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Abstract This paper examines the existence and uniqueness of solutions for the fractional

boundary value problems with integral boundary conditions. Banach’s contraction mapping

principle and Schaefer’s fixed point theorem have been used besides topological technique of

approximate solutions. An example is propounded to uphold our results.
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1. Introduction

Fractional calculus has attracted broad attention as it may be applied in various fields of

science and applications such like engineering, mechanics, electro chemistry, porous media, etc.,

[1–8]. Recently, using topological technique becomes very close to verify the existence of solutions

for fractional differential equations [9, 10].

In 2013, Graef et al. [11], studied a type of nonlinear fractional boundary value problem with

the integral boundary conditions by constructing an associated Green’s function, spectral theory

and applying fixed point theory on cones. The existence of mild solutions for fractional differential

equations with integral boundary conditions and not instantaneous impulses was investigated by

Li and Xu [12]. They also established the sufficient conditions for the existence and uniqueness

of solutions by some fixed point theorems. Sudsutad and Tariboon [13] studied a boundary

value problem of nonlinear fractional differential equations with three points fractional integral

boundary conditions by applying standard fixed point theorems. The existence and uniqueness

of solutions for fractional differential equations with nonlocal and fractional integral boundary

conditions were studied by Derbazi and Hammouche [14]. Younis and Singh [15], found the

sufficient conditions for the existence of solutions of some class of Hammerstein integral equations

and fractional differential equations. Younis et al. [16], presented the notion of graphical extended

b-metric spaces, blending the concepts of graph theory and metric fixed point theory. Existence

and uniqueness results were established using the Banach contraction principle and some other
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existence results were obtained using O’Regan fixed point theorem and Burton and Kirk fixed

point. A new technique, based on F-Reich contraction, was given for solving some models of real

world problems, viz by Younis et al. [17].

Our aim during this paper is to verify some new results on the following boundary value

problem (BVP) for fractional differential equations involving the Caputo fractional derivative by

topological degree method and fixed point theorem.{
cDqx(t) = ξ(t, x), t ∈ J := [0, T ], 0 < q < 1,

x(0) = IT
0 η(t, x), x(T ) = IT

0 ζ(t, x),
(1.1)

where cDq is the Caputo fractional derivative and ξ, η, ζ : J ×X → X are continuous functions.

2. Preliminaries

In this section, we introduce some necessary definitions, propositions and theorems which are

needed throughout this paper.

We define a Banach space C(J ,X ) as the Banach space of all continuous functions from J
into X with the norm ∥x∥c := sup{∥x(t)∥ : x ∈ C(J ,X )} for t ∈ J and J = [0, T ], T > 0.

Definition 2.1 ( [18]) For a given continuous function ξ on a closed interval [a, b], the qth

fractional order integral of ξ is defined by

Iq
a+ξ(t) =

1

Γ(q)

∫ t

a

(t− s)q−1ξ(s)ds, (2.1)

where Γ is the gamma function.

Definition 2.2 ( [18]) For a given continuous function ξ on a closed interval [a, b], the qth

Riemann-Liouville fractional order derivative of ξ, is defined by

(Dq
a+ξ)(t) =

1

Γ(n− q)
(
d

dt
)n

∫ t

a

(t− s)n−q−1ξ(s)ds, (2.2)

where n = [q] + 1 and [q] denotes the integer part of q.

Definition 2.3 ([18]) For a given continuous function ξ on a closed interval [a, b], the Caputo

fractional order derivative of ξ, is defined by

(cDq
a+ξ)(t) =

1

Γ(n− q)

∫ t

a

(t− s)n−q−1ξ(n)(s)ds, (2.3)

where n = [q] + 1.

Theorem 2.4 ([19]) Let X be a Banach space, and ψ,φ : X → X be two operators such that ψ

is a contraction operator and φ is a completely continuous operator, then the operator equation

Fx = ψx+ φx = x has a solution x ∈ X .

Definition 2.5 ([19]) Let Ω ⊂ X and F : Ω → X be a continuous bounded map. One can say

that F is α-Lipschitz if there exists k ≥ 0 such that

α(F (B)) ≤ kα(B) (∀) B ⊂ Ω bounded.
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In case, k < 1, then we call F is a strict α-contraction. One can say that F is α-condensing if

α(F (B)) < α(B) (∀) B ⊂ Ω bounded with α(B) > 0.

We recall that F : Ω → X is Lipschitz if there exists k > 0 such that

∥Fx − Fy∥ ≤ k∥x− y∥ (∀) x, y ⊂ Ω,

and if k < 1 then F is a strict contraction.

Proposition 2.6 ([19]) If ψ,φ : Ω → X are α-Lipschitz maps with constants k, k′ respectively,

then ψ + φ : Ω → X is α-Lipschitz with constant k + k′.

Proposition 2.7 ([19]) If ψ : Ω → X is compact, then ψ is α-Lipschitz with zero constant.

Proposition 2.8 ([19]) If ψ : Ω → X is Lipschitz with constant k, then ψ is α-Lipschitz with

the same constant k.

3. Main results

First, let us define the meaning of a solution of the BVP(1.1).

Definition 3.1 A function x ∈ C(J ,X ) is said to be a solution of the fractional BVP(1.1) if

x satisfies the equation cDqx(t) = ξ(t, x) almost everywhere on J and the conditions x(0) =

IT
0 η(t, x) and x(T ) = IT

0 ζ(t, x).

In order to treat the problem of existence for a solution of BVP(1.1), we need the following

assumptions:

(H1) ξ : J × X → X is continuous.

(H2) For arbitrary x, y ∈ X , there exists a constant δξ > 0 such that

∥ξ(t, x)− ξ(t, y)∥ ≤ δξ∥x− y∥.

For the existence of solutions for the BVP(1.1), we also need the following auxiliary lemma [1].

Lemma 3.2 Let 0 < q ≤ 1 and let ξ, η, ζ : J → X be continuous. A function x ∈ C(J ,X ) is

said to be a solution of the fractional integral equation

x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1ξ(s, x(s))ds− t

TΓ(q)

∫ T

0

(T − s)q−1ξ(s, x(s))ds−

(
t

T
− 1)

∫ T

0

η(s, x(s))ds+
t

T

∫ T

0

ζ(s, x(s))ds, (3.1)

if and only if x is the solution of the fractional BVP(1.1).

Theorem 3.3 Assume that (H2) holds and also the following hypotheses:

(H3) For arbitrary x, y ∈ C(J ,X ) there exists a constant δη ∈ (0, 1) such that

∥η(x)− η(y)∥ ≤ δη∥x− y∥.
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(H4) For arbitrary x, y ∈ C(J ,X ) there exists a constant δζ ∈ (0, 1) such that

∥ζ(x)− ζ(y)∥ ≤ δζ∥x− y∥.

If
2δξT

q

Γ(q + 1)
+ T (δη + δζ) < 1,

then the fractional BVP(1.1) has a unique solution x ∈ C(J ,X ).

Proof Consider the operator F : C(J ,X ) → C(J ,X ) defined by

F(x)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1ξ(s, x(s))ds− t

TΓ(q)

∫ T

0

(T − s)q−1ξ(s, x(s))ds−

(
t

T
− 1)

∫ T

0

η(s, x(s))ds+
t

T

∫ T

0

ζ(s, x(s))ds.

It is clear that, the fixed points of the operator F are solutions of the problem BVP(1.1). Now,

consider

∥F(x)(t)−F(y)(t)∥ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1∥ξ(s, x(s))− ξ(s, y(s))∥ds+

t

TΓ(q)

∫ T

0

(T − s)q−1∥ξ(s, x(s))− ξ(s, y(s))∥ds+

(
t

T
− 1)

∫ T

0

∥η(s, x(s))− η(s, y(s))∥ds+ t

T

∫ T

0

∥ζ(s, x(s))− ζ(s, y(s))∥ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1δξ∥x− y∥ds+ t

TΓ(q)

∫ T

0

(T − s)q−1δξ∥x− y∥ds+

(
t

T
− 1)

∫ T

0

δη∥x− y∥ds+ t

T

∫ T

0

δζ∥x− y∥ds

≤ δξ
Γ(q)

(
tq

q
)∥x− y∥+ tδξ

TΓ(q)
(
T q

q
)∥x− y∥+ (

t

T
− 1)Tδη∥x− y∥+ t

T
Tδζ∥x− y∥

=
tqδξ

Γ(q + 1)
∥x− y∥+ tδξT

q−1

Γ(q + 1)
∥x− y∥+ (t− T )δη∥x− y∥+ tδζ∥x− y∥

=
t(tq−1 + T q−1)δξ

Γ(q + 1)
∥x− y∥+ (t− T )δη∥x− y∥+ tδζ∥x− y∥

as 0 ≤ t ≤ T , then

∥F(x)(t)−F(y)(t)∥ ≤ [
2δξT

q

Γ(q + 1)
+ T (δη + δζ)]∥x− y∥.

Thus, F is a contraction mapping on C(J ,X ) with contraction constant [
2δξT

q

Γ(q+1) + T (δη + δζ)].

By applying Banach’s contraction mapping principle, one can deduce that the operator F has a

unique fixed point on C(J ,X ) which implies the BVP(1.1) has a unique solution in C(J ,X ). 2
Theorem 3.4 Assume that (H1), (H2) and the following hypotheses:

(H5) For arbitrary (t, x) ∈ J × X , there exist δ1, δ2 > 0, q1 ∈ [0, 1) such that

∥ξ(t, x)∥ ≤ δ1∥x∥q1 + δ2.
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(H6) For arbitrary (t, x) ∈ J × X , there exist δ3, δ4 > 0, q2 ∈ [0, 1) such that

∥η(t, x)∥ ≤ δ3∥x∥q2 + δ4.

(H7) For arbitrary (t, x) ∈ J × X , there exist δ5, δ6 > 0, q3 ∈ [0, 1) such that

∥ζ(t, x)∥ ≤ δ5∥x∥q3 + δ6,

hold then the fractional BVP(1.1) has at least one solution x ∈ C(J ,X ).

Proof Step 1. Prove continuity of F . Let {xn}∞n=1 be a sequence of a bounded set Bk ⊆ C(J ,X )

such that ∥xn − x∥ → 0 as n → ∞ in Bk (k > 0). For all s ∈ [0, t], t ∈ J , we have to show that

∥Fxn −Fx∥ → 0 as n→ ∞ as follows:

∥(Fxn)(t)− (Fx)(t)∥ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1∥ξ(s, xn(s))− ξ(s, x(s))∥ds+

t

TΓ(q)

∫ T

0

(T − s)q−1∥ξ(s, xn(s))− ξ(s, x(s))∥ds+

(
t

T
− 1)

∫ T

0

∥η(s, xn(s))− η(s, x(s))∥ds+ t

T

∫ T

0

∥ζ(s, xn(s))− ζ(s, x(s))∥ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1δξ∥(xn − x)∥ds+ t

TΓ(q)

∫ T

0

(T − s)q−1δξ∥(xn − x)∥|ds+

(
t

T
− 1)

∫ T

0

δη∥(xn − x)∥ds+ t

T

∫ T

0

δζ∥(xn − x)∥ds→ 0 as n→ ∞.

Step 2. Prove F map bounded sets into bounded sets in C(J ,X ). For any r > 0, we have

x ∈ Br := {x ∈ C(J ,X ) : ∥x∥ ≤ r},

∥(Fx)(t)∥ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1∥ξ(s, x(s))∥ds+ t

TΓ(q)

∫ T

0

(T − s)q−1∥ξ(s, x(s))∥ds+

(
t

T
− 1)

∫ T

0

∥η(s, x(s))∥ds+ t

T

∫ T

0

∥ζ(s, x(s))∥ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1[δ1∥x∥q1 + δ2]ds+
t

TΓ(q)

∫ T

0

(T − s)q−1[δ1∥x∥q1 + δ2]ds+

(
t

T
− 1)

∫ T

0

[δ3∥x∥q2 + δ4]ds+
t

T

∫ T

0

[δ5∥x∥q3 + δ6]ds

≤ [δ1r
q1 + δ2]

Γ(q)

∫ t

0

(t− s)q−1ds+
t[δ1r

q1 + δ2]

TΓ(q)

∫ T

0

(T − s)q−1ds+

(
t

T
− 1)[δ3r

q2 + δ4]

∫ T

0

ds+
t

T
[δ5r

q3 + δ6]

∫ T

0

ds

≤ [δ1r
q1 + δ2]

Γ(q)
(
tq

q
) +

t[δ1r
q1 + δ2]

TΓ(q)
(
T q

q
) + (

t

T
− 1)[δ3r

q2 + δ4]T +
t

T
[δ5r

q3 + δ6]T

≤ tq[δ1r
q1 + δ2]

Γ(q + 1)
+
tT q−1[δ1r

q1 + δ2]

Γ(q + 1)
+ (t− T )[δ3r

q2 + δ4] + t[δ5r
q3 + δ6]

≤ t(tq−1 + T q−1)[δ1r
q1 + δ2]

Γ(q + 1)
+ (t− T )[δ3r

q2 + δ4] + t[δ5r
q3 + δ6] := k.
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Thus, F map bounded sets into bounded sets in C(J ,X ).

Step 3. Prove F(Br) is equicontinuous. For t1, t2 ∈ J and 0 ≤ t1 ≤ t2 ≤ 1, let x ∈ Br, then,

∥(Fx)(t1)− (Fx)(t2)∥ ≤ ∥ 1

Γ(q)

∫ t1

0

(t1 − s)q−1ξ(s, x(s))ds− t1
TΓ(q)

∫ T

0

(T − s)q−1ξ(s, x(s))ds−

t1
T

∫ T

0

η(s, x(s))ds+
t1
T

∫ T

0

ζ(s, x(s))ds− 1

Γ(q)

∫ t2

0

(t2 − s)q−1ξ(s, x(s))ds+

t2
TΓ(q)

∫ T

0

(T − s)q−1ξ(s, x(s))ds+
t2
T

∫ T

0

η(s, x(s))ds− t2
T

∫ T

0

ζ(s, x(s))ds∥

≤ 1

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]∥ξ(s, x(s))∥ds+ |t1 − t2|
TΓ(q)

∫ T

0

(T − s)q−1∥ξ(s, x(s))∥ds+

|t1 − t2|
T

∫ T

0

∥η(s, x(s))∥ds+ |t1 − t2|
T

∫ T

0

∥ζ(s, x(s))∥ds+ 1

Γ(q)

∫ t2

t1

(t2 − s)q−1∥ξ(s, x(s))∥ds.

As t1 → t2, one can deduce (Fx)(t1) → (Fx)(t2) that means F(Br) is equicontinuous.

As consequence of Steps 1 to 3 together with the Arzela Ascoli theorem, one can get F :

C(J ,X ) → C(J ,X ) is completely continuous.

Step 4. Consider the following set of solutions of the system (1.1)

S = {x ∈ C(J ,X ) : there exists λ ∈ [0, 1] such that x = λFx}.

We shall prove that S is bounded in C(J ,X ). For x ∈ S and λ ∈ [0, 1], we have

∥x(t)∥ = λ∥Fx(t)∥ ≤ ∥ 1

Γ(q)

∫ t

0

(t− s)q−1ξ(s, x(s))ds− t

TΓ(q)

∫ T

0

(T − s)q−1ξ(s, x(s))ds−

(
t

T
− 1)

∫ T

0

η(s, x(s))ds+
t

T

∫ T

0

ζ(s, x(s))ds∥

≤ 1

Γ(q)

∫ t

0

(t− s)q−1∥ξ(s, x(s))∥ds+ t

TΓ(q)

∫ T

0

(T − s)q−1∥ξ(s, x(s))∥ds+

(
t

T
− 1)

∫ T

0

∥η(s, x(s))∥ds+ t

T

∫ T

0

∥ζ(s, x(s))∥ds

≤ t(tq−1 + T q−1)[δ1r
q1 + δ2]

Γ(q + 1)
+ (t− T )[δ3r

q2 + δ4] + t[δ5r
q3 + δ6].

The above inequality together with q1, q2, q3 ∈ [0, 1) and Step 2 show that S is bounded in

C(J ,X ). As a consequence of Schaefer’s fixed point theorem, one can conclude that F has a

fixed point which is the solution of the BVP (1.1). 2
Remark 3.5 If the growth conditions on ξ, η and ζ include linear growth case, then the set of

solutions of the system (1.1) is conex.

Lemma 3.6 The operator F : C(J ,X ) → C(J ,X ) is compact. Consequently, F is α-Lipschitz

with zero constant.

Proof Consider a closed subset M ⊆ C(J ,X ). As we prove in Theorem 3.4, F : C(J ,X ) →
C(J ,X ) is continuous and completely continuous, then by applying the Arzela Ascoli Theorem

F : C(J ,X ) → C(J ,X ) implies F(M) is a relatively compact subset of C(J ,X ). Therefore,
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F : C(J ,X ) → C(J ,X ) is compact. Consequently, by Proposition 2.7, F is α-Lipschitz with

zero constant. 2
Example 3.7 Let us consider the following fractional BVP{

cD 2
3x(t) = e−t|x(t)|

(1+2et)(1+|x(t)|) t ∈ J := [0, 1], 0 < q < 1,

x(0) =
∑∞

i=0 cix(ti), x(1) =
∑∞

j=0 djx(tj),
(3.2)

where 0 < t0 < t1 < · · · < 1, ci, dj , i, j = 0, . . . , are given positive constants with
∑∞

i=0 cix(ti) <

∞,
∑∞

j=0 djx(tj) <∞ and
∑∞

i=0 ci +
∑∞

j=0 dj =
3
17 .

Set q = 2
3 , for (t, x) ∈ [0, 1]× [0,+∞), we can define ξ(t, x) = e−tx

(1+2et)(1+x) . Also, for t ∈ [0, 1]

we have x(t) = e−t

(1+2et) . For x, y ∈ [0,+∞), we have

|ξ(t, x)− ξ(t, y)| =| e−tx

(1 + 2et)(1 + x)
− e−ty

(1 + 2et)(1 + y)
|, t ∈ [0, 1]

≤1

3
| x− y

(1 + x)(1 + y)
| ≤ 1

3
|x− y| ⇒ δξ =

1

3
.

Next, we shall check that (H3) and (H4) are satisfied with T = 1, then one can get δη =
∑∞

i=0 ci

and δζ =
∑∞

j=0 dj . Indeed,

2δξT
q

Γ(q + 1)
+ T (δη + δζ) =

2
3

Γ( 53 )
+

3

17
< 1

which is satisfied for q ∈ (0, 1). Then by Theorem 3.3 the problem (3.2) has a unique solution

on [0, 1].

4. Conclusion

In this article, we investigated some sufficient conditions for existence and uniqueness of

solutions for the fractional boundary value problems with integral boundary conditions. Banach’s

contraction mapping principle and Schaefer’s fixed point theorem have been utilized besides

applying topological technique of approximate solutions. Finally, the given example confirmed

our results.
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