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Abstract Characterization of sign patterns that allow diagonalizability has been a long-standing

open problem. In this paper, we obtain some sufficient and/or necessary conditions for a sign

pattern to allow diagonalizability. Moreover, we determine how many entries need to be changed

to obtain a matrix B′ ∈ Q(A) with rank MR(A) from a matrix B ∈ Q(A) with rank mr(A).

Finally, we also obtain some results on a sign pattern matrix in Frobenius normal form that

allows diagonalizability.
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1. Introduction and preliminaries

The origins of sign pattern matrices are the need to solve certain problems in economics

and other areas based only on the signs of the entries of the matrices. Sign pattern matrices

have been heavily studied and have found applications in many other areas [1–3]. In particular,

various eigenvalue problems played important roles in both traditional matrix theory and and sign

pattern matrix theory [3, 4]. The search for sufficient and necessary conditions characterizing

sign patterns that allow diagonalizability has been a long-standing open problem, studied by

Eschenbach and Johnson [2], by Shao and Gao [5, 6] and by Feng et al. [7, 8]. In this paper, we

further investigate sign patterns that allow diagonalizability.

We now introduce some definitions and notation, most of which can be found in [2, 3, 5]. A

sign pattern (matrix) is a matrix whose entries are from the set {+,−, 0}. The set of all n×n sign

patterns is denoted by Qn. For an m×n sign pattern A = [aij ], associated with A is a class of real

matrices, called the qualitative class of A, defined byQ(A) = {B = [bij ] ∈ Mm×n(R)|sgn bij = aij

for all i and j}. We may indicate the fact that B ∈ Q(A) by writing sgn(B) = A.

Let P be a property referring to a real matrix. For a sign pattern A, if there exists a real

matrix B ∈ Q(A) such that B has property P , we say that A allows or admits P ; if every

B ∈ Q(A) has property P , we say that A requires P .
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The signed digraph of an n×n sign pattern A = [aij ], denoted by D(A), is the digraph with

vertex set {1, 2, . . . , n}, where (i, j) is an arc if only and if aij ̸= 0. A formal product of nonzero

entries of A of the form

γ = ai1i2ai2i3 · · · aiki1 ,

in which the indices i1, . . . , ik are distinct, is called a simple cycle of length k (or a k-cycle).

Each im (m = 1, . . . , k) is called a vertex of γ. A composite cycle of length k is a formal product

of simple cycles whose total length is k and whose index sets are mutually disjoint. Naturally, a

simple cycle is a composite cycle.

The largest possible length of the composite cycles of A is called the maximum cycle length

of A, denoted by c(A). If A has no simple cycle at all, then c(A) = 0.

A formal product of nonzero entries of a not necessarily square sign pattern A = [aij ] of the

form

M = ai1j1ai2j2 · · · aikjk

with distinct row indices i1, . . . , ik and distinct column indices j1, j2, . . . , jk is called a matching

of size k. We say that the matching M is a principal matching if {i1, . . . , ik} = {j1, j2, . . . , jk}.
We say that the matching M supports a submatrix B if the row index set and column index set

of B are equal to those of M . A submatching of M is a matching consisting of some entries in

M .

Observe that a composite cycle may be viewed as a principal matching, and vice versa.

The maximum rank of a sing pattern A, denoted MR(A), is given by

MR(A) = max{rankB|B ∈ Q(A)}.

Similarly, the minimum rank of A, mr(A), is given by

mr(A) = min{rankB|B ∈ Q(A)}.

It is clear that MR(A) is equal to the maximum possible size of a matching of A. But in

general it is very difficult to determine mr(A). An n × n sign pattern whose minimum rank

equals n is said to be sign nonsingular.

A permutation sign pattern is a square sign pattern matrix with entries 0 and +, where the

entry + occurs precisely once in each row and in each column. Note that a permutation sign

pattern P ∈ Qn satisfies PTP = PPT = In, where In is the identity sign pattern of order n,

namely, In is the diagonal sign pattern of order n all of whose diagonal entries are +. Two

sign patterns A1, A2 ∈ Qn are said to be permutationally similar if A2 = PTA1P , for some

permutation sign pattern P .

A signature sign pattern is a square diagonal sign pattern matrix, each of whose diagonal

entries is + or −. Two sign patterns A1, A2 ∈ Qn are said to be signature similar if A2 = SA1S,

for some signature sign pattern S.

The paper is organized as follows. In Section 2, some necessary and/or sufficient conditions

for a sign pattern to allow diagonalizability are obtained. In Section 3, we present some results

on how to change entries of a matrix to obtain another matrix with the same sign pattern and
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a prescribed rank. In Section 4, results on special types of sign pattern matrices that allow

diagonalizability are considered. In Section 5, we further obtain some necessary and/or sufficient

conditions for a sign pattern matrix in Frobenius normal form to allow diagonalizability.

2. Necessary and/or sufficient conditions for allowing diagonalizability

Firstly, we need the following lemma.

Lemma 2.1 ([5, 8]) Let A ∈ Qn. If there exists some chordless composite cycle of length k in

A with mr(A) ≤ k ≤ MR(A), then A allows diagonalizability.

Following [8], we use the following terminology.

Definition 2.2 A real matrix B is said to be rank-principal if B has a nonsingular k × k

principal submatrix C, where k = rank(B). Such a principal submatrix C is called a rank-

principal certificate of B.

Definition 2.3 We say that a composite cycle γ of a square sign pattern A supports a rank-

principal certificate for A if there exists a real matrix B ∈ Q(A) that is rank-principal and the

index set of γ is equal to the row index set of a rank-principal certificate of B.

Remark 2.4 As pointed out in [8], the only possible value of k in Lemma 2.1 is k = mr(A), and

every chordless composite cycle of length k = mr(A) of A supports a rank-principal certificate

for A, which ensures that A allows diagonalizability with rank mr(A). However, some composite

cycles with chords could support a rank-principal certificate, as the following example shows.

For

A =


0 + + 0 +

0 0 + 0 +

0 0 0 + +

+ 0 0 0 +

+ + + + +

 ,

the cycle γ = a12a23a34a41 has a chord a13, but γ supports a rank-principal certificate for A.

Thus A allows diagonalizability with rank 4.

For a sign pattern whose entries are from the set {0,+} (or {0,−}), how many chords can

we add to a cycle which still can support a rank principal certificate? In the above matrix, we

can add 6 chords, and change it to the following matrix:

A′ =


+ + + + +

+ 0 + + +

+ 0 0 + +

+ 0 0 0 +

+ + + + +

 .

Moreover, it is easy to see following results.
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Theorem 2.5 Let A ∈ Qn.

(1) (see [8]) If there exists a chordless composite cycle of length k that can support a rank-

principal certificate for A, then A allows diagonalizability with rank k, and k = mr(A);

(2) For a sign pattern whose entries are from the set {0,+} (or {0,−}), if a composite cycle

of length k can support a rank-principal certificate, then it has at most k(k−1)
2 chords.

Theorem 2.6 ([7]) A sign pattern A ∈ Qn allows diagonalizability with rank k if and only if A

allows a rank-principal matrix of rank k.

Lemma 2.7 ( [7]) The set of sign patterns that allow diagonalizability is closed under the

following operations:

(i) negation,

(ii) transposition,

(iii) permutational similarity,

(iv) signature similarity.

It is worth noting that set of sign patterns that allow diagonalizability is also closed under

direct sums, and Kronecker products.

Theorem 2.8 ([8]) Let A ∈ Qn. Suppose that there exist two composite cycles γ1 and γ2 with

γ1 ⊂ γ2. If γ1 can support a rank-principal certificate, then γ2 can also support a rank-principal

certificate.

Theorem 2.9 ([7]) A square sign pattern A allows diagonalizability with rank MR(A) if and

only if c(A) = MR(A).

3. Entry modifications between matrices achieving extreme ranks

Ranks play an important role in many matrix problems such as diagonalizability. For a sign

pattern A, we consider the minimum number of entries which need to be modified to obtain a

matrix B′ ∈ Q(A) with rankMR(A) starting with a matrix B ∈ Q(A) with rank mr(A). We

observe the following result.

Theorem 3.1 Let A be a sign pattern. Starting with any matrix B ∈ Q(A) with rank(B) =

mr(A), we may change at most MR(A) entries of B to obtain a matrix B′ ∈ Q(A) with

rankMR(A).

Proof It is known that A has a maximum matching M of size MR(A). For any B ∈ Q(A) with

rank(B) = mr(A), we can change the entries of B in M to very large values. Then the resulting

matrix B′ ∈ Q(A) has rankMR(A). 2
In fact, it suffices to change MR(A) − 1 entries of B in M in the preceding argument, as a

dominant nonzero term in the determinant expansion of a submatrix of order MR(A) may be

created this way. This leads to the following result.



New results on sign patterns that allow diagonalizability 115

Corollary 3.2 Let A be a sign pattern. It suffices to change MR(A)−1 entries of any B ∈ Q(A)

with rank(B) = mr(A) to get a matrix B′ ∈ Q(A) with rankMR(A).

The next result is on sign patterns whose minimum rank and maximum rank differ by 1.

Theorem 3.3 Let A = [aij ] ∈ Qn with MR(A) = mr(A) + 1. Then one can change just

one entry of a suitable matrix B ∈ Q(A) with rankmr(A) to get a matrix B′ ∈ Q(A) with

rank(B′) = MR(A) = n.

Proof Let m = MR(A) and let M = ai1j1ai2j2 · · · aimjm be a matching of size m in A. Let

B0 ∈ Q(A) be a matrix with rank(B0) = mr(A) = m − 1. Replace the (i1, j1) entry of B0 by

a much larger number of same sign so that the absolute value of the new entry is greater than

the sum of the absolute values of the other entries in the same row of B0. Denote the resulting

matrix by B1. We then replace the (i2, j2) entry of B1 by a much larger number of same sign

to get a matrix B2. Proceeding this way, we get B0, B1, . . . , Bm ∈ Q(A). Since Bm has m

large entries that form a generalized dominant diagonal of a submatrix of order m, we see that

rank(Bm) = m = MR(A). Let k be the smallest positive integer such that rank(Bk) = m. Then

we have rank (Bk−1) = m − 1 and rank(Bk) = m, and these matrices differ in one entry only.

This completes the proof. 2
We now show a similar result when the gap between the minimum rank and the maximum

rank may be larger.

Theorem 3.4 Let A be a sign pattern with MR(A) = m and mr(A) = r. Suppose that there

is a matrix B ∈ Q(A) with rank(B) = r such that an r × r nonsingular submatrix C of B is

supported by a submatching of a matching M of size m of A. Then one can change only m− r

entries of B ∈ Q(A) to obtain a matrix B′ ∈ Q(A) with rank(B′) = MR(A).

Proof Permuting the rows and columns of A if necessary, without loss of generality, we may

assume that C is in the upper left corner of B, that is, B =
(
C D
E F

)
. The hypothesis ensures

that C contains a matching M1 of size r and F contains a matching M2 of size m − r, where

M1M2 = M .

Since the rows (respectively, columns) of B containing C are linearly independent and can

span the other rows (respectively, columns) of B, we may use suitable elementary row and column

operations to reduce B to
(
C 0
0 0

)
. If the entries of F in the matching M2 are replaced with twice

of the original values to get a matrix F ′, then when the above-mentioned elementary row and

column operations are applied to the matrix B′ =
(
C D
E F ′

)
∈ Q(A), we get a matrix of the form(

C 0
0 G

)
, where G has exactly m − r nonzero entries, in the same positions as entries in M2. It

follows that rank(B′) = m, and B′ is obtained from B by modifying exactly m− r entries. 2
We suspect that the hypothesis of the preceding theorem is satisfied by every sign pattern

matrix, which motivates the following conjecture.

Conjecture 3.5 For every sign pattern A, it is always possible to change MR(A)−mr(A) entries

of some matrix B ∈ Q(A) with rank(B) = mr(A) to get a matrix B′ ∈ Q(A) with rankMR(A).
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4. Further results on sign patterns that allow diagonalizability

For a square matrix B, let z(B) and g(B) denote the algebraic and geometric multiplicities

of 0 as an eigenvalue of B. For a square sign pattern matrix A, z(A) = min{z(B)|B ∈ Q(A)}
denotes the minimum algebraic multiplicity of 0 as an eigenvalue of a matrix in Q(A), and sim-

ilarly, Z(A) denotes the maximum algebraic multiplicity of 0 as an eigenvalue of a matrix in

Q(A), g(A) denotes the minimum geometric multiplicity of 0 as an eigenvalue of a matrix in

Q(A), and G(A) denotes the maximum geometric multiplicity of 0 as an eigenvalue of a matrix

in Q(A). The following result can be found in [6].

Theorem 4.1 ([6]) Let A be an n× n sign pattern. If z(A) = g(A), then A allows diagonaliz-

ability.

Proof It can be seen that z(A) = n − c(A), and g(A) = n − MR(A). Hence, z(A) = g(A)

ensures that c(A) = MR(A). Let k = c(A).

Thus by emphasizing the entries on a composite cycle of length k, we get a matrix B ∈ Q(A)

with rank(B) = k and z(B) = g(B) = n− k. Then the characteristics polynomial of B has the

form

pB(t) = tn − E1t
n−1 + E +2 t

n−2 + · · ·+ (−1)kEk tn−k,

where Ei, i = 1, . . . , n− k, is the sum of all i-by-i principal minors of B, and Ek ̸= 0. Thus, the

matrix B is rank-principal. Therefore, A allows diagonalizability by Theorem 2.6. 2
As pointed out in the preceding proof, z(A) = g(A) is equivalent to c(A) = MR(A), which

holds if and only if A allows diagonalizability with rankMR(A) by Theorem 2.9.

We also have the following two results similar to Theorem 4.1.

Theorem 4.2 Let A ∈ Qn be a sign pattern such that Z(A) = G(A). Then A allows diagonal-

izability with rankmr(A).

Proof Take a matrix B ∈ Q(A) such that rank(B) = mr(A). Since Z(A) = G(A), we have

z(B) ≤ Z(A) = G(A) = n−mr(A) = n− rank(B).

Hence, n − z(B) ≥ rank(B). But since the rank of any square matrix is clearly always greater

than or equal to the number of nonzero eigenvalues of the matrix, we also have the opposite

inequality n − z(B) ≤ rank(B). Thus n − z(B) = rank(B), namely, the number of nonzero

eigenvalues of B is equal to rank of B. It follows that B is rank-principal. By Theorem 2.6, A

allows diagonalizability with rankmr(A). 2
As a square matrix for which the algebraic multiplicity and geometric multiplicity of the

eigenvalue 0 are equal is rank-principal, by Theorem 2.6, we have the following fact.

Corollary 4.3 A square sign pattern A allows diagonalizability if and only if there exists a real

matrix B ∈ Q(A) for which the algebraic multiplicity and geometric multiplicity of the eigenvalue

0 are equal.
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Observe that up to permutational similarity, every square rank-principal matrix arises as a

matrix of the form (
C D

E EC−1D

)
,

where C is nonsingular, and D,E are of suitable sizes. Thus, up to permutational similarity,

the sign patterns that allow diagonalizability are just sign patterns of matrices of this form.

However, we are more interested in the combinatorial characterizations of sign patterns that

allow diagonalizability.

We now present some special sign patterns that allow diagonalizability.

Theorem 4.4 Suppose a square sign pattern A has minimum rank k > 0 and A has a sign

nonsingular k × k principal submatrix. Then A allows diagonalizability with rank k.

Proof Every matrix B ∈ Q(A) with rank k is clearly rank-principal due to the presence of a

sign nonsingular k× k principal submatrix of A. Thus A allows diagonalizability with rank k by

Theorem 2.6. 2
Next, we give a characterization of the square sign patterns that require a unique rank and

allow diagonalizability.

Theorem 4.5 Let A be a square sign pattern such that mr(A) = MR(A) = k. Then A allows

diagonalizability if and only if c(A) = k.

Proof Both the necessity and the sufficiency follow from Theorem 2.9. 2
Upper triangular sign patterns that allow diagonalizability are identified below.

Theorem 4.6 Let A be an upper triangular square sign pattern. Then A allows diagonalizability

if and only if c(A) = mr(A).

Proof Since A is an upper triangular square sign pattern, every matrix B ∈ Q(A) has precisely

c(A) nonzero eigenvalues, so mr(A) ≥ c(A).

Suppose that A allows diagonalizability. Then c(A) ≥ mr(A). In view of the opposite

inequality above, we get c(A) = mr(A).

Conversely, assume that c(A) = mr(A). Let B ∈ Q(A) be such that rank(B) = mr(A).

Clearly, there is a diagonal matrix D with positive diagonal entries such that all the nonzero

diagonal entries of DB ∈ Q(A) are distinct. Thus every nonzero eigenvalue of DB has algebraic

and geometric multiplicity 1. If 0 is an eigenvalue of DB, then its algebraic and geometric

multiplicities are both equal to n− c(A) = n− rank(B) = n− rank(DB). Hence, DB ∈ Q(A) is

diagonalizable, so that A allows diagonalizability. 2
A square sign pattern is said to be idempotent if A2 is unambiguously defined, and A2 = A.

More generally, we say a sign pattern is k-potent (where k is a positive integer) if A1+k is

unambiguously defined and A1+k = A. Such sign patterns always allow diagonalizability.

Theorem 4.7 Every sign k-potent sign pattern A allows diagonalizability with rank mr(A).
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Proof Let A be a k-potent sign pattern and let B ∈ Q(A) be such that rank(B) = mr(A). On

the one hand, clearly rank(B1+k) ≤ rank(B). On the other hand, since rank(B) = mr(A) and

B1+k ∈ Q(A1+k) = Q(A), we also have rank(B1+k) ≥ rank(B). Thus, rank(B1+k) = rank(B).

It follows that rank(B) = rank(B2) = · · · = rank(B1+k). By considering the Jordan canonical

form of B, we see that either B is nonsingular or the eigenvalue 0 of B has index 1. Thus rank(B)

is equal to the number of nonzero eigenvalues of B, which ensures that B is rank-principal. By

Theorem 2.6, A allows diagonalizability with rank mr(A). 2
5. Sign patterns in Frobenius normal form

The Frobenius normal form of a sign pattern A ∈ Qn is a sign pattern in block upper

triangular form:

PTAP =


A11 A12 . . . A1p

0 A22 . . . A2p

...
. . .

. . .
...

0 . . . 0 App

 ,

where P is a permutation sign pattern and the diagonal blocks Aii are irreducible (which are

called the irreducible components of A).

By Lemma 2.7, permutational similarity preserves diagonalizability. So it suffices to consider

which sign patterns in Frobenius normal form allow diagonalizability.

By considering the minimal polynomials, we get the following result.

Lemma 5.1 If a sign pattern A in Frobenius normal form

A =


A11 · · · A1p

...
. . .

...

0 . . . App


allows diagonalizability, then each irreducible component Aii, 1 ≤ i ≤ p, allows diagonalizability.

Theorem 5.2 A square sign pattern A in Frobenius normal form

A =


A11 · · · A1p

...
. . .

...

0 . . . App


allows diagonalizability if and only if there exists a real matrix

B =


B11 . . . B1p

...
. . .

...

0 . . . Bpp

 ∈ Q(A) where Bii ∈ Q(Aii)

such that rank(B) = rank(B11) + · · ·+ rank(Bpp), and each Bii is diagonalizable.
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Proof Sufficiency. Assume that

B =


B11 . . . B1p

...
. . .

...

0 . . . Bpp

 ∈ Q(A) where Bii ∈ Q(Aii),

rank(B) = rank(B11) + · · · + rank(Bpp), and each of B11, B22, . . . , Bpp is diagonalizable. By

Theorem 2.6, each Bii has a rank-principal certificate. In view of rank(B) = rank(B11) +

· · · + rank(Bpp), the smallest principal submatrix containing all these certificates forms a rank-

principal certificate of B. By Theorem 2.6, A allows diagonalizability.

Necessity. Assume that A allows diagonalizability. Let

B =


B11 . . . B1p

...
. . .

...

0 . . . Bpp

 ∈ Q(A),

be a diagonalizable matrix. Then the minimal polynomial of B has no repeated roots, and thus

the same holds for each Bii. Hence, each Bii is diagonalizable. Further, rank(B) is equal to the

number of nonzero eigenvalues of B, and hence, rank(B) = rank(B11) + · · ·+ rank(Bpp). 2
Corollary 5.3 If a sign pattern in Frobenius normal form

A =


A11 . . . A1p

...
. . .

...

0 . . . App


allows diagonalizability, then the set of the ranks of diagonalizable matrices in Q(A), is a subset

of the set of ranks of diagonalizable matrices in the qualitative class of the block diagonal sign

pattern

(
A11 ... 0

...
. . .

...
0 ... App

)
.

The following fact is useful when studying sign patterns in block form that allow diagonaliz-

ability.

Lemma 5.4 Let A =
(
A11 A12

A21 A22

)
∈ Qn. If mr(A) = mr(A11), then there exist a real matrix

B =
(
B11 B12

B21 B22

)
∈ Q(A) and a nonsingular submatrix C of B11 such that

rank(C) = rank(B11) = rank(B) = mr(A).

Proof Pick a matrix B =
(
B11 B12

B21 B22

)
∈ Q(A) with rank(B) = mr(A), where each Bij ∈ Q(Aij).

Then rank(B11) ≤ rank(B) = mr(A) = mr(A11). But of course we also have the opposite

inequality rank(B11) ≥ mr(A11). It follows that rank(B11) = mr(A11) = mr(A). Thus B11 has

a nonsingular submatrix C of rank mr(A). 2
We now phrase an interesting open combinatorial sufficient condition for a symmetrically

partitioned block upper triangular sign pattern to allow diagonalizability.
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Problem 5.5 Let A be a sign pattern in symmetrically partitioned block upper triangular form

A =


A11 . . . A1p

...
. . .

...

0 . . . App

 .

Suppose that for each i = 1, . . . , p, mr(Aii) = mr([Aii · · ·Aip]) and each Aii allows diagonaliz-

ability. Does it then necessarily follow that A allows diagonalizability?

A related open problem is the following.

Problem 5.6 Let A1 be a square sign pattern that allows rank-principality. Is it true that for

every sign pattern A = (A1 A2) such that mr(A1) = mr(A), A allows rank-principality?

We note that an affirmative answer to Problem 5.6 implies an affirmative answer to Problem

5.5.
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