conclude that the sequence {y∗k}
+∞
k=−∞ L2δ-shadows the

δ-pseudo orbit {yk}+∞
k=−∞. 2
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