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Abstract In this article, we study the existence and non-existence of weak solutions to the fol-

lowing quasilinear elliptic problem with principal part having degenerate coercivity and nonlinear

term involving gradient,{
−div( |∇u|p−2∇u

(1+|u|)θ(p−1) ) +
|u|p−2u|∇u|p

(1+|u|)θp = µ, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊆ RN (N ≥ 3) is a bounded smooth domain, 1 < p < N , 0 ≤ θ < 1, µ is a Radon

measure.

Keywords elliptic equation; degenerate coercivity; measures data; existence; non-existence
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1. Introduction and main results

Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, 1 < p < N and µ

be a Radon measure in Ω. In this paper, we mainly consider the existence and non-existence of

solutions u ∈W 1,p
0 (Ω) to the problem{

−divA(x, u,∇u) + g(x, u,∇u) = µ, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where A(x, t, ξ) ≡ Ai(x, t, ξ) : Ω × R × RN → RN is the Carathéodory function, satisfying the

following conditions: there exist positive constants c0, c1, such that

⟨A(x, t, ξ), ξ⟩ ≥ c0|ξ|p

(1 + |t|)θ(p−1)
, (1.2)
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|A(x, t, ξ)| ≤ c1(|ξ|p−1 + l(x)), l ∈ Lp′
(Ω), (1.3)

(A(x, t, ξ)−A(x, t, ξ
′
)) · (ξ − ξ

′
) > 0, (1.4)

for almost every x ∈ Ω, t ∈ R and ξ, ξ′ ∈ RN with ξ ̸= ξ′, where 0 ≤ θ < 1, l ∈ Lp′
(Ω) is a

non-negative function, p′ is the conjugate Hölder exponent of p, g : Ω × R × RN → R is the

Carathéodory function, such that the following assumptions hold,

|g(x, t, ξ)| ≤ b(|t|)( |ξ|p

(1 + |t|)θp
+ d(x)), (1.5)

g(x, t, ξ)sgn(t) ≥ ρ
|ξ|p

(1 + |t|)θp
, (1.6)

for almost every x ∈ Ω, t ∈ R, |t| ≥ σ, ξ ∈ RN , where b is an increasing real valued positive

continuous function, d ∈ L1(Ω) is a non-negative function, ρ and σ are two positive real numbers.

The main features of problem (1.1) are the facts that the principal part has degenerate

coercivity, the operator has lower order term, which also produce a lack of coercivity, and the

right-hand side µ is a measure. Notice that, A(u) := −divA(x, u,∇u) is well defined in W 1,p
0 (Ω)

when A satisfies (1.2). However, A is noncoercive in W 1,p
0 (Ω) if u is large enough. Therefore, the

standard Leray-Lions surjectivity theorem cannot be applied to problem (1.1) even in the case

f ∈ W−1,p′
(Ω). Thus it is necessary to change the classical framework of the Sobolev spaces in

order to prove existence results.

Nonlinear elliptic problems with measure data have been studied in a number of papers.

Bénilan et al. [1] proved the existence and uniqueness of entropy solution to{
−divA(x,∇u) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where f ∈ L1(Ω). However, their method is confined to the case of an L1(Ω) datum. In

particular, the concept of entropy solution is meaningless if f is a Radon measure. The results

in [1] were improved by Boccardo et al. [2], they considered a measure f ∈ Mγ
0(Ω), proved that

if γ is a real number such that 1 < γ < +∞, f ∈ Mb(Ω), then f ∈ L1(Ω) +W−1,γ′
(Ω) if and

only if f ∈ Mγ
0(Ω).

Huang et al. [3] considered how the nonlinear term |u|q−1u and singular term 1
(1+|u|)θ(p−1)

affect the existence of solution to the following degenerate coercivity elliptic problem,{
−div( |∇u|p−2∇u

(1+|u|)θ(p−1) ) + |u|q−1u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.7)

They obtained the stability of solution to (1.7) if

q >
r(p− 1)[1 + θ(p− 1)]

r − p
,

where f ∈ L1
loc(Ω\K), K is a compact subset in Ω with zero r-capacity (p < r ≤ N). We

refer to [4–12] for some related results about existence and non-existence of solutions to elliptic

equation with measure data.
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There are many papers devoted to study the existence and regularity of solutions to quasi-

linear elliptic problem with gradient term. Boccardo et al. [13] showed that problem{
−div(|∇u|p−2∇u) + |u|p−2u|∇u|p = µ, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.8)

has solutions if µ ∈ Mp
0(Ω). Similar results for problem (1.8) with p = 2 and µ ∈ Lm(Ω) (1 ≤ m ≤

N
2 ) were given by Boccardo [14]. Based on the results of [15–17], Huang et al. [18] investigated

the existence of entropy solutions to a class of nonlinear elliptic problem whose prototype is{
−div( |∇u|(p−2)∇u+c(x)uγ

(1+|u|)θ(p−1) ) + b(x)|∇u|λ
(1+|u|)θ(p−1) = µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where µ is a diffuse measure with bounded variation on Ω, 2 − 1/N < p < N , 0 < γ ≤ p − 1,

0 < λ ≤ p − 1, c0(x) ∈ L
N

p−1 ,r(Ω), N
p−1 ≤ r ≤ +∞, b(x) belongs to some appropriate Lorentz

spaces. For some other results see [19–23] and the references therein.

Based on the above research results, in this paper, we are interested in existence and non-

existence of solutions to problem (1.1). We prove that there exists a solution u ∈ W 1,p
0 (Ω) to

problem (1.1) if and only if the measure µ does not charge the sets with zero p capacity in Ω.

Furthermore, we show that if un are solutions to (1.1) with µn ∈ L∞(Ω), then un → 0 as n→ ∞.

In order to present the main results of this paper, several definitions need to be introduced.

Definition 1.1 Let K be a compact subset of Ω, r > 1 is a real number. The r capacity of K

respect to Ω is defined as

capr(K,Ω) = inf
{∫

Ω

|∇u|rdx : u ∈ C∞
0 (Ω), u ≥ χK

}
,

where χK is the characteristic function of K.

We denote by Mb(Ω) the space of all signed measures on Ω. Denote by Mγ
0(Ω) the space of

all measure µ ∈ Mb(Ω) such that µ(E) = 0 for every set satisfying capγ(E,Ω) = 0.

If µ ∈ Mb(Ω), then |µ| is a bounded positive measure on Ω.

Let µ be a Radon measure, E is a Borel subset of Ω. The restriction of µ to E is the

measure λ = µxE defined by λ(B) = µ(E ∩B) for every Borel subset B of Ω. We say that λ is

concentrated on a Borel set E if λ = λxE.

Proposition 1.2 Let µ ∈ Mb(Ω) and 1 < γ ≤ N . Then µ can be decomposed in a unique way

as µ0 + λ, where µ0 ∈ Mγ
0(Ω), λ = µxE and capγ(E,Ω) = 0.

Definition 1.3 Let g ∈ L1(Ω), a function u ∈W 1,p
0 (Ω) is a weak solution to Eq. (1.1), provided∫

Ω

A(x, u,∇u) · ∇υdx+

∫
Ω

g(x, u,∇u)υdx =

∫
Ω

υdµ, (1.9)

for every υ ∈ C∞
0 (Ω).

For all k > 0, s ∈ R, define Tk(s) = max(−k,min{k, s}), Gk(s) = s− Tk(s).



176 Maoji RI, Xiangrui LI, Qiaoyu TIAN and et al.

Proposition 1.4 Let k > 0 and s ∈ R, then we have

Gk(s) =

{
0, if |s| ≤ k,

s− k sgn(s), if |s| > k,
⇒ sGk(s) ≥ 0, ∀ s ∈ R,

and

Tk(s) =

{
s, if |s| ≤ k,

k sgn(s), if |s| > k,
⇒ Tk(s) ≤ k, ∀ s ∈ R.

Firstly, we consider the existence result for problem (1.1) when datum µ is regular.

Theorem 1.5 Let µ ∈ Mb(Ω), 1 < p < N and (1.1)–(1.6) hold. Then there exists a weak

solution u ∈W 1,p
0 (Ω) to problem (1.1) in the sense of (1.9) if and only if µ ∈ Mp

0(Ω).

Remark 1.6 The result of Theorem 1.5 expands the result in [2, Theorem2.1] in the sense that,

if µ ∈ Mp
0(Ω), then there exists a function u ∈W 1,p

0 (Ω), such that

µ = −divA(x, u,∇u) + g(x, u,∇u)

with g ∈ L1(Ω).

Now consider the non-existence of solution to problem (1.1).

Theorem 1.7 Let λ ∈ Mb(Ω) be concentrated on a set E such that capp(E,Ω) = 0, {un} are

weak solutions to {
−divA(x, un,∇un) + g(x, un,∇un) = fn, x ∈ Ω,

un = 0, x ∈ ∂Ω,
(1.10)

where {fn} ⊂ L∞(Ω) are non-negative functions such that

lim
n→+∞

∫
Ω

fnφdx =

∫
Ω

φdλ, ∀φ ∈ C(Ω̄). (1.11)

Then there exists k > 0, such that Tk(un) → 0 in W 1,p
0 (Ω).

Moreover, un ⇀ 0 in W 1,p
0 (Ω), and

lim
n→+∞

∫
Ω

g(x, un,∇un)φdx =

∫
Ω

φdλ, ∀φ ∈ C1
0 (Ω).

Remark 1.8 A quite efficient way to prove the existence of a solution to nonlinear elliptic

problems with measure data is to use an approximation method. The preceding theorem can

be seen as a non-existence result for problem (1.1). More precisely, according to Proposition

1.2, given a measure µ ∈ Mb(Ω), it can be decomposed into µ0 + λ. Theorem 1.7 states that,

suppose µ0 = 0, so that µ = λ is singular with respect to p-capacity, if we try to approximate

the measure λ with fn, which is bounded in L1(Ω), then un ⇀ 0 weakly in W 1,p
0 (Ω).

The structure of this paper is as follows: Section 2 mainly gives a lemma and theorem which

play an important role in the process of proof of the main theorem. The proofs of Theorems 1.5

and 1.7 are given in Section 3.
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2. Preliminaries

In this paper, C denotes a constant and its value may change from line to line.

To prove the existence of solutions to problem (1.1), the following lemma and theorem are

required.

Lemma 2.1 ([13, Lemma 2.4]) Let φ(t) = teϑt
2

with ϑ = b2

4a2 . Then

aφ′(t)− b|φ(t)| ≥ a

2
, ∀t ∈ R, (2.1)

where a and b are two non-negative real numbers.

Theorem 2.2 Let f ∈ L∞(Ω), F ∈ (Ls(Ω))N with s > N
p−1 . Then there exists a weak solution

u ∈W 1,p
0 (Ω) ∩ L∞(Ω) to the problem{

−divA(x, u,∇u) + g(x, u,∇u) = f − div(F ), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.2)

Proof For simplicity, suppose f = 0. The case of f ̸= 0, can be proved similarly.

Let n ∈ N and

gn(x, t, ξ) =
g(x, t, ξ)

1 + 1
n |g(x, t, ξ)|

.

Then gn(x, t, ξ) is bounded and satisfies (1.5). Thanks to (1.6), we have

gn(x, t, ξ)sgn(t) ≥ 0, (2.3)

for almost every x ∈ Ω, ξ ∈ RN and t ∈ R with |t| ≥ σ.

Since gn is bounded, by [24], there exists a weak solution un ∈W 1,p
0 (Ω) to{

−divA(x, un,∇un) + gn(x, un,∇un) = −div(F ), x ∈ Ω,

un = 0, x ∈ ∂Ω.
(2.4)

As proved in [25], if {un} is bounded in L∞(Ω), then there exists a subsequence of un, still

denoted by un, which converges to a solution to (2.2) in W 1,p
0 (Ω). Hence, we only need to

estimate ∥un∥L∞(Ω).

To do this, choosing
∫ Gk(un)

0
1

(1+k+|t|)θ dt as a test function in (2.4) with k ≥ σ, we obtain∫
Ω

A(x, un,∇un) ·
∇Gk(un)

(1 + k + |Gk(un)|)θ
dx+

∫
Ω

gn(x, un,∇un)
∫ Gk(un)

0

1

(1 + k + |t|)θ
dtdx

=

∫
Ω

F · ∇Gk(un)

(1 + k + |Gk(un)|)θ
dx.

On the one hand, from (1.2) it follows that,∫
Ω

A(x, un,∇un) ·
∇Gk(un)

(1 + k + |Gk(un)|)θ
dx ≥ c0

∫
Ω

|∇Gk(un)|p

(1 + k + |Gk(un)|)θp
dx. (2.5)

By Proposition 1.4, Gk(un)un ≥ 0 and Gk ̸= 0 only where x ∈ {x ∈ Ω : |un(x)| ≥ k}, then (2.3)

implies

gn(x, un,∇un)
∫ Gk(un)

0

1

(1 + k + |t|)θ
dt ≥ gn(x, un,∇un)

Gk(un)

(1 + k + |Gk(un)|)θ
≥ 0. (2.6)
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By the Young inequality, we get∫
Ω

F · ∇Gk(un)

(1 + k + |Gk(un)|)θ
dx ≤ C

∫
Ak,n

|F |p
′
dx+

c0
2

∫
Ω

|∇Gk(un)|p

(1 + k + |Gk(un)|)θp
dx, (2.7)

where Ak,n = {x ∈ Ω : |un(x)| ≥ k}. Combining (2.5)–(2.7), we have∫
Ω

|∇Gk(un)|p

(1 + k + |Gk(un)|)θp
dx ≤ C

∫
Ak,n

|F |p
′
dx. (2.8)

Since |F | ∈ Ls(Ω) with s > p′, using the Hölder inequality,∫
Ak,n

|F |p
′
dx ≤ ∥F∥p

′

Ls(Ω)|Ak,n|1−
p′
s . (2.9)

On the other hand, we have(∫
Ω

|(1 + k + |Gk(un)|)1−θ|p
∗
dx

) p
p∗ ≤ C

∫
Ω

| ∇Gk(un)

(1 + k + |Gk(un)|)θ
|pdx, (2.10)

in fact, by the Sobolev embedding,(∫
Ω

|η(x)|p
∗
dx

) p
p∗ ≤ C

∫
Ω

|∇η(x)|pdx, p∗ =
Np

N − p
, 1 < p < N, ∀ η ∈W 1,p

0 (Ω),

for

η(x) = (1 + k + |Gk(un)|)1−θ ⇒ ∇η(x) = (1− θ)
∇Gk(un)

(1 + k + |Gk(un)|)θ
.

According to (2.8)–(2.10), we obtain(∫
Ω

|(1 + k + |Gk(un)|)1−θ|p
∗
dx

) p
p∗ ≤ C|Ak,n|1−

p′
s . (2.11)

Next, choosing h > k and using the fact that |Gk(un)| ≥ h− k where x ∈ Ah,n ⊂ Ak,n, we

have

(h+ 1)(1−θ)p|Ah,n|
p
p∗ ≤

(∫
Ak,n

|(1 + k + |Gk(un)|)1−θ|p
∗
dx

) p
p∗
. (2.12)

By (2.11) and (2.12), we obtain

(h+ 1)(1−θ)p|Ah,n|
p
p∗ ≤ C|Ak,n|1−

p′
s ,

for every h > k ≥ σ and combining with

(h− k)(1−θ)p < h(1−θ)p < (h+ 1)(1−θ)p,

we get

|Ah,n| ≤
C

(h− k)(1−θ)p∗ |Ak,n|
p∗
p (1− p′

s ).

Since s > N
p−1 and 0 ≤ θ < 1, observe that

p∗

p
(1− p′

s
) > 1, (1− θ)p∗ > 0.

According to [26, Lemma 4.1], there exists a constantM which depends on n, such that |Ak,n| =
0, for every k ≥ σ +M . This fact shows that ∥un∥L∞(Ω) ≤ σ +M. 2
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3. Proofs of main results

In the process of proving Theorems 1.5 and 1.7, denote by εδ and εn,δ, respectively, any

function, such that limδ→0+ εδ = 0, limδ→0+ limn→+∞ εn,δ = 0.

3.1. Proof of Theorem 1.5

We give the proof of existence result for problem (1.1) provided the datum µ is regular.

Proof Suppose there exists a weak solution u ∈ W 1,p
0 (Ω) to problem (1.1) with g ∈ L1(Ω),

since A(x, t, ξ) ∈ (Lp′
(Ω))N by (1.3), then µ ∈ L1(Ω) +W−1,p′

(Ω). Hence, µ ∈ Mp
0(Ω) by [2,

Theorem2.1].

On the other hand, suppose µ ∈ Mp
0(Ω). Thanks to [2, Theorem2.1], µ can be decomposed

as f − div(F ) with f ∈ L1(Ω) and F ∈ (Lp′
(Ω))N .

Assume that {fn} ∈ L∞(Ω) converges to f strongly in L1(Ω), {Fn} ∈ (L∞(Ω))N converges

to F strongly in (Lp′
(Ω))N . Then according to Theorem 2.2, there exists a weak solution un ∈

W 1,p
0 (Ω) to {

−divA(x, un,∇un) + g(x, un,∇un) = fn − div(Fn), x ∈ Ω,

un = 0, x ∈ ∂Ω.
(3.1)

Choosing φσ := φ(ψ(Tσ(un))) as a test function in (3.1) with ψ(x) =
∫ x

0
1

(1+|t|)θ dt, where

φ(s) appears in Lemma 2.1 with a = c0
2 and b = b(σ) (b(s) is given by (1.5)), we get∫

Ω

(A(x, un,∇un) · ∇φσ + g(x, un,∇un)φσ)dx =

∫
Ω

(fnφσ − Fn · ∇φσ)dx. (3.2)

Next we calculate

∇φσ = φ′
σ∇ψ(Tσ(un)),

∇ψ(Tσ(un)) =
∂ψ

∂Tσ
∇Tσ(un) =

1

(1 + |Tσ(un)|)θ
∇Tσ(un), (3.3)

where φ′
σ := φ′(ψ(Tσ(un))). Now we present Ω = (Ω ∩ {x ∈ Ω : |un(x)| > σ}) ∪ (Ω ∩ {x ∈ Ω :

|un(x)| ≤ σ}). By Proposition 1.4, we have

∂Tσ(un)

∂xi
=

{
∂un

∂xi
, |un| ≤ σ

0, |un| > σ,
i = 1, . . . , N. (3.4)

Then from (3.3) it follows that

∇φσ =
φ′
σ

(1 + |Tσ(un)|)θ
∇Tσ(un) =

φ′
σ

(1 + |Tσ(un)|)θ

{
∇un, |un| ≤ σ,

0, |un| > σ.
(3.5)

Therefore, by (1.2), we obtain∫
Ω

A(x, un,∇un) · ∇φσ =

∫
Ω∩{|un|≤σ}

φ′
σ

(1 + |un|)θ
A(x, un, Tσ(∇un)) · ∇Tσ(∇un)

≥c0
∫
Ω∩{|un|≤σ}

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σdx = c0

∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σdx. (3.6)
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Proposition 3.1 Let ψ(x) =
∫ x

0
1

(1+|t|)θ dt. Then

ψ(Tσ(un)) ≤ σ. (3.7)

Proof By Proposition 1.4,

Tσ(un) =

{
un, |un| ≤ σ,

σ, |un| > σ,
⇒ Tσ(un) ≤ σ, ∀un ∈ R. (3.8)

If |un| > σ, it follows that

ψ(Tσ(un)) = ψ(σ) =

∫ σ

0

1

(1 + |t|)θ
dt ≤ σ and ψ(Tσ(un)) ≥ 0,

i.e., (3.7) is true.

Now, let |un| ≤ σ. Then we have

ψ(Tσ(un)) = ψ(un) =

∫ un

0

1

(1 + |t|)θ
dt ≤ un ≤ σ and ψ(Tσ(un)) ≥ 0 if un ≥ 0,

It remains for us to consider the case −σ ≤ un < 0. In this case we derive

ψ(Tσ(un)) = ψ(un) =

∫ un

0

1

(1 + |t|)θ
dt =

∫ 0

un

d(1− t)

(1− t)θ

=

∫ 1

1−un

τ−θdτ =
1− (1− un)

1−θ

1− θ

≥ 1− (1 + σ)1−θ

1− θ
≥ −σ,

by virtue of the well known inequality xα − 1 ≤ α(x − 1), x > 0, 0 < α < 1. Thus, (3.7) is

proved. 2
Further, by Lemma 2.1, function φ(t) is increasing function, therefore from (3.7) it follows

that

φσ = φ(ψ(Tσ(un))) ≤ φ(σ) ⇒
∫
Ω

fnφσdx ≤ φ(σ)

∫
Ω

|fn|dx. (3.9)

Next, by the Young inequality,

Fn · ∇ψ(Tσ(un)) ≤
εp

p
|∇ψ(Tσ(un))|p +

1

p′εp′ |Fn|p
′
, ∀ ε > 0,

1

p
+

1

p′
= 1.

Now we choose ε = (pc02 )
1
p . Then

1

p′
ε−p′

=
p− 1

p
(
2

pc0
)

1
p−1 ≤ 1, if c0 ≥ 2

p
(

1

p− 1
)p−1.

From φ′′(t) = 2ϑt(3 + 2ϑt2)eϑt
2

> 0 for t > 0, we obtain that φ′(t) is an increasing function.

Therefore, by (3.7), φ′
σ = φ′(ψ(Tσ(un))) ≤ φ′(σ). From above inequalities, we derive

Fn · ∇φσ = φ′
σ(Fn · ∇ψ(Tσ(un)))

≤ φ′(σ)|Fn|p
′
+
c0
2
|∇ψ(Tσ(un))|pφ′

σ

≤ φ′(σ)|Fn|p
′
+
c0
2

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σ, (3.10)
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here we have used (3.3) and (3.8).

At last, from (3.2), (3.6), (3.9) and (3.10), we obtain

c0

∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σdx+

∫
Ω

g(x, un,∇un)φσdx

≤ φ(σ)

∫
Ω

|fn|dx+ φ′(σ)

∫
Ω

|Fn|p
′
dx+

c0
2

∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σdx,

that is

c0
2

∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
φ′
σdx+

∫
Ω

g(x, un,∇un)φσdx ≤ φ(σ)∥fn∥L1(Ω) + φ′(σ)||Fn|∥p
′

Lp′ (Ω)
. (3.11)

Note that∫
Ω

g(x, un,∇un)φσdx =

∫
{|un|<σ}

g(x, un,∇un)φσdx+

∫
{|un|≥σ}

g(x, un,∇un)φσdx.

Using (1.5), we have∣∣∣ ∫
{|un|<σ}

g(x, un,∇un)φσdx
∣∣∣ ≤ b(σ)

∫
Ω

( |∇Tσ(un)|p
(1 + |un|)θp

|φσ|+ d(x)φ(σ)
)
dx, (3.12)

from (1.6) it follows that∫
{|un|≥σ}

g(x, un,∇un)φσdx ≥ ρ

∫
{|un|≥σ}

|∇un|p

(1 + |un|)θp
φσdx. (3.13)

By (3.8), for |un| > σ

φσ = φ(ψ(σ)), ψ(σ) =

∫ σ

0

1

(1 + |t|)θ
dt ≥ σ

(1 + σ)θ
,

because φ(t) is the increasing function. From (3.11)–(3.13), we obtain∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
[
c0
2
φ′
σ − b(σ)|φσ|]dx+ ρφ(

σ

(1 + σ)θ
)

∫
{|un|≥σ}

|∇un|p

(1 + |un|)θp
dx

≤ φ(σ)(∥fn∥L1(Ω) + b(σ)∥d∥L1(Ω)) + φ′(σ)∥|Fn|∥p
′

Lp′ (Ω)
. (3.14)

This fact, together with (2.1), implies that∫
Ω

|∇Tσ(un)|p

(1 + |un|)θp
dx+

∫
{|un|≥σ}

|∇un|p

(1 + |un|)θp
dx ≤ C(1 + ∥fn∥L1(Ω) + ∥|Fn|∥p

′

Lp′ (Ω)
).

Since ∥un∥L∞(Ω) ≤ σ +M and Ω is a bounded domain, we have∫
Ω

|∇Tσ(un)|pdx+

∫
{|un|≥σ}

|∇un|pdx ≤ C(1 + ∥fn∥L1(Ω) + ∥|Fn|∥p
′

Lp′ (Ω)
).

This proves that {un} is bounded in W 1,p
0 (Ω). Hence, there exists a function u ∈ W 1,p

0 (Ω) and

a subsequence, still denoted by {un}, which converges to u weakly in W 1,p
0 (Ω) and a.e. in Ω.

Next, we will prove that un → u in W 1,p
0 (Ω). Firstly we prove

lim
h→+∞

sup
n∈N

∫
{|un|≥k}

|∇un|pdx = 0. (3.15)

Taking T1(un − Tk−1(un)) with k > σ + 1 as a test function in (3.1), we have∫
Ω

A(x, un,∇un) · ∇T1(un − Tk−1(un))dx+

∫
Ω

g(x, un,∇un)T1(un − Tk−1(un))dx
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=

∫
Ω

fnT1(un − Tk−1(un))dx+

∫
Ω

Fn · ∇T1(un − Tk−1(un))dx.

Note that ∇T1(un − Tk−1(un)) = ∇un if k − 1 ≤ |un| ≤ k, and is zero elsewhere. In addition,

using the fact that T1(un − Tk−1(un))un ≥ 0 if |un| > σ and is zero if |un| ≤ σ, by (1.6), we get

g(x, un,∇un)T1(un − Tk−1(un))dx ≥ |g(x, un,∇un)|χ{|un|≥k}. (3.16)

By (1.2) and using ∥un∥L∞(Ω) ≤ σ +M again, we have∫
Ω

A(x, un,∇un) · ∇Tk(un − Th(un))dx

≥ c0

∫
{k−1≤|un|≤k}

|∇un|p

(1 + |un|)θ(p−1)
dx

≥ C

∫
{k−1≤|un|≤k}

|∇un|pdx. (3.17)

By the Young inequality, we can write∫
Ω

Fn · ∇T1(un − Tk−1(un))dx ≤
∫
{k−1≤|un|≤k}

|Fn|p
′
dx+

C

2

∫
{k−1≤|un|≤k}

|∇un|pdx. (3.18)

Combining (3.16)–(3.18) and dropping positive terms, we obtain∫
{|un|≥k}

|g(x, un,∇un)|dx ≤
∫
{|un|>k−1}

|fn|dx+ C

∫
{k−1≤|un|≤k}

|Fn|p
′
dx. (3.19)

Since {un} is bounded in L1(Ω), we have

lim
h→+∞

sup
n∈N

|({|un| ≥ k − 1})| = 0.

Moreover, fn and |Fn| are strongly compact in L1(Ω) and Lp′
(Ω), respectively. Thus

lim
h→+∞

sup
n∈N

(∫
{|un|>k−1}

|fn|dx+ C

∫
{k−1≤|un|≤k}

|Fn|p
′
dx

)
= 0. (3.20)

By (3.19) and (3.20), using the fact that k ≥ σ and (1.6), we can get (3.15).

In the following, we prove Tk(un) → Tk(u) in W
1,p
0 (Ω) for every k ≥ σ.

Let k ≥ σ, choose φ(Tk(un)− Tk(u)) as a test function in (3.1), then∫
Ω

A(x, un,∇un) · ∇(Tk(un)− Tk(u))φ
′(Tk(un)− Tk(u))dx+ (A)∫

Ω

g(x, un,∇un)φ(Tk(un)− Tk(u))dx (B)

=

∫
Ω

fnφ(Tk(un)− Tk(u))dx+ (C)∫
Ω

Fn · ∇(Tk(un)− Tk(u))φ
′(Tk(un)− Tk(u))dx. (D)

In the following, for simplicity of notation, denote φn := φ(Tk(un)− Tk(u)), φ
′
n := φ′(Tk(un)−

Tk(u)).

According to Lemma 2.1, we find

lim
n→+∞

φn = φ(0) = 0, lim
n→+∞

φ′
n = φ′(0) = 1. (3.21)
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First, A can be decomposed as

(A) =

∫
Ω

A(x, un,∇Gk(un)) · ∇(Tk(un)− Tk(u))φ
′
ndx+∫

Ω

A(x, un,∇Tk(un)) · ∇(Tk(un)− Tk(u))φ
′
ndx. (3.22)

Due to ∇Tk(un) = 0 where ∇Gk(un) ̸= 0, there are∫
Ω

A(x, un,∇Gk(un)) · ∇(Tk(un)− Tk(u))φ
′
ndx

= −
∫
Ω

A(x, un,∇Gk(un)) · ∇Tk(u)φ′
ndx. (3.23)

Since ∇Tk(u) = 0 if x ∈ {x ∈ Ω : |u(x)| ≥ k}, we have ∇Tk(u)χ{|u|≥k} → 0 a.e. in Ω. Using the

fact that ∇Tk(u) ∈ (Lp(Ω))N , we obtain

∇Tk(u)χ{|u|≥k} → 0, strongly in (Lp(Ω))N . (3.24)

Combining (3.23) and (3.24) with the fact that A(x, un,∇Gk(un)) is bounded in (Lp′
(Ω))N , we

get ∫
Ω

A(x, un,∇Gk(un)) · ∇(Tk(un)− Tk(u))φ
′
ndx = εn (3.25)

and ∫
Ω

A(x, un,∇Tk(un)) · ∇(Tk(un)− Tk(u))φ
′
ndx

=

∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))φ
′
ndx+∫

Ω

A(x, un,∇Tk(u)) · ∇(Tk(un)− Tk(u))φ
′
ndx. (3.26)

Since Tk(un)⇀ Tk(u) in W
1,p
0 (Ω), we have∫

Ω

A(x, un,∇Tk(u)) · ∇(Tk(un)− Tk(u))φ
′
ndx = εn. (3.27)

Combining (3.25)–(3.27) with (3.22), we find

(A) =

∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))φ
′
ndx+ εn. (3.28)

Next, decompose (B) into

(B) =

∫
{|un|≥k}

g(x, un,∇un)φndx+

∫
{|un|<k}

g(x, un,∇un)φndx. (3.29)

According to (2.1), we deduce that φ(t)t ≥ 0. Using the fact that k−Tk(u) ≥ 0 and −k−Tk(u) ≤
0 with k ≥ σ, for x ∈ {x ∈ Ω : un(x) ≥ k}, then we have

φn = φ(k − Tk(u)) ≥ 0.

For x ∈ {x ∈ Ω : un(x) ≤ −k}, we get

φn = φ(−k − Tk(u)) ≤ 0.



184 Maoji RI, Xiangrui LI, Qiaoyu TIAN and et al.

Thus, from (1.6) it follows that∫
{|un|≥k}

g(x, un,∇un)φndx ≥ 0. (3.30)

Using (1.5), we get∣∣∣ ∫
{|un|<k}

g(x, un,∇un)φndx
∣∣∣ ≤ b(k)

∫
Ω

|∇Tk(un)|p

(1 + |un|)θp
|φn|dx+ b(k)

∫
Ω

d(x)|φn|dx, (3.31)

Since d ∈ L1(Ω), and by (3.21), we have∫
Ω

d(x)|φn|dx = εn. (3.32)

Combining (3.31) and (3.32) with (1.2), we obtain∣∣∣ ∫
{|un|<k}

g(x, un,∇un)φndx
∣∣∣ ≤ b(k)

c0

∫
Ω

A(x, un,∇Tk(un)) · ∇Tk(un)|φn|dx+ εn. (3.33)

Note that ∫
Ω

A(x, u,∇Tk(u)) · ∇(Tk(un)− Tk(u))|φn|dx = εn (3.34)

and ∫
Ω

A(x, un,∇Tk(un)) · ∇Tk(u)|φn|dx = εn. (3.35)

It follows from (3.33)–(3.35), that∣∣∣ ∫
{|un|<k}

g(x, un,∇un)φndx
∣∣∣

≤ b(k)

c0

∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))|φn|dx. (3.36)

By (3.29), (3.30) and (3.36), we get

(B) ≥ −b(k)
c0

∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))|φn|dx. (3.37)

For (C) and (D), since fn and Fn are strongly compact in L1(Ω) and (Lp′
(Ω))N , respectively,

Tk(un)⇀ Tk(u) in W
1,p
0 (Ω), by (3.21), we obtain

(C) = εn, (D) = εn. (3.38)

According to (3.28), (3.37) and (3.38), we get∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))[φ
′
n − b(k)

c0
|φn|]dx = εn. (3.39)

Combining (3.39) with Lemma 2.1, we have∫
Ω

[A(x, un,∇Tk(un))−A(x, un,∇Tk(u))] · ∇(Tk(un)− Tk(u))dx = εn.

This shows that Tk(un) → Tk(u) in W
1,p
0 (Ω).

Let E ⊂ Ω be a measurable subset. Then∫
E

|∇un|pdx =

∫
E∩{|un|≤k}

|∇un|pdx+

∫
E∩{|un|>k}

|∇un|pdx. (3.40)
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Let ε > 0 be fixed. Since ∫
E∩{|un|>k}

|∇un|pdx ≤
∫
{|un|>k}

|∇un|pdx,

(3.15) implies that there exists a k ≥ σ, such that∫
E∩{|un|>k}

|∇un|pdx ≤ ε

2
, ∀n ∈ N. (3.41)

For fixed k, due to ∫
E∩{|un|≤k}

|∇un|pdx ≤
∫
E

|∇Tk(un)|pdx,

the strong compactness of Tk(un) in W
1,p
0 (Ω) implies, there exists δ > 0, such that∫

E∩{|un|≤k}
|∇un|pdx ≤ ε

2
, ∀n ∈ N, (3.42)

if |E| < δ.

By (3.40)–(3.42), there exists δ > 0, such that∫
E

|∇un|pdx ≤ ε, ∀n ∈ N,

for every ε > 0 if |E| < δ.

This fact shows that {|∇un|p} is equi-integrable. Then there exists a subsequence, still

denoted by un, such that ∇un almost everywhere converges to ∇u and un converges to u strongly

in W 1,p
0 (Ω).

In order to pass to the limit to problem (3.1), we need to prove g(x, un,∇un) → g(x, u,∇u)
in L1(Ω).

Since g(x, un,∇un) almost everywhere converges to g(x, u,∇u) in Ω, we only prove the equi-

integrability of {|g(x, un,∇un)|}.
Using the above method, let E ⊂ Ω be a measurable subset, we have∫

E

|g(x, un,∇un)|dx =

∫
E∩{|un|≤k}

|g(x, un,∇un)|dx+∫
E∩{|un|>k}

|g(x, un,∇un)|dx. (3.43)

Let ε > 0 be fixed. Using the fact that ∇Tk(un) = ∇un if |un| ≤ k and (1.5), we get∫
E∩{|un|≤k}

|g(x, un,∇un)|dx ≤ b(k)

∫
E

(
|∇Tk(un)|p

(1 + |un|)θp
+ d(x))dx

≤ b(k)

∫
E

(
|∇Tk(un)|p

(1− k)θp
+ d(x))dx.

Due to d ∈ L1(Ω) and the fact that Tk(un) is strongly compact in W 1,p
0 (Ω), then there exists

δ > 0, such that ∫
E∩{|un|≤k}

|g(x, un,∇un)|dx ≤ ε

2
, ∀n ∈ N, (3.44)

for every ε > 0 if |E| < δ.



186 Maoji RI, Xiangrui LI, Qiaoyu TIAN and et al.

Notice that ∫
E∩{|un|>k}

|g(x, un,∇un)|dx ≤
∫
{|un|>k}

|g(x, un,∇un)|dx.

Using (3.15) and (1.5), there exists k ≥ σ, such that∫
E∩{|un|>k}

|g(x, un,∇un)|dx ≤ ε

2
, ∀n ∈ N. (3.45)

By (3.43)–(3.45), we show that {|g(x, un,∇un)|} is equi-integrable. Hence, we can get (1.9) by

taking the limit of (3.1). 2
3.2. Proof of Theorem 1.7

Before giving the proof of Theorem 1.7, we need to construct a suitable collection of cut-off

function.

Lemma 3.2 ([13, Lemma3.3]) Let λ ∈ Mb(Ω) be a non-negative measure concentrated on a

set E and capp(E,Ω) = 0. Then there exists a {ψδ} ∈ C∞
0 (Ω), such that∫

Ω

|∇ψδ|pdx = εδ, 0 ≤ ψδ ≤ 1,

∫
Ω

(1− ψδ)dλ = εδ, (3.46)

for every δ > 0.

In the following, we give the proof of Theorem 1.7.

Proof Since fn are non-negative, un are also non-negative by (1.6). Due to that {un} is bounded

in W 1,p
0 (Ω), there exists a subsequence {un}, a function u ∈ W 1,p

0 (Ω) and G ∈ (Lp′
(Ω))N , such

that un ⇀ u in W 1,p
0 (Ω) and a.e. in Ω, A(x, un,∇un)⇀ G in (Lp′

(Ω))N .

Since b is a continuous function, there exists k > 0, such that

b(k)k ≤ c0
2
. (3.47)

Choosing υ = (k − Tk(un))ψδ as a test function in (1.10), since υ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), we

have

−
∫
Ω

A(x, un,∇un) · ∇Tk(un)ψδdx+ (A)∫
Ω

[A(x, un,∇un) · ∇ψδ](k − Tk(un))dx+ (B)∫
Ω

g(x, un,∇un)(k − Tk(un))ψδdx (C)

=

∫
Ω

fn(k − Tk(un))ψδdx. (D)

By (1.2), we get

(A) ≤ −c0
∫
Ω

|∇Tk(un)|p

(1 + un)θ(p−1)
ψδdx.

Since k − Tk(un) → k − Tk(u) a.e. in Ω, we have that ∇ψδ(k − Tk(un)) → ∇ψδ(k − Tk(u)) in

(Lp(Ω))N . Then by (3.46), we find

(B) =

∫
Ω

G · ∇ψδ(k − Tk(u))dx+ εn = εn,δ.
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Using (1.5), we have that

|(C)| ≤
∫
{0≤un≤k}

b(k)(k − Tk(un))ψδ(
|∇Tk(un)|p

(1 + un)θp
+ d(x))dx.

According to (3.47), we obtain∫
{0≤un≤k}

b(k)(k − Tk(un))ψδd(x)dx ≤ c0
2

∫
Ω

ψδd(x)dx = εδ.

Hence

|(C)| ≤ c0
2

∫
Ω

|∇Tk(un)|p

(1 + un)θp
ψδdx+ εδ.

Clearly, (D) ≥ 0. Then
c0
2

∫
Ω

|∇Tk(un)|p

(1 + un)θp
ψδdx ≤ εn,δ.

Due to

C

∫
Ω

|∇Tk(un)|pψδdx ≤
∫
Ω

|∇Tk(un)|p

(1 + k)θp
ψδdx ≤

∫
Ω

|∇Tk(un)|p

(1 + un)θp
ψδdx,

we get ∫
Ω

|∇Tk(un)|pψδdx = εn,δ. (3.48)

Choose Tk(un)(1− ψδ) as a test function in (1.10), by the same way, we have∫
Ω

|∇Tk(un)|p(1− ψδ) = εn,δ. (3.49)

By (3.48) and (3.49), we obtain ∫
Ω

|∇Tk(un)|pdx = εn,

that is Tk(un) → 0 in W 1,p
0 (Ω). Since the limit is independent of the choice of subsequence, the

whole sequence {un} is such that sequence Tk(un) → 0 in W 1,p
0 (Ω). Thus, u = 0 and so un

converges weakly to 0 in W 1,p
0 (Ω).

In order to prove the second part of this theorem, observe that the strong convergence to

zero of Tk(un) follows ∇un → 0 a.e. in Ω. Then (1.3) and A(x, un,∇un) ⇀ G in (Lp′
(Ω))N

imply that G = 0. Choosing φ ∈ C1
0 (Ω) as test function in (1.10), we have∫

Ω

A(x, un,∇un) · ∇φdx+

∫
Ω

g(x, un,∇un)φdx =

∫
Ω

fnφdx. (3.50)

Since G = 0, we have ∫
Ω

A(x, un,∇un) · ∇φdx = εn. (3.51)

Combining (3.50) and (3.51) with (1.11), we obtain

lim
n→+∞

∫
Ω

g(x, un,∇un)φdx =

∫
Ω

φdλ,

for every φ ∈ C1
0 (Ω). This concludes the proof of Theorem 1.7. 2
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[7] M. DINDOŠ, J. PIPHER. Regularity theory for solutions to second order elliptic operators with complex

coefficients and the Lp Dirichlet problem. Adv. Math., 2019, 341: 255–298.

[8] A. JUNICHI. Regularity of weak solutions for degenerate quasilinear elliptic equations involving operator

curl. J. Math. Anal. Appl., 2015, 426(2): 872–892.

[9] D. KASTNER. Existence and regularizing effect of degenerate lower order terms in elliptic equations beyond

the Hardy constant. Adv. Nonlinear Stud., 2018, 18(4): 775–783.

[10] F. OLIVA. Regularizing effect of absorption terms in singular problems. J. Math. Anal. Appl., 2019, 472(1):

1136–1166.

[11] L. ORSINA, A. PRIGNET. Non-existence of solutions for some nonlinear elliptic equations involving mea-

sures. Proc. Roy. Soc. Edinburgh Sect. A, 2000, 130(1): 167–187.

[12] Maoji RI, Shuibo HUANG, Canyun HUANG. Non-existence of solutions to some degenerate coercivity elliptic

equations involving measures data. Electron. Res. Arch., 2020, 28(1): 165–182.
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[17] O. GUUIBÉ, A. MERCALDO. Existence of renormalized solutions to nonlinear elliptic equations with two

lower order terms and measure data. Trans. Amer. Math. Soc., 2008, 360(2): 643–669.

[18] Shuibo HUANG, Tong SU, Xinsheng DU, et al. Entropy solutions to noncoercive nonlinear elliptic equations

with measure data. Electron. J. Differential Equations, 2019, 97: 1–22.

[19] A. ALVION, L. BOCCARDO, V. FERONE, et al. Existence results for nonlinear elliptic equations with

degenerate coercivity. Ann. Mat. Pura Appl. (4), 2003, 182(1): 53–79.

[20] V. DE CICCO, D. GIACHETTI, F. OLIVA, et al. The Dirichlet problem for singular elliptic equations with

general nonlinearities. Calc. Var. Partial Differential Equations, 2019, 58(4): Paper No. 129, 40 pp.

[21] S. FLAVIA. On a class of quasilinear elliptic equations with degenerate coerciveness and measure data. Adv.

Nonlinear Stud., 2018, 18(2): 361–392.

[22] T. KLIMAIAK, A. ROZKOSZ. On semilinear elliptic equations with diffuse measures. NoDEA Nonlinear

Differential Equations Appl., 2018, 25(4): Paper No. 35, 23 pp.

[23] Maoji RI, Shuibo HUANG, Qiaoyu TIAN, et al. Existence of W 1,1
0 (Ω) solutions to nonlinear elliptic equation

with singular natural growth term. AIMS Math., 2020, 5(6): 5791–5800.
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