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Abstract Let k, ℓ ≥ 2 be positive integers. Let A be an infinite set of nonnegative integers.

For n ∈ N, let r1,k,...,kℓ−1(A,n) denote the number of solutions of n = a0 + ka1 + · · ·+ kℓ−1aℓ−1,

a0, . . . , aℓ−1 ∈ A. In this paper, we show that r1,k,...,kℓ−1(A,n) = 1 for all n ≥ 0 if and only

if A is the set of all nonnegative integers such that all its digits in its kℓ-adic expansion are

smaller than k. This result partially answers a question of Sárközy and Sós on representation

for multivariate linear forms.
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1. Introduction

Let N be the set of all nonnegative integers. Let ℓ ≥ 2 be a fixed integer and c0, . . . , cℓ−1 be

positive integers. For A ⊆ N, n ∈ N, let

rc0,...,cℓ−1
(A,n) = ♯{(a0, . . . , aℓ−1) ∈ Aℓ : n = c0a0 + · · ·+ cℓ−1aℓ−1}.

In 1997, Sárközy and Sós [1] posed the following problem:

Problem 1.1 For which (c1, . . . , ck) can the representation function rc1,...,ck(A,n), counting the

number of solutions of c1a1 + · · ·+ ckak = n (a1, . . . , ak ∈ A), be constant for n > N0?

In 1962, for fixed positive integer k ≥ 2, Moser [2] constructed a sequence A such that

r1,k(A,n) = 1 for all n ≥ 0. In 2009, Cilleruelo and Rué [3] completely settled the problem

of bivariate linear forms by showing that the only cases in which rc0,c1(A,n) may be constant

are those considered by Moser. In 2009, the author of this paper [4] extended the Erdös-Fuchs

theorem to k > 2, the author’s result implied that if (c0, . . . , cℓ−1) = (1, . . . , 1), then r1,...,1(A,n)

is not constant for n large enough. Recently, Rué and Spiegel [5] widely extended the previ-

ous results for multivariate linear forms. For example, they showed that for pairwise co-prime

numbers k1, . . . , kd ≥ 2, there does not exist any infinite set of positive integers A such that

rk1,...,kd
(A,n) becomes constant for n large enough. For other related problems we refer to [6,7].

In this paper, we generalize Moser’s theorem and obtain the following result:
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Theorem 1.2 Let k, ℓ ≥ 2 be positive integers. Let A be an infinite set of nonnegative integers.

Then r1,k,...,kℓ−1(A,n) = 1 for all n ≥ 0 if and only if

A =
{ ∞∑

j=0

rjk
ℓj : rj ∈ Z, 0 ≤ rj < k

}
,

where in each sum there are only finitely many rj ̸= 0.

2. Proof of Theorem 1.2

Suppose that

A =
{ ∞∑

j=0

rjk
ℓj : rj ∈ Z, 0 ≤ rj < k

}
,

where in each sum there are only finitely many rj ̸= 0.

For all n ≥ 0, we know that n has a unique kℓ-adic representation in the form

n =

s∑
j=0

fjk
ℓj , 0 ≤ fj < kℓ, 0 ≤ j ≤ s. (2.1)

For j = 0, . . . , s, since 0 ≤ fj < kℓ, there exist unique nonnegative integers 0 ≤ u
(j)
0 , . . . , u

(j)
ℓ−1 < k

such that

fj = u
(j)
0 + u

(j)
1 k + · · ·+ u

(j)
ℓ−1k

ℓ−1. (2.2)

By (2.1) and (2.2), we have

n =
s∑

j=0

(u
(j)
0 + u

(j)
1 k + · · ·+ u

(j)
ℓ−1k

ℓ−1)kℓj

=

s∑
j=0

u
(j)
0 kℓj + k

s∑
j=0

u
(j)
1 kℓj + · · ·+ kℓ−1

s∑
j=0

u
(j)
ℓ−1k

ℓj . (2.3)

Write

ai =

s∑
j=0

u
(j)
i kℓj , i = 0, . . . , l − 1.

Then ai ∈ A (0 ≤ i ≤ ℓ− 1). By (2.3), we have

r1,k,...,kℓ−1(A,n) ≥ 1

for all n ≥ 0.

Assume that

n =

s0∑
j=0

u
(j)
0 kℓj + k

s1∑
j=0

u
(j)
1 kℓj + · · ·+ kℓ−1

sℓ−1∑
j=0

u
(j)
ℓ−1k

ℓj

=

t0∑
j=0

v
(j)
0 kℓj + k

t1∑
j=0

v
(j)
1 kℓj + · · ·+ kℓ−1

tℓ−1∑
j=0

v
(j)
ℓ−1k

ℓj , (2.4)

where 0 ≤ u
(j)
i , v

(j)
i < k, i = 0, . . . , ℓ− 1. Write

s′ = max{s0, . . . , sℓ−1},
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t′ = max{t0, . . . , tℓ−1}.

For 0 ≤ i ≤ ℓ− 1, if si < s′, then let u
(j)
i = 0 for all j = si + 1, . . . , s′; if ti < t′, then let v

(j)
i = 0

for all j = ti + 1, . . . , t′.

By (2.4), we have

n =
s′∑

j=0

(u
(j)
0 + u

(j)
1 k + · · ·+ u

(j)
ℓ−1k

ℓ−1)kℓj

=
t′∑

j=0

(v
(j)
0 + v

(j)
1 k + · · ·+ v

(j)
ℓ−1k

ℓ−1)kℓj . (2.5)

Since n has a unique kℓ-adic representation, by (2.1) and (2.5), we have s′ = t′ = s and for

all j = 0, . . . , s, we have

fj =u
(j)
0 + ku

(j)
1 + · · ·+ kℓ−1u

(j)
ℓ−1

=v
(j)
0 + kv

(j)
1 + · · ·+ kℓ−1v

(j)
ℓ−1.

Noting that every fj has a unique k-adic representation, we have u
(j)
i = v

(j)
i , i = 0, . . . , ℓ − 1.

Hence

r1,k,...,kℓ−1(A,n) = 1

for all n ≥ 0.

On the other hand, for every set A of nonnegative integers, we write the formal power series

fA(z) defined as

fA(z) := f(z) =
∑
a∈A

za.

Then
∞∑

n=0

r1,k,...,kℓ−1(A,n)zn =
∑

a0,...,aℓ−1∈A

za0+ka1+···+kl−1al−1 .

If r1,k,...,kℓ−1(A,n) = 1 for all n ≥ 0, then

1

1− z
= f(z)f(zk) · · · f(zk

ℓ−1

). (2.6)

Change variable z := zk, we have

1

1− zk
= f(zk)f(zk

2

) · · · f(zk
ℓ

). (2.7)

By (2.6) and (2.7), we have

f(z) =
1− zk

1− z
f(zk

ℓ

)

= (1 + z + z2 + · · ·+ zk−1)f(zk
ℓ

).

By iterating we get

f(z) =
∞∏
j=0

(1 + z(k
ℓ)j + z2(k

ℓ)j + · · ·+ z(k−1)(kℓ)j ).
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This product defines an analytic function at the origin, which can be written using its series

expansion around z = 0. Moreover, by the unique kℓ-adic representation of an integer, the

Taylor’s coefficients of f(z) are either 0 or 1. So the set A is the set of all nonnegative integers

such that all its digits in its kℓ-adic expansion are smaller than k. 2
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