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Abstract We study the nilpotent structure of generalized semicommutative rings. The new
concept of nilpotent a-semicommutative rings is defined and studied. This class of rings is closely
related to many well-known concepts including semicommutative rings, a-semicommutative rings
and weak a-rigid rings. An example is given to show that a nilpotent a-semicommutative ring
need not be a-semicommutative. Various properties of this class of rings are investigated. Many
known results related to various semicommutative properties of rings are generalized and unified.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity and « denotes a nonzero
non-identity endomorphism of R, unless specified otherwise. The set of all nilpotent elements
in a ring R is denoted by N(R). We denote by T,(R), M,(R) the n x n upper triangular
matrix ring and the n x n full matrix ring over a ring R, respectively. Recall that a ring R
is reduced if it has no nonzero nilpotent elements. A ring R is called an Armendariz ring if
fl)=ao+aiz+---+anz™, g(z) =by+bix+---+by2™ € R[z] such that f(z)g(z) =0, then
a;b; = 0 for each 4,j. Note that every reduced ring is an Armendariz ring. According to [1],
a ring R is a-compatible if for any a,b € R, ab = 0 if and only if aa(b) = 0. It is clear that
this happens only when the endomorphism « is injective. Krempa [2] introduced the notion of
an «-rigid ring. An endomorphism « of a ring R is said to be rigid if aa(a) = 0 implies a = 0
for @ € R, while a ring R is said to be a-rigid if there exists a rigid endomorphism a of R.
By [1, Lemma 2.2], R is a-rigid if and only if R is a-compatible and reduced.

There are many generalizations of reduced rings. A ring R is reversible if ab = 0 implies
ba = 0 for any a,b € R. A ring R is semicommutative if for any a,b € R, ab = 0 implies
aRb = 0. It is well-known that every reduced ring is reversible and every reversible ring is
semicommutative. More generally, the semicommutative properties with respect to a ring en-

domorphism were further investigated in [3]. According to [3], a ring R is a-semicommutative
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it ab = 0 implies aRa(b) = 0 for all a,b € R. Note that the concept of a-semicommutative
rings not only generalizes that of a-rigid rings, but also extends that of semicommutative rings.
Recently, the nilpotent elements of a semicommutative ring was studied [4]. Recall that a ring
R is nil-semicommutative if for every a,b € R with ab € N(R), then arb € N(R) for all r € R.
Further results on semicommutative rings and related topics can be found in [4-8].

In this paper, we continue to study the properties of generalized semicommutative rings.
The nilpotent structure of this class of rings is investigated. The concept of nilpotent a-
semicommutative rings is defined and studied. We show that a nilpotent a-semicommutative
ring need not be a-semicommutative (Example 2.9). This class of rings is closely related to
many known concepts, such as semicommutative rings, nil-semicommutative rings and weak a-
rigid rings. We study various properties of nilpotent a-semicommutative rings. Firstly, we show
that nilpotent a-semicommutative rings can be given by various ring extensions. If R is a nilpo-
tent a-semicommutative ring, it is proved that the n x n upper triangular matrix ring 7, (R) is
nilpotent a-semicommutative (Proposition 2.6). If I is a nilpotent a-semicommutative ideal (as
a ring without identity), it is proved that R/I is nilpotent a-semicommutative if and only if R is
nilpotent a-semicommutative (Proposition 2.13). Secondly, we study the properties of polynomi-
al rings over nilpotent a-semicommutative rings. Let R be an Armendariz ring. It is shown that
if R is nilpotent c-semicommutative, then R[x] is nilpotent a-semicommutative (Proposition
3.3). We also investigate the condition under which R[z; o] is nilpotent a-semicommutative. Let
R be a nilpotent a-semicommutative ring and « an endomorphism of R. We prove that if R is

an a-rigid ring, then R[z;«] is nilpotent a-semicommutative (Proposition 3.8).

2. Nilpotent elements in generalized semicommutative rings

In this section, we introduce and study the concept of nilpotent a-semicommutative rings.
Observe that the notion of nilpotent a-semicommutative rings not only generalizes that of weak a-
rigid rings (when « is a monomorphism of a ring R), but also extends that of a-semicommutative

rings. Some examples to illustrate the concepts and results are also included.

We start with the following definition.

Definition 2.1 Let R be a ring and o an endomorphism of R. We call R a nilpotent «-
semicommutative ring if for any a,b € R, ab € N(R) implies ara(b) € N(R) for all r € R.

It is easy to see that any subring S with «(S) C S of a nilpotent a-semicommutative ring is
also nilpotent a-semicommutative. We shall show in Example 2.9 that there exists a nilpotent
a-semicommutative ring R such that R is not a-semicommutative.

Note that nilpotent a-semicommutative rings are closely related to a-semicommutative rings,
semicommutative rings, nil-semicommutative rings and a-rigid rings. The following remark re-

veals the relations between them.

Remark 2.2 Let R be a ring and « an endomorphism of R. Then

(1) If R is reduced, then the class of nilpotent a-semicommutative rings is precisely the class
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of a-semicommutative rings.
(2) If R is a-rigid, then the class of nilpotent a-semicommutative rings is just the class of
semicommutative rings.

Note that a nilpotent a-semicommutative ring need not be semicommutative (see Example
2.9). The following example shows that there exists a semicommutative ring R such that R is

not nilpotent a-semicommutative for some endomorphism « of R.

Example 2.3 Let Z5 be the ring of integers modulo 2. Consider the ring R = Zy @ Zo with the
usual addition and multiplication. Then R is a semicommutative ring since R is commutative
reduced. Let o : R — R be defined by a((a,b)) = (b,a) for every (a,b) € R. Then for
a=(1,0),b=(0,1) € R, we have

ab = (1,0)(0,1) = (0,0) € N(R).
However, for ¢ = (1,1) € R, we have
aca(b) = (1,0)(1,1)(1,0) = (1,0)(1,0) = (1,0) ¢ N(R).

This implies that R is not nilpotent a-semicommutative. Moreover, for a = (1,0) = b € R, we
get ab = (1,0) # 0. But for any (¢, d) € R, we have

(1’0)(07 d)(oa 1) = (Ca 0)(Oa 1) = (070) € N(R)

The following proposition gives more examples of nilpotent a-semicommutative rings.
Proposition 2.4 All a-rigid rings are nilpotent a-semicommutative.

Proof Let R be an a-rigid ring and let a,b € R such that ab € N(R). In the following, we
freely use the fact that every a-rigid ring is reduced and every reduced ring is reversible. Then
there exists n € N such that 0 = (ab)” = ababab---abab. Then aRbaRbaRb---aRbaRb = 0.
Therefore, we have aRbaRbaRb - - - aRbaRa(b) = 0 since every a-rigid ring is a-compatible. This
implies that (aRa(b))(aRbaRbaRb---aRb) = 0 since R is reversible. Continuing this process,
we can eventually get (aRa(b))” = 0. This means aRa(b) € N(R), and thus R is a nilpotent

a-semicommutative ring. O

Proposition 2.5 Let {R; : i € I} be a family of rings. Then the direct sum @,

a-semicommutative if and only if each R; is nilpotent a-semicommutative for all i € 1.

R; is nilpotent

Proof It suffices to prove the sufficiency. Let a = (a;),b = (b;) € @,c; Ri such that ab =
(aib;) € N(@,;c; Ri). Then a;b; € N(R;) for each i € I, and thus a;ra(b;) € N(R;) for r € R
since each R; is nilpotent a-semicommutative for all ¢ € I. For any r = (r;) € @, ; Ri, we have
ara(b) = (a;r;a(b;)) € @,y Ri- Note that there are only finitely ¢ € I such that a;r;a(b;) # 0.
Thus, ara(b) € N(D,.; R:), proving that P, ; R; is nilpotent a-semicommutative. O

Note that if « is an endomorphism of a ring R, then the endomorphism « can be extended
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to the map a: T,,(R) — T, (R) as follows

aip a2 -+ QAin 04(011) a(a12) ce a(am)
0 ax - a2 0 afage) -+ afazn)

a =
0 0 o Upm 0 0 te Ol(ann)

More generally, the next result gives one way to get more nilpotent a-semicommutative rings

from old ones.

Proposition 2.6 A ring R is nilpotent a-semicommutative if and only if T,,(R) is nilpotent

a-semicommutative.

Proof It suffices to show that T, (R) is nilpotent a-semicommutative when R is a nilpotent
a-semicommutative ring. Let A = (a;;) and B = (b;;) € T,(R) such that AB € N(T,(R)).
Then a;;b; € N(R) for all a;; and by;, where 1 < i < n. Then we have a;; Ra(b;) € N(R) by the
assumption. This implies that A(T,,(R))&(B) C N(T,,(R)), and the result follows. O

For aring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring T(R, M) =
R & M with the usual addition and the following multiplication:

(r1,m1)(r2, ma) = (r1ra, rima + mara).
This is isomorphic to the ring of all matrices (6 T), where 7 € R and m € M and the usual

matrix operations are used.

For an endomorphism « of a ring R and the trivial extension T'(R, R) of R, the@ : T(R, R) —

T(R, R) defined by
([ b _ a(a)  a(b)
0 a 0 «afa)

is an endomorphism of T(R, R). Since (R,0) is isomorphic to R, we can identify the restriction
of @ by T(R,0) to a.

Corollary 2.7 Let a be an endomorphism of a ring R. Then R is a nilpotent a-semicommutative
ring if and only if T(R, R) is a nilpotent a-semicommutative ring.
Corollary 2.8 A ring R is a nil-semicommutative ring if and only if T(R, R) is nil-semicommutative.

Now we are in a position to give an example to show that there exists a nilpotent a-
semicommutative ring R such that T(R, R) is nilpotent a-semicommutative, but T'(R, R) is

not a-semicommutative.
Example 2.9 Let Z be the ring of integers and let R = {(3 2)\a,b € Z}. Then we have the
following implications:

(1) Ris nilpotent a-semicommutative for some endomorphism « of R. In fact, let o : R — R
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a b a —b
e = .
0 a 0 a
Now we claim that R is nilpotent a-semicommutative. In fact, for any

A:ab,B:CdER,
0 a 0 ¢

if AB € N(R), then it is clear ac € N(Z). Moreover, for any element (% ¥) € R, we have the

following implication

a b h k c d ahc  x
ARa(B) = (O a) <O h) “ <<O C)) B ( 0 ahc> € NER).

Therefore, R is a nilpotent a-semicommutative ring.

be an endomorphism defined by

(2) By Corollary 2.7, T(R, R) is nilpotent a-semicommutative.

(3) T(R,R) is not a-semicommutative. In fact, for

(0 1) (1 1) (0 1) (11)
A= 00 0l , B= ) vl € T(R,R),
0 0 0 1 0 0 1
o) (0) ) (0)
we have AB = 0. However, if we let
(1 0) (0 0)
C = 01 00 € T(R,R),
0 0 1 0
o) (6
<0 0) (0 2)
0+# ACa(B) = 00 00 € AT(R, R)a(B).

(o0) (o)

This implies that T'(R, R) is not a-semicommutative. Moreover, it can be easily checked that

o O O

then we have

T(R, R) is not semicommutative.
More generally, let o be an endomorphism of a ring R. We consider the following subring of

the upper triangular matrix ring T,,(R):

ay ai -+ QAp—2 Gp—1
0 ap ay s Ap—2
T(R,n,0) = 0 0 a - : la; € R 3, with n > 2.
a
0 0 0 ao
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We can denote the elements of T(R,n,0) by (ag,...,an—1). Then T(R,n,o) is a ring with

addition point-wise and multiplication given by
(a(), ey an,l)(bo, ey bnfl) = (aobo, agp * b1 + a1 * bo, o, a0 % bn,1 + et an_1 * bo),

with a; * b; = aioi(bj) for each i,j. Let o and o be endomorphisms of a ring R such that
ac =oa. Thena: T(R,n,0) = T(R,n,0), given by @((a;;)) = (a(ai;)) is an endomorphism of
T(R,n,o).

Proposition 2.10 Let o and o be endomorphisms of a ring R with a«c = oca. Then R is

nilpotent a-semicommutative if and only if T(R, n, o) is nilpotent a-semicommutative.

Proof Notice that N(T'(R,n,0)) = (N(R),R,...,R). So the proof is similar to that of Propo-
sition 2.6. O

Based on Proposition 2.6, one may suspect that if R is nilpotent a-semicommutative, then
every n by n full matrix ring M, (R) over R is nilpotent a-semicommutative, where n > 2.

However, the following example eliminates the possibility.

Example 2.11 Let R be a nilpotent a-semicommutative ring. Consider S = M3(R) and an

endomorphism « of S defined by

()G )
1= (L) o= o) em(B )

we have AB € N(S). But we have

ACa(B) = (_11 _11> ¢ N(9).

Therefore, Ms(R) is not nilpotent a-semicommutative.
According to [9], R is weak a-rigid if ac(a) € N(R) if and only if a € N(R). The next

proposition gives the relation of a weak a-rigid ring and a nilpotent a-semicommutative ring.

Proposition 2.12 Let R be any ring with an endomorphism «. Then
(1) If o is a monomorphism, then each nilpotent a-semicommutative ring is weak a-rigid.

(2) If R is reduced, then each weak a-rigid ring is nilpotent c-semicommutative.

Proof (1) Assume that « is a monomorphism and R is a nilpotent a-semicommutative ring.
On one hand, if ax(a) € N(R) for a € R, then a(a)a € N(R) and thus a(a)Ra(a) C N(R).
Then «(a?) € N(R). This implies that there exists k € N such that a(a?*) = 0. Since « is
a monomorphism, we have a € N(R). On the other hand, if a € N(R), then a?> € N(R) and
aRa(a) C N(R) by the assumption. In particular, we have aa(a) € N(R).

(2) If Risreduced and ab € N(R), then ba € N(R). It follows that ba = 0 since R is reduced.
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This implies that ara(b)a(ara(b)) = ara(ba)a(r)a®(b) = 0 € N(R) for any r € R. Since R is
weak a-rigid, we get ara(b) € N(R). O

Let a be an endomorphism of R. Recall that an ideal I of R is called an a-ideal if a(I) C I.
Note that if I is an a-ideal of R, then & : R/I — R/I defined by &(a +I) = a(a) + I for a € R
is an endomorphism of the factor ring R/I.

Proposition 2.13 If I is an a-ideal of a ring R such that I C N(R), then R/I is nilpotent

a-semicommutative if and only if R is nilpotent a-semicommutative.

Proof Assume that R is nilpotent a-semicommutative. Let @ = a +I,b = b+ I € R/I such
that ab € N(R/I). Then there exists a positive integer n such that (ab)® € I. This implies
that ab € N(R) since I C N(R) by the assumption. Since R is nilpotent a-semicommutative,
we get aRa(b) € N(R), and thus aRa(b) € N(R/I). This shows that R/I is nilpotent a-
semicommutative.

Conversely, assume that R/I is nilpotent a-semicommutative. Let a,b € R such that ab €
N(R). Then we have ab € N(R/I). This implies that aRa(b) C N(R/I) since R/I is a
nilpotent a-semicommutative ring. Then there exists a positive integer s such that (aRa(b))® C I.
Therefore, we get (aRa(b))® C N(R), as desired. O

Recall from [10] that a ring R is said to be nil-Armendariz if whenever two polynomials
flx)=ap+arz+ -+ apnz”, g(x) =by + brz + - - + byx™ € Rlx] satisty f(x)g(x) € N(R)[z],
then a;b; € N(R) for all ¢,j. Note that if R is nil-Armendariz, then N(R) is a subring of R
by [10, Theorem 3.2].

Proposition 2.14 Let R be a nil-Armendariz ring. If e* = e is a central idempotent of R such
that «(e) = e, then the following statements are equivalent:

(1) R is a nilpotent a-semicommutative ring.

(2) eRe is nilpotent a-semicommutative for every e? = e.

(3) eR and (1 — €)R are nilpotent a-semicommutative for each e? = e € R.

Proof (1) = (2) and (1) = (3) are trivial since any subring S with «(S) C S of a nilpotent
a-semicommutative ring is also nilpotent a-semicommutative. It suffices to prove (3) = (1). Let
a,b € R such that ab € N(R). Then eaeb € N(R) and (1 — e)a(l — e)b € N(R). Since eR and

(1 — e)R are nilpotent a-semicommutative, we get
eara(eb) € N(R), (1—-e)ara[(l—e)b] € N(R).
Since R is a nil-Armendariz ring, N(R) is a subring of R. This implies that
eara(eb) + (1 — e)ara[(1 — e)b] = eara(b) + (1 — e)ara(b) = ara(b) € N(R).

Therefore, R is nilpotent a-semicommutative. 0
Let R be a ring and A be a multiplicatively closed subset of R consisting of central regular
elements. Let A™'R = {u~taju € A,a € R}, then A™'R is a ring. Then we have the following

result.
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Proposition 2.15 Let a be an endomorphism of a ring R. Then R is nilpotent a-semicommutative

if and only if A~'R is nilpotent a-semicommutative.

Proof It suffices to prove that if R is nilpotent a-semicommutative, then A~!'R is nilpotent
a-semicommutative. Let 6 = u™la, 8 = v b and v = wlc € AR with 63 € N(A™1R).
Then 63 = u~tav~1b = (vu)~!(ab) € N(R). Therefore, ab € N(R) since A is contained in the
center of R. Since R is nilpotent a-semicommutative, we have aca(b) € N(R). Then we deduce
that

dya(f) = (u™a)(w™ e)(a(v) " a(b)) = (wu) " (ac)(a(v) ta(b) = (a(v)(wu)) " (aca(b)),
which implies that dya(8) € N(A™'R). O

The ring of Laurent polynomials in x, with coefficients in a ring R, consists of all formal sum
Z?: & m;z® with obvious addition and multiplication, where m; € R and k,n are integers. We de-
note it by R[z; 27 !]. Themap & : R[z,z '] — Rz, 2] defined by a(> ", a;z’) = >°1, a(a;)z’
extends a and also is an endomorphism of R[z,z~!]. Multiplication is subject to zr = a(r)x

and rz~t = 27 ta(r).

Corollary 2.16 Let a be an endomorphism of a ring R. Then R[x] is nilpotent a-semicommutative

if and only if R[z;x~1] is nilpotent a-semicommutative.

Proof It is easy to prove the necessity since R[z] is a subring of R[z; 27 1]. Let A = {1,z,22,...}.
Then A is a multiplicatively closed subset of R[z]. Since R[x;z~!] = A7 R[], we conclude that

R[z; x~1] is nilpotent a-semicommutative by Poposition 2.15. O

3. Polynomial extensions of nilpotent a-semicommutative rings

In this section, we study various polynomial extensions of nilpotent a-semicommutative rings.
The relation between nilpotent a-semicommutative rings and weak a-skew Armendariz is also

investigated. First we give the following.

Lemma 3.1 Let R be a nilpotent a-semicommutative ring. If ab € N(R), then aRa™(b) C N(R)
and bRa"(a) C N(R) for any positive integers m,n.

Proof Let ab € N(R). On the one hand, since R is nilpotent a-semicommutative, aRa(b) C
N(R). In particular, we have aa(b) € N(R). By using again the nilpotent a-semicommutative
condition, we have aRa?(b) C N(R). Continuing this process, we get aRa™(b) C N(R) for
some positive integer m. On the other hand, since ab € N(R), we get ba € N(R). Then
bRa(a) C N(R) since R is nilpotent a-semicommutative. In particular, we have ba(a) € N(R)
and thus bRa?(a) € N(R) since R is nilpotent a-semicommutative. Continuing this process, we
have bRa™(a) C N(R) for some positive integer n. O

Let R be a ring and « an endomorphism of R. Recall from [11] that a ring R is a-skew
Armendariz if for any f(z) = Y " a;z’, g(x) = Z?:o bjz? € R[z;a] with f(z)g(z) = 0, then

a;ai(b;) = 0 for all ¢ and j. More generally, a ring R is weak a-skew Armendariz [12] if
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flx) = Y gaie’ and g(z) = Y77 bja? € Rlz;a] satisty f(x)g(x) = 0, then a;a’(b;) € N(R)
foral0<i<mand 0<j <n.

Theorem 3.2 Let R be a semicommutative ring. If R is nilpotent a-semicommutative, then R

is weak a-skew Armendariz.

Proof Let f(x)=ap+ a1+ -+ ama™, g(x) = by + brz + -+ + bpax™ € R[x; ). Then

m—+n
Fa)g(x) =Y (D aia’(b;)z* =0.
k=0 i+j=k
Then we have the following equations:
Z aia'(b;) =0, k=0,1,...,m+n. ()

itj=k
We will show that a;a’(b;) € N(R) by induction on i + j.

If i +j = 0, then 0 = agbp € N(R). Now suppose that k is a positive integer such that
a;ai(b;) € N(R) when i +j < k. We claim that a;a’(b;) € N(R) when i + j = k. Since
a;ai(b;) € N(R) when i + j < k, then we have a;ra*(by) € N(R) by Lemma 3.1 for any i < k
since R is nilpotent a-semicommutative. Multiplying the coefficient of z* in (4) from right side

by o (by), we have
aobra (bo) + ara(br_1)ak (bo) + aza®(by_2)ak (bg) 4 - - - 4 ara® (bo)a® (by) = 0.
Then we have
ara® (bo)a (bo) = —(agbra® (bo) + ara(bp_1)a* (bo) + - - - + ap_1a* 71 (by)a*(bo)).

Since R is semicommutative, N(R) is an ideal of R. This implies that aia®(bg)a*(by) € N(R),
and hence ara®(by) € N(R). Multiplying the coefficient of 2*~! in (§) from the right side by
a*~1(bg), and in a similar way as above, we can get ay_;a*"1(b;) € N(R). Continuing this
process, we have a;a’(b;) € N(R) when i+ j = k. Therefore, a;a’(b;) € N(R) for each i, j. This
shows that R is a weak a-skew Armendariz ring. O

Let a be an endomorphism of a ring R. Then the map & : R[z] — R[z] defined by
a(dy ity aix’) = Y afa;)zt is an extension of o to R[z]. It was shown in [5] that the poly-
nomial rings over semicommutative rings need not be semicommutative. However, we have the

following.

Proposition 3.3 Let R be an Armendariz ring. If R is nilpotent a-semicommutative, then

RJx] is nilpotent a-semicommutative.

Proof Since R is an Armendariz ring, N(R) is a subring (without 1) of R by [10, Corollary 3.3],
and R[z] is also Armendariz by [13, Theorem 2|. Hence N(R)[z] = N(R[z]) by [10, Propo-
sition 2.7 and Theorem 5.3]. Let f(z) = 1", aia’, g(x) = Y7 bja’ € Rlz] such that
f(x)g(z) € N(R[z]), then a;b; € N(R) for all i and j by [13, Proposition 1] since R is Armendariz.
Note that for any h(z) = Y_;_, ckz"® € R[z], each coefficient of f(x)h(x)a(g(x)) has the form of
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> aijcpa(bj). Since R is nilpotent a-semicommutative, a;b; € N(R) implies a;crpa(b;) € N(R).
This means ) a;cpa(b;) € N(R). It follows that f(z)h(z)a(g(z)) € N(R)[z] = N(R[z]). O

Note that if a ring R is an a-compatible ring, then for any a,b € R, ab = 0 if and only if
aa™(b) = 0. Using this fact, we give the following

Lemma 3.4 Let R be an a-compatible ring. If ay,as,...,a, are some elements in R, then
arag---a, € N(R) if and only if a*'(a;)a*?(ag) - - - a*»(a,) € N(R) for arbitrary positive inte-
gers ki, ko, ... kny.

Proof Note that if R is an a-compatible ring, then « is a monomorphism. On the one hand,

assume that (ajas---a,)* = (ajaz---ay,) - (ajag---a,) =0 for ai,as,...,a, € R, then
oa® ((arag - -ayp) - (araz---a,)) = 0.

This implies that ot (a;)a® ((agaz---ay,) - (a1az---a,)) = 0. Since R is a-compatible, we

k

get a®(ay)(asasz---a,)---(aras---a,) = 0. Since a¥ is a momonorphism for any nonnegative

integer k by the a-compatible condition, we have
a*(ay)a*? (ag)(as -~ ap) - - (a1as - - - ay) = 0.

Continuing this process, eventually we can get (a*(a1)a*?(az) - - - a**(a,))¥ = 0. On the other
hand, if a**(a;)a*?(as)---a¥»(a,) € N(R), then it can be proved similarly that ajas---a, €
N(R). O

Corollary 3.5 Let R be an a-compatible ring. If a1, as,...,a, € R, then ayas - --a, = 0 if and
only if a*(a1)a*?(as) - - - o (a,) = 0 for arbitrary positive integers ki, ko, ..., ky.
We next explore the relation of a nilpotent skew polynomial f(z) in R[z; «] and the nilpotency

of its coefficients.

Lemma 3.6 Let R be an a-rigid ring and let f(z) = ag + a1z + -+ apz™ € R[z;«a]. Then
f(z) € N(R[z;q)]) if and only if each a; € N(R) for all 0 < i < n.

Proof Suppose f(z) € N(R[x;ql), i.e., there exists k € N such that f*(z) = 0. Then we have
ana™(ay) - a*=D7(g,) = 0. Since every a-rigid ring is an a-compatible ring, by [1, Lemma

2.1] we have

a"(an)a”(an)a%(an) e a(kfl)"(an) = a”(ai)a%(an) e a(kfl)"(an) =0.

Therefore, we get a2a®"(ay)---a*"(a,) = 0 by [1, Lemma 2.1] again. Then

2n( 2

a? Qn(

o' )2 (ay) - aF Y (a,) = 0,

and thus a?"(a)a’®"(ay,)---a*~Y"(a,) = 0. Continuing this process, we can get a® = 0.

This implies that [ag + a17 + - a,_12" % € N(R)[z;a]. Since R is reduced (and hence
semicommutative), N(R) is an ideal of R. Tt follows that

10" Hap_1)---a* V"D (g, 1) e N(R).
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Then a,,—1 € N(R) by a similar discussion as above. By induction, we can eventually show that
all a; € N(R) for each 0 <i < mn.

Conversely, assume that all the coefficients a; € N(R) of f(z) for ¢ =0, 1,...,n. Then there
exists m; € N such that a;"" = 0 for each a;. We claim that f(x) € N(R[z;«]). In fact, let
t=> m; + 1. Then we have

(f(x))" =(ao + .alx + - apa™)? | |
= Z[af)ol (alx)iu .. (anxn)inl][ag% (alx)ilz . (anggn)inz] .. [az)of, (alx)ilt o (an$7L)i"t]7

where Y7 ip, =1 for each s € {1,2,...,t}, and i, = 0 or i, = 1 for all s. Note that each

coefficient of f!(z) is a sum of the elements

[(Ozvol (ao))igl L (avnl (an))lnl] . [(Ozvot (ao))iﬂt A (avnt (an))lnt}

such that i, +i1,+ - -+i,, = 1, where s € {1,2,...,t}. Clearly, there exists a; € {ao,a1,...,a,}
iy gyt tig, —

such that i;, +i;,+- - -41;, > m;. Since a}nj = 0 by assumption, this implies that a;

0. By [1, Lemma 2.1], we have

(05 (a)" (0" ag)) -+~ (0 (a))") = 0
Therefore, each coefficient of f!(z) is zero. This implies that f'(z) = 0, as desired. O
Let o be an endomorphism of a ring R. If N(R) is an ideal of R, then the endomorphism &
of the ring R/N(R) can be induced by a via a + N(R) — a(a) + N(R). Moreover, it is easy to
see that the map defined by

a0+...anx"—>(aO+N(R))+"‘+(an+N(R))xn

is a ring homomorphism from R[z; o] to R/N(R)[z;a]. It is clear that we have the isomorphism
Rla; o] [N(R)[z; o] = R/N(R)[z; a].

Lemma 3.7 Let R be a nilpotent a-semicommutative ring and o an endomorphism of R. If R
is a-rigid, then N (R[z;a]) = N(R)[z; a].

Proof Clearly, R is semicommutative since R is nilpotent a-semicommutative and a-rigid.
Then N(R) is an ideal of R. Note that R/N(R) is a-rigid since R is an «-rigid ring. On the
one hand, we claim that N(R[z;a]) C N(R)[z;a]. In fact, let f(z) = Y1  a;z* € N(R[z;al),
then there is a positive k such that f¥(x) = 0. Then (f(x))* = 0 in R/N(R)[z;a]. Since
every a-rigid ring is a-skew Armendariz, R/N(R)[z; o] is a-skew Armendariz. This implies that
a;a’(a;)---a*Yi(a;) = 0 for all integers i = 1,2,...,n. Then a¥ = 0 by Corollary 3.5, and
thus a; € N(R) for each i. On the other hand, it is clear N(R)[z;a] C N(R[z;]) by Lemma
3.6. Therefore, we get N(R[z;a]) = N(R)[x;a]. O

We conclude this section by the following proposition, which gives the condition under which

R|x; o] is nilpotent a-semicommutative.

Proposition 3.8 Let R be a nilpotent a-semicommutative ring and « an endomorphism of R.

If R is a-rigid, then R[z;a] is nilpotent a-semicommutative.
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Proof Let f(z) = Y[ jair’, g(x) = Y7"bja’ € Rlz;a] such that f(z)g(z) € N(R[z;a]).
Then there is a positive ¢ such that (f(z)g(z))" = 0. Since R is semicommutative, N(R) is an
ideal of R. This implies that R/N(R)[z;@a] is a-skew Armendariz by the proof of Lemma 3.7.
Therefore, we get a;a’(b;)---ar+*=1i(p;) = 0. It follows that (a;b;)* = 0 by Corollary 3.5.
So we have a;b; € N(R). For any h(z) = 22:0 etk € R[z;a], we have a;cra(bj) € N(R).
Since each coefficient of f(z)h(x)a(g(z)) has the form of Z:i§+m a;of (cp)aT*F1(b;). Then
ZZ;L(I;JFW a;al(cp)aT*+1(b;) € N(R) by Lemma 3.4. Therefore, f(x)h(z)a(g(z)) € N(R)[z;a] =
N(R]z;a]) by Lemma 3.7. O

Recall that a ring R is weakly semicommutative if for any a,b € R, ab = 0 implies arb € N(R)

for any r € R. In particular, we have the following corollary.

Corollary 3.9 Let R be a semicommutative ring and o be an endomorphism of R. If R is

a-compatible, then R[x; a] is weakly semicommutative.

Corollary 3.10 Let R be a semicommutative ring and o an endomorphism of R. If R is a-rigid,

then R[z;«] is nil-semicommutative.
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