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Abstract In this paper, we consider the generalized Weinstein operator ∆d,α,n
W , we introduce

new Sobolev-Weinstein spaces denoted H s
α,d,n(Rd+1

+ ), s ∈ R, associated with the generalized

Weinstein operator and we investigate their properties. Next, as application, we study the

extremal functions on the spaces H s
α,d,n(Rd+1

+ ) using the theory of reproducing kernels.
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1. Introduction

In this paper, we consider the generalized Weinstein operator ∆α,d,n
W defined on Rd+1

+ =

Rd × [0,+∞], by

∆α,d,n
W =

d+1∑
i=1

∂2

∂x2i
+

2α+ 1

xd+1

∂

∂xd+1
− 4n(α+ n)

x2d+1

= ∆d + Lα,n (1.1)

where n ∈ N, α > −1
2 , ∆d is the Laplacian for the d first variables and Lα,n is the second-order

singular differential operator on the half line given by

Lα,n =
∂2

∂x2d+1

+
2α+ 1

xd+1

∂

∂xd+1
− 4n(α+ n)

x2d+1

. (1.2)

For n = 0, we regain the classical Weinstein operator ∆α,d
W given by

∆α,d
W =

d+1∑
i=1

∂2

∂x2i
+

2α+ 1

xd+1

∂

∂xd+1
= ∆d + Lα, (1.3)

Lα = Lα,0 is the Bessel operator [1–7].

The harmonic analysis associated with the generalized Weinstein operator ∆α,d,n
W is studied

by Aboulez, Achak, Daher and Loualid [8, 9].

For all f ∈ L1(Rd+1
+ , dµα,d(x)), we define the Weinstein transform Fα,d,n

W by

∀λ ∈ Rd+1
+ , Fα,d,n

W (f)(λ) =

∫
Rd+1

+

f(x)Λα,d,n(x, λ)dµα,d(x)
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where µα,d is the measure defined on Rd+1
+ by

dµα,d(x) = x2α+1
d+1 dx (1.4)

and Λα,d,n is the generalized Weinstein kernel given by

∀x, y∈ Cd+1, Λα,d,n(x, y) = x2nd+1e
−i⟨x′,y′⟩jα+2n(xd+1yd+1),

x = (x′, xd+1), x
′ = (x1, x2, . . . , xd) and jα is the normalized Bessel function of index α defined

by

∀ξ∈ C, jα(ξ) = Γ(α+ 1)

∞∑
n=0

(−1)n

n!Γ(n+ α+ 1)
(
ξ

2
)2n. (1.5)

We design by S∗(Rd+1), the Schwartz space of rapidly decreasing functions on Rd+1, even with

respect to the last variable and Sn,∗(Rd+1) the subspace of S∗(Rd+1) consisting of functions f

such that

∀k ∈ {1, . . . , 2n− 1}, ∂kf

∂xkd+1

(x′, 0) = f(x′, 0) = 0.

For all s ∈ R, we define the generalized Sobolev-Weinstein space H s
α,d,n(R

d+1
+ ) as the set of all

u ∈ S ′
n,∗ (the strong dual of the space Sn,∗(Rd+1)) such that Fα,d,n

W (u) is a function and∫
Rd+1

+

(1 + ∥ξ∥2)s|Fα,d,n
W (u)(ξ)|2dµα+2n,d(ξ) <∞.

We investigate the properties of H s
α,d,n(R

d+1
+ ). Using the theory of reproducing kernels, we study

the extremal functions on the spaces H s
α,d,n(R

d+1
+ ). The contents of the paper are as follows:

In the second section, we recapitulate some results related to the harmonic analysis associated

with the generalized Weinstein operator ∆α,d,n
W given by the relation (1.1).

The Section 3 is devoted to define and study the generalized Sobolev-Weinstein space H s
α,d,n(R

d+1
+ ).

Finally, in the last section, as application, using the theory of reproducing kernels, we give

good estimates of extremal functions on the spaces H s
α,d,n(R

d+1
+ ).

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic

analysis associated with the Generalized Weinstein operator ∆α,d,n
W defined on Rd+1

+ by the

relation (1.1).

Notations. In what follows, we need the following notations

• C∗(Rd+1), the space of continuous functions on Rd+1, even with respect to the last variable.

• E∗(Rd+1), the space of C∞-functions on Rd+1, even with respect to the last variable.

• S∗(Rd+1), the Schwartz space of rapidly decreasing functions on Rd+1, even with respect

to the last variable.

• D∗(Rd+1), the space of C∞-functions on Rd+1 which are of compact support, even with

respect to the last variable.

• H∗(Cd+1), the space of entire functions on Cd+1, even with respect to the last variable,

rapidly decreasing and of exponential type.
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• Mn, the map defined by

∀x ∈ Rd+1
+ , Mn(f)(x) = x2nd+1f(x), (2.1)

where x = (x′, xd+1) and x
′ = (x1, x2, . . . , xd).

• Lp
α,n(R

d+1
+ ), 1 ≤ p ≤ +∞, the space of measurable functions on Rd+1

+ such that

∥f∥α,n,p =
[ ∫

Rd+1
+

|M−1
n f(x)|pdµα+2n,d(x)

] 1
p

< +∞, if 1 ≤ p < +∞;

∥f∥α,n,∞ = ess sup
x∈Rd+1

+

|M−1
n f(x)| < +∞,

where µα,d is the measure given by the relation (1.4).

• Lp
α(R

d+1
+ ) := Lp

α,0(R
d+1
+ ), 1 ≤ p ≤ +∞, and ∥f∥α,p := ∥f∥α,0,p.

• En,∗(Rd+1), Dn,∗(Rd+1) and Sn,∗(Rd+1), repespectively, stand for the subspace of E∗(Rd+1),

D∗(Rd+1) and S∗(Rd+1) consisting of functions f such that

∀k ∈ {1, . . . , 2n− 1}, ∂kf

∂xkd+1

(x′, 0) = f(x′, 0) = 0.

Let us begin by the following result.

Lemma 2.1 ([8, 9]) (i) The map Mn is an isomorphism from E∗(Rd+1) (resp., S∗(Rd+1)) onto

En,∗(Rd+1) (resp., Sn,∗(Rd+1)).

(ii) For all f ∈ E∗(Rd+1), we have

Lα,n ◦ Mn(f) = Mn ◦ Lα+2n(f). (2.2)

(iii) For all f ∈ E∗(Rd+1), we have

∆α,d,n
W ◦ Mn(f) = Mn ◦∆α+2n,d

W (f). (2.3)

(iv) For all f ∈ E∗(Rd+1) and g ∈ Dn,∗(Rd+1), we have∫
Rd+1

+

∆α,d,n
W (f)(x)g(x)dµα,d(x) =

∫
Rd+1

+

f(x)∆α,d,n
W g(x)dµα,d(x). (2.4)

Definition 2.2 The generalized Weinstein kernel Λα,d,n is the function given by

∀x, y∈ Cd+1, Λα,d,n(x, y) = x2nd+1e
−i⟨x′,y′⟩jα+2n(xd+1yd+1), (2.5)

where x = (x′, xd+1), x
′ = (x1, x2, . . . , xd) and jα is the normalized Bessel function of index

α defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel Λα,d,n satisfies the following properties.

Proposition 2.3 (i) We have

∀x, y∈ Rd+1, Λα,d,n(x, y) = Λα,d,n(x,−y) = Λα,d,n(−x, y). (2.6)

(ii) We have

∀x, y ∈ Rd+1
+ , |Λα,d,n(x, y)| ≤ x2nd+1. (2.7)
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(iii) The function x 7→ Λα,d,n(x, y) satisfies the differential equation

△α,d,n
W (Λα,d,n(., y))(x) = −∥y∥2Λα,d,n(x, y). (2.8)

(iv) For all x, y ∈ Cd+1, we have

Λα,d,n(x, y) = aα+2ne
−i⟨x′,y′⟩x2nd+1

∫ 1

0

(1− t2)α+2n− 1
2 cos(txd+1yd+1)dt, (2.9)

where aα is the constant given by

aα =
2Γ(α+ 1)

√
πΓ(α+ 1

2 )
. (2.10)

Definition 2.4 The generalized Weinstein transform Fα,d,n
W is given for f ∈ L1

α,n(R
d+1
+ ) by

∀λ ∈ Rd+1
+ , Fα,d,n

W (f)(λ) =

∫
Rd+1

+

f(x)Λα,d,n(x, λ)dµα,d(x), (2.11)

where µα,d is the measure on Rd+1
+ given by the relation (1.4).

Example 2.5 Let Et,n, t > 0, n ∈ N, be the function defined by

∀x ∈ Rd+1, Et,n(x) = Cα+2n,dx
2n
d+1e

−t∥x∥2

,

where Cα,d is the constant given by

Cα,d =
1

(2π)
d
2 2αΓ(α+ 1)

. (2.12)

Then the Weinstein transform Fα,d,n
W of Et,n is given by

∀λ ∈ Rd+1
+ , Fα,d,n

W (Et,n)(λ) =
1

(2t)α+2n+ d
2+1

e−
∥λ∥2
4t .

Remark 2.6 The generalized Weinstein transform Fα,d,n
W can be written in the form:

Fα,d,n
W = Fα+2n,d

W ◦ M−1
n , (2.13)

where Fα,d
W = Fα,d,0

W is the classical Weinstein transform.

Some basic properties of the transform Fα,d,n
W are summarized in the following results.

Proposition 2.7 ([9]) (i) For all f ∈ L1
α,n(R

d+1
+ ), we have

∥Fα,d,n
W (f)∥α,n,∞ ≤ ∥f∥α,n,1. (2.14)

(ii) Let m ∈ N and f ∈ Sn,∗(Rd+1). We have

∀λ ∈ Rd+1
+ , Fα,d,n

W [(△α,d,n
W )mf ](λ) = (−1)m∥λ∥2mFα,d,n

W (f)(λ). (2.15)

(iii) Let f ∈ Sn,∗(Rd+1) and m ∈ N. For all λ ∈ Rd+1
+ ,we have

(△α,d,n
W )m[MnFα,d,n

W (f)](λ) = MnFα,d,n
W (Pmf)(λ), (2.16)

where Pm(λ) = (−1)m∥λ∥2m.
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Theorem 2.8 ([9]) (i) Let f ∈ L1
α,n(R

d+1
+ ). If Fα,d,n

W (f) ∈ L1
α+2n(R

d+1
+ ), then we have

f(x) = C2
α+2n,d

∫
Rd+1

+

Fα,d,n
W (f)(y)Λα,d,n(−x, y)dµα+2n,d(y), a.e., x ∈ Rd+1

+ , (2.17)

where Cα,d is the constant given by the relation (2.12).

(ii) The Weinstein transform Fα,d,n
W is a topological isomorphism from Sn,∗(Rd+1) onto

S∗(Rd+1) and from Dn,∗(Rd+1) onto H∗(Cd+1).

The following Theorem is as an immediate consequence of the relation (2.13) and the prop-

erties of the transform Fα,d
W (see [1–4]).

Theorem 2.9 (i) For all f, g ∈ Sn,∗(Rd+1), we have the following Parseval formula∫
Rd+1

+

f(x)g(x)dµα,d(x) = C2
α+2n,d

∫
Rd+1

+

Fα,d,n
W (f)(λ)Fα,d,n

W (g)(λ)dµα+2n,d(λ). (2.18)

(ii) (Plancherel formula) For all f ∈ Sn,∗(Rd+1), we have∫
Rd+1

+

|f(x)|2dµα,d(x) = C2
α+2n,d

∫
Rd+1

+

|Fα,d,n
W (f)(λ)|2dµα+2n,d(λ). (2.19)

(iii) (Plancherel Theorem) The transform Fα,d,n
W extends uniquely to an isometric isomor-

phism from L2(Rd+1
+ , dµα,d(x)) onto L

2(Rd+1
+ , C2

α+2n,ddµα+2n,d(x)).

Definition 2.10 The translation operator Tα,d,n
x , x ∈ Rd+1

+ , associated with the operator ∆α,d,n
W

is defined on En,∗(Rd+1
+ ) by

∀y ∈ Rd+1
+ , Tα,d,n

x f(y) = x2nd+1y
2n
d+1T

α+2n,d
x M−1

n f(y), (2.20)

where

Tα,d
x f(y) =

aα
2

∫ π

0

f(x′ + y′,
√
x2d+1 + y2d+1 + 2xd+1yd+1 cos θ)(sin θ)

2αdθ, (2.21)

x′ + y′ = (x1 + y1, . . . , xd + yd) and aα is the constant given by (2.10).

We need the following Lemmas.

Example 2.11 Let ϕt,n, t > 0, be the function defined by

∀x ∈ Rd+1
+ , ϕt,n(x) =

x2nd+1

(2t)α+2n+ d
2+1

e−
∥x∥2
4t .

For all x, y ∈ Rd+1
+ , we have

Tα,d,n
x (ϕt,n)(y) =

x2nd+1y
2n
d+1

(2t)α+2n+ d
2+.1

e−
∥x∥2+∥y∥2

4t Λα+2n,d(x,−i
y

2t
).

The following proposition summarizes some properties of the generalized Weinstein transla-

tion operator.

Proposition 2.12 (i) For f ∈ En,∗(Rd+1), we have

∀x, y ∈ Rd+1
+ , Tα,d,n

x f(y) = Tα,d,n
y f(x).
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(ii) For all f ∈ En,∗(Rd+1) and y ∈ Rd+1
+ , the function x 7→ Tα,d,n

x f(y) belongs to En,∗(Rd+1).

(iii) Let f ∈ Lp
α,n(R

d+1
+ ), 1 ≤ p ≤ +∞ and x ∈ Rd+1

+ . Then Tα,d,n
x f belongs to Lp

α,n(R
d+1
+ )

and we have

∥Tα,d,n
x f∥α,n,p ≤ x2nd+1∥f∥α,n,p. (2.22)

(iv) The function t 7→ Λα,d,n(t, λ), λ ∈ Cd+1, satisfies on Rd+1
+ the following product formula

∀x, y ∈ Rd+1
+ , Λα,d,n(x, λ)Λα,d,n(y, λ) = Tα,d,n

x [Λα,d,n(., λ)](y). (2.23)

(v) Let f ∈ Sn,∗(Rd+1) and x ∈ Rd+1
+ . We have

∀λ ∈ Rd+1
+ , Fα,d,n

W (Tα,d,n
x f)(λ) = Λα,d,n(−x, λ)Fα,d,n

W (f)(λ). (2.24)

(vi) Let f ∈ Sn,∗(Rd+1). For all x, y ∈ Rd+1
+ , we have

Tα,d,n
x f(y) = C2

α+2n,d

∫
Rd+1

+

Λα,d,n(−x, λ)Λα,d,n(−y, λ)Fα,d,n
W (f)(λ)dµα+2n,d(λ). (2.25)

Proof The results can be obtained by a simple calculation by using the relation (2.20). 2
Definition 2.13 Let f, g ∈ L1

α,n(R
d+1
+ ). The generalized Weinstein convolution product of f

and g is given by

∀x ∈ Rd+1
+ , f ∗α,n g(x) =

∫
Rd+1

+

Tα,d,n
x f(−y)g(y)dµα,d(y). (2.26)

Lemma 2.14 Let f, g ∈ L1
α,n(R

d+1
+ ). We have

f ∗α,n g = Mn(M
−1
n f ∗α M−1

n g),

where for all φ,ψ ∈ L1
α(R

d+1
+ ), we have

∀x ∈ Rd+1
+ , φ ∗α ψ(x) := φ ∗α,0 ψ(x) =

∫
Rd+1

+

Tα,d
x φ(−y)ψ(y)dµα,d(y).

Proposition 2.15 ( [9]) (i) Let p, q, r ∈ [1, +∞] such that 1
p + 1

q − 1
r = 1. Then for all

f ∈ Lp
α,n(R

d+1
+ ) and g ∈ Lq

α,n(R
d+1
+ ), the function f ∗α,n g ∈ Lr

α,n(R
d+1
+ ) and we have

∥f ∗α,n g∥α,n,r ≤ ∥f∥α,n,p∥g∥α,n,q. (2.27)

(ii) For all f, g ∈ L1
α,n(R

d+1
+ ), f ∗α,n g ∈ L1

α,n(R
d+1
+ ) and we have

Fα,d,n
W (f ∗α,n g) = Fα,d,n

W (f)Fα,d,n
W (g). (2.28)

(iii) Let f, g ∈ L2
α,n(R

d+1
+ ). Then, we have∫

Rd+1
+

|f ∗α,n g(x)|2dµα,d(x)

= C2
α+2n,d

∫
Rd+1

+

|Fα,d,n
W (f)(λ)|2|Fα,d,n

W (g)(λ)|2dµα+2n,d(λ), (2.29)

where both sides are finite or infinite.

Notation. We denote by S ′
∗, (resp., S ′

n,∗) the strong dual of the space S∗(Rd+1), (resp.,

Sn,∗(Rd+1)).
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Definition 2.16 The generalized Fourier-Weinstein transform of a distribution u ∈ S ′
n,∗ is

defined by

∀ϕ ∈ S∗(Rd+1), ⟨Fα,d,n
W (u), ϕ⟩ = ⟨u, (Fα,d,n

W )−1(ϕ)⟩. (2.30)

The following proposition is as an immediate consequence of Theorem 2.8.

Proposition 2.17 The transform Fα,d,n
W is a topological isomorphism from S ′

n,∗ onto S ′
∗.

Lemma 2.18 ([9]) Let m ∈ N and u ∈ S ′
n,∗. We have

(Fα,d,n
W )[(∆α,d,n

W )mu] = (−1)m∥x∥2m(Fα,d,n
W )(u), (2.31)

where

∀ϕ ∈ Sn,∗(Rd+1), ⟨∆α,d,n
W u, ϕ⟩ = ⟨u,∆α,d,n

W ϕ⟩. (2.32)

3. Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the

generalized Weinstein operator ∆α,d,n
W .

Definition 3.1 Let s ∈ R and p ∈ [1,+∞]. We define the generalized Sobolev-Weinstein space

of order s, that will be denoted W s,p
α,d,n(R

d+1
+ ), as the set of all u ∈ S ′

n,∗ such that Fα,d,n
W (u) is

a function and ∫
Rd+1

+

(1 + ∥ξ∥2)
sp
2 |Fα,d,n

W (u)(ξ)|pdµα+2n,d(ξ) <∞. (3.1)

We provide the space W s,p
α,d,n(R

d+1
+ ) with the norm

∥u∥W s,p
α,d,n

=
[
C2

α+2n,d

∫
Rd+1

+

(1 + ∥ξ∥2)
sp
2 |Fα,d,n

W (u)(ξ)pdµα+2n,d(ξ)
] 1

p

. (3.2)

For p = 2, we provide the H s
α,d,n(R

d+1
+ ) := W s,2

α,d,n(R
d+1
+ ) with the inner product

⟨u, v⟩(1),H s
α,d,n

= C2
α+2n,d

∫
Rd+1

+

(1 + ∥ξ∥2)sFα,d,n
W (u)(ξ)Fα,d,n

W (v)(ξ)dµα+2n,d(ξ) (3.3)

and the norm

∥u∥(1),H s
α,d,n

=
[
C2

α+2n,d

∫
Rd+1

+

(1 + ∥ξ∥2)s|Fα,d
W (u)(ξ)|2dµα+2n,d(ξ)

] 1
2

. (3.4)

We give the following properties of the spaces W s,p
α,d,n(R

d+1
+ ).

Proposition 3.2 (i) Let 1 ≤ p < +∞ and s, t ∈ R such that t > s. Then the space W t,p
α,d,n(R

d+1
+ )

is continuously contained in W s,p
α,d,n(R

d+1
+ ).

(ii) Let s ∈ R and 1 ≤ p < +∞. The space W s,p
α,d,n(R

d+1
+ ) provided with the norm ∥.∥W s,p

α,d,n

is a Banach space.

(iii) For all s ∈ R and 1 ≤ p < +∞, the space D∗(Rd+1) is dense in W s,p
α,d,n(R

d+1
+ ).

Proof (i) The result is immediately from the Definition 3.1.
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(ii) Let (fm)m∈N be a Cauchy sequence of W s,p
α,d,n(R

d+1
+ ). From the definition of the norm

∥.∥W s,p
α,d,n

, it is clear that (Fα,d,n
W (fm))m∈N is a Cauchy sequence of Lp

s,n,α(R
d+1
+ ) := Lp(Rd+1

+ , (1+

∥ξ∥2)
sp
2 dµα+2n,d(x)).

Since Lp
s,n,α(R

d+1
+ ) is complete, there exists a function g ∈ Lp

s,n,α(R
d+1
+ ) such that

lim
m→+∞

∥Fα,d,n
W (fm)− g∥Lp

s,n,α(Rd+1
+ ) = 0. (3.5)

Then g ∈ S ′
∗ and f = (Fα,d,n

W )−1(g) ∈ S ′
n,∗. So, Fα,d,n

W (f) = g ∈ Lp
s,n,α(R

d+1
+ ) which proves

that f ∈ W s,p
α,d,n(R

d+1
+ ) and we have

∥fm − f∥W s,p
α,d,n

= C
2
p

α+2n,d∥F
α,d,n
W (fm)− g∥Lp

s,n,α(Rd+1
+ ) →

m→+∞
0.

Hence, W s,p
α,d,n(R

d+1
+ ) is complete.

(iii) We proceed as [10] to prove the result. 2
The following theorem gives a relation between the dual of H s

α,d,n(R
d+1
+ ) and H −s

α,d,n(R
d+1
+ ).

Theorem 3.3 The dual of H s
α,d,n(R

d+1
+ ) can be identified with H −s

α,d,n(R
d+1
+ ). The relation of

the identification is as follows

⟨u, v⟩(0) = C2
α+2n,d

∫
Rd+1

+

Fα,d,n
W (u)(ξ)Fα,d,n

W (v)(ξ)dµα+2n,d(ξ) (3.6)

with u ∈ H s
α,d,n(R

d+1
+ ) and v ∈ H −s

α,d,n(R
d+1
+ ).

Proof For all u ∈ H s
α,d,n(R

d+1
+ ) and v ∈ H −s

α,d,n(R
d+1
+ ), we have

|⟨u, v⟩(0)| ≤ ∥u∥(1),H s
α,d,n

∥v∥(1),H −s
α,d,n

. (3.7)

Then, (u, v) 7→ ⟨u, v⟩(0) is a continuous bilinear form on

H s
α,d,n(R

d+1
+ )× H −s

α,d,n(R
d+1
+ ).

Let v ∈ H −s
α,d,n(R

d+1
+ ). We consider the function ϕv : u 7→ ⟨u, v⟩(0).

From the relation (3.7), we see that ϕv is a continuous linear form on H s
α,d,n(R

d+1
+ ) and we

have

∥ϕv∥ ≤ ∥v∥(1),H −s
α,d,n

.

On the other hand for u0(λ) = [Fα,d,n
W ]−1((1 + ∥λ∥2)−sFα,d,n

W (v))(λ), we obtain

u0 ∈ H s
α,d,n(R

d+1
+ ) and ⟨u0, v⟩(0) = ∥v∥2

(1),H −s
α,d,n

.

Then ∥ϕv∥ = ∥v∥(1),H −s
α,d,n

.

Let now v∗ ∈ (H s
α,d,n(R

d+1
+ ))′. By the Riesz representation theorem and the relation (3.3),

one can see that there exists w ∈ H s
α,d,n(R

d+1
+ ), such that for all u ∈ H s

α,d,n(R
d+1
+ ), we have

v∗(u) = ⟨u, w⟩(1),H s
α,d,n

=

∫
Rd+1

+

(1 + ∥λ∥2)sFα,d,n
W (w)(λ)Fα,d,n

W (u)(λ)dµα,d(λ).
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We put

v(λ) = [Fα,d,n
W ]−1((1 + ∥λ∥2)sFα,d,n

W (w)(λ)).

Then, v ∈ H −s
α,d,n(R

d+1
+ ) and we have

∀u ∈ H s
α,d,n(R

d+1
+ ), v∗(u) = ⟨u, v⟩(0).

Hence the map v 7→ ⟨., v⟩(0) is an isometry from H −s
α,d,n(R

d+1
+ ) into (H s

α,d,n(R
d+1
+ ))′.

Thus the proof is completed. 2
Proposition 3.4 For s > d

2 +α+2n+1, the Hilbert space H s
α,d,n(R

d+1
+ ) admits the reproducing

kernel

Rα,d,n
s (x, y) = C2

α+2n,d

∫
Rd+1

+

(1 + ∥ξ∥2)−sΛα,d,n(−x, ξ)Λα,d,n(y, ξ)dµα+2n,d(ξ), (3.8)

where Cα,d is the constant given by the relation (2.12). That is

(i) For every y ∈ Rd+1
+ , the distribution given by the function

x 7→ Rα,d,n
s (x, y) belongs to H s

α,d,n(R
d+1
+ ).

(ii) For every f ∈ H s
α,d,n(R

d+1
+ ), we have

∀y ∈ Rd+1
+ , ⟨f, Rα,d,n

s (., y)⟩(1),H s
α,d,n

= f(y).

Proof (i) It is easy to see that∫
Rd+1

+

(1 + ∥ξ∥2)−sdµα+2n,d(ξ) < +∞ if and only if s >
d

2
+ α+ 2n+ 1. (3.9)

Then using the relation (2.7), we deduce that the function (x, y) 7→ Rα,d,n
s (x, y) is well-defined.

Moreover for all y ∈ Rd+1
+ and s > d

2 + α+ 2n+ 1, the function ξ 7→ (1 + ∥ξ∥2)−sΛα,d,n(y, ξ)

belongs to L1
α,n(R

d+1
+ ) ∩ L2

α,n(R
d+1
+ ). Then, from the relation (2.17), the function Rα,d,n

s,y : x 7→
Rα,d,n

s (x, y) belongs to L2
α(R

d+1
+ ) and we have

∀ξ ∈ Rd+1
+ , Fα,d,n

W [Rα,d,n
s,y ](ξ) = (1 + ∥ξ∥2)−sΛα,d,n(y, ξ). (3.10)

Then

∥Rα,d,n
s,y ∥(1),H s

α,d,n
≤ ksy

2n
d+1, (3.11)

where for all s > d
2 + α+ 2n+ 1, we have

ks = ks(α, d, n) = Cα+2n,d

(∫
Rd+1

+

(1 + ∥ξ∥2)−sdµα+2n,d(ξ)
) 1

2

. (3.12)

Hence for all y ∈ Rd+1
+ and s > d

2 + α+ 2n+ 1, Rα,d,n
s,y ∈ H s

α,d,n(R
d+1
+ ).

(ii) Let f ∈ H s
α,d,n(R

d+1
+ ) and y ∈ Rd+1

+ . Using the relations (3.3), (3.10) and (2.17), we

obtain

⟨f,Rα,d,n
s (., y)⟩(1),H s

α,d,n
= C2

α+2n,d

∫
Rd+1

+

Fα,d,n
W (f)(ξ)Λα,d,n(−y, ξ)dµα+2n,d(ξ)

= f(y). 2
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4. Extremal functions on H s
α,d,n(R

d+1
+ )

The theory of reproducing kernels started with two papers of 1921 (see [11]) and 1922 (see [12])

which dealt with typical reproducing kernels of Szegö and Bergman and since then the theory

has been developed into a large and deep theory in complex analysis by many mathematicians.

In this section, using the theory of reproducing kernels, we study the extremal functions on the

Hilbert space H s
α,d,n(R

d+1
+ ).

Definition 4.1 Let r > 0, H be a Hilbert space and L : H s
α,d,n(R

d+1
+ ) → H be a bounded

linear operator. For all f, h ∈ H s
α,d,n(R

d+1
+ ), we define the inner product in H s

α,d,n(R
d+1
+ ) by

⟨f, h⟩(2),H s
α,d,n

= r⟨f, h⟩(1),H s
α,d,n

+ ⟨L f,L h⟩H. (4.1)

The norm associated with this inner product is given by

∥f∥2(2),H s
α,d,n

= r∥f∥2(1),H s
α,d,n

+ ∥L f∥2H. (4.2)

Lemma 4.2 The norms ∥.∥(1),H s
α,d,n

and ∥.∥(2),H s
α,d,n

are equivalent.

Proof Let u ∈ H s
α,d,n(R

d+1
+ ). We have

√
r∥u∥(1),H s

α,d,n
≤ ∥u∥(2),H s

α,d,n
≤

√
r + ∥L ∥2∥u∥(1),H s

α,d,n
.

This clearly yields the result. 2
Proposition 4.3 Let r > 0 and s >

d

2
+ α + 2n + 1. The space (H s

α,d,n(R
d+1
+ ), ⟨., .⟩(2),H s

α,d,n
)

possesses a reproducing Rs,r
L satisfying the identity

Rs,r
L (., y) = (rI + L ∗L )−1Rα,d,n

s (., y) (4.3)

where I = Id and L ∗ : H → H s
α,d,n(R

d+1
+ ) is the adjoint of L given by

∀f ∈ H s
α,d,n(R

d+1
+ ), ∀h ∈ H, ⟨L f, h⟩H = ⟨f,L ∗h⟩(1),H s

α,d,n
.

Proof From [13], the space (H s
α,d,n(R

d+1
+ ), ⟨., .⟩(2),H s

α,d,n
) has a reproducing kernel denoted by

Rs,r
L and we have

f(y) = ⟨f,Rs,r
L (., y)⟩(2),H s

α,d,n

= r⟨f,Rs,r
L (., y)⟩(1),H s

α,d,n
+ ⟨L f,L Rs,r

L (., y)⟩H
= ⟨f, (rI + L ∗L )Rs,r

L (., y)⟩(1),H s
α,d,n

.

Then for all y ∈ Rd+1
+ , we have

(rI + L ∗L )Rs,r
L (., y) = Rα,d,n

s (., y). (4.4)

Thus the proof is completed. 2
The following proposition summarizes some properties of the kernel Rs,r

L .

Proposition 4.4 The kernel Rs,r
L satisfies the following properties

(i) We have

∥Rs,r
L (., y)∥(1),H s

α,d,n
≤ ks

r
y2nd+1, (4.5)
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where ks is the constant given by the relation (3.12).

(ii) We have

∥L Rs,r
L (., y)∥H ≤ ks√

2r
y2nd+1. (4.6)

(iii) For all y ∈ Rd+1
+ , we have

∥L ∗L Rs,r
L (., y)∥(1),H s

α,d,n
≤ ksy

2n
d+1. (4.7)

Proof Using the relation (3.11) and (4.4), for all y ∈ Rd+1
+ , we get

r2∥Rs,r
L (., y)∥2(1),H s

α,d,n
+ 2r∥L Rs,r

L (., y)∥2H + ∥L ∗L Rs,r
L (., y)∥2(1),H s

α,d,n

= ∥Rα,d,n
s (., y)∥2(1),H s

α,d,n
≤ k2sy

4n
d+1.

Then the assertions (i)–(iii) are an immediate consequence of the above result. 2
The main result of this section can be stated as follows.

Theorem 4.5 Let s > d
2 + α+ 2n+ 1. For all h ∈ H and for all r > 0, the infimum

inf
f∈H s

α,d,n(R
d+1
+ )

[r∥f∥2(1),H s
α,d,n

+ ∥h− L f∥2H] (4.8)

is attained by a unique function f∗r,h given by

∀y ∈ Rd+1
+ , f∗r,h(y) = ⟨h,L Rs,r

L (., y)⟩H. (4.9)

Moreover, the extremal function f∗r,h satisfies the following inequality

∀y ∈ Rd+1
+ , |f∗r,h(y)| ≤

ks√
2r

∥h∥Hy2nd+1. (4.10)

Proof The existence and unicity of extremal function f∗r,h represented by the relation (4.8) is

given by [13]. On the other hand from the relation (4.6), we get

∀y ∈ Rd+1
+ , | f∗r,h(y)| ≤ ∥L Rs,r

L (., y)∥H∥h∥H ≤ ks√
2r

∥h∥Hy2nd+1. 2
Corollary 4.6 Let s >

d

2
+ α+ 2n+ 1 and r > 0. If L is isometry (L ∗L = Id), then

(i) ⟨., .⟩(2),H s
α,d,n

= (r + 1)⟨., .⟩(1),H s
α,d,n

.

(ii) For all x, y ∈ Rd+1
+ , we have Rs,r

L (x, y) = 1
r+1Rα,d,n

s (., y).

(iii) For all h ∈ H, we have ∀y ∈ Rd+1
+ , f∗r,h(y) =

1
r+1L ∗h(y).

(iv) For all f ∈ H s
α,d,n(R

d+1
+ ), we have ∀y ∈ Rd+1

+ , f∗r,L f (y) =
1

r+1f(y).

Corollary 4.7 Let s > d
2 + α+ 2n+ 1 and r > 0. Let f ∈ H s

α,d,n(R
d+1
+ ) and h = L f.

(i) For all y ∈ Rd+1
+ , we have f(y) = lim

r→0+
f∗r,h(y).

(ii) We have ∀y ∈ Rd+1
+ , |f(y)− f∗r,h(y)| ≤ ks∥f∥(1),H s

α,d,n
y2nd+1.

(iii) We have ∀y ∈ Rd+1
+ , |f∗r,h(y)| ≤ ks∥f∥(1),H s

α,d,n
y2nd+1.

Proof Let f ∈ H s
α,d,n(R

d+1
+ ) and h = L f.

(i) From the relations (4.4) and (4.9), we get

∀y ∈ Rd+1
+ , f∗r,h(y) = ⟨f,L ∗L Rs,r

L (., y)⟩(1),H s
α,d,n

. (4.11)
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Then, for all y ∈ Rd+1
+ , we obtain

f∗r,h(y) = ⟨f,Rα,d,n
s (., y)− rRs,r

L (., y)⟩(1),H s
α,d,n

.

Hence

∀y ∈ Rd+1
+ , f∗r,h(y) = f(y)− r⟨f,Rs,r

L (., y)⟩(1),H s
α,d,n

(4.12)

and we have

lim
r→0+

f∗r,h(y) = lim
r→0+

[f(y)− r⟨f,Rs,r
L (., y)⟩(1),H s

α,d,n
] = f(y).

(ii) By invoking (4.5) and (4.12), for all y ∈ Rd+1
+ , we can write

|f(y)− f∗r,h(y)| = r|⟨f,Rs,r
L (., y)⟩(1),H s

α,d,n
| ≤ r∥f∥(1),H s

α,d,n
Rs,r

L (., y)∥(1),H s
α,d,n

≤ ks∥f∥(1),H s
α,d,n

y2nd+1.

(iii) Using the relations (4.7) and (4.11), for all y ∈ Rd+1
+ , we obtain

|f∗r,h(y)| ≤ ∥f∥(1),H s
α,d,n

∥L ∗L Rs,r
L (., y)∥(1),H s

α,d,n

≤ ks∥f∥(1),H s
α,d,n

y2nd+1. 2
Example 4.8 For all s ≥ 0, the identity operator id : H s

α,d,n → L2
α,n(R

d+1
+ ) is bounded and we

have

∀u ∈ H s
α,d,n(R

d+1
+ ), ∥id(u)∥α,n,2 ≤ ∥u∥(1),H s

α,d,n
.

Its adjoint operator id∗ : L2
α,n(R

d+1
+ ) → H s

α,d,n(R
d+1
+ ) is given by

∀v ∈ L2
α,n(R

d+1
+ ), id∗(v) = (Fα,d,n

W )−1[(1 + ∥ξ∥2)−sFα,d,n
W (v)].

On the other hand, the inner product associated with the operator id can be written

⟨u, v⟩(2),H s
α,d,n

= C2
α+2n,d

∫
Rd+1

+

[1 + r(1 + ∥ξ∥2)s]Fα,d,n
W (u)(ξ)Fα,d,n

W (v)(ξ)dµα+2n,d(ξ).

In this case, the Hilbert space H s
α,d,n(R

d+1
+ ) admits the following reproducing kernel

Rs,r
id (x, y) = C2

α+2n,d

∫
Rd+1

+

Λα,d,n(−x, ξ)Λα,d,n(y, ξ)

1 + r(1 + ∥ξ∥2)s
dµα+2n,d(ξ).

For all h ∈ L2
α,n(R

d+1
+ ) and for all r > 0, the infimum

inf
f∈H s

α,d,n(R
d+1
+ )

[r∥f∥2(1),H s
α,d,n

+ ∥h− f∥2α,n,2]

exists and it is attained by a unique function f∗r,h given by

f∗r,h(y) = ⟨h,Rs,r
id (., y)⟩L2

α,n(R
d+1
+ )

= C2
α+2n,d

∫
Rd+1

+

Fα,d,n
W (h)(ξ)Fα,d,n

W (Rs,r
id (., y))(ξ)dµα+2n,d(ξ)

= C2
α+2n,d

∫
Rd+1

+

Λα,d,n(−y, ξ)Fα,d,n
W (h)(ξ)

1 + r(1 + ∥ξ∥2)s
dµα+2n,d(ξ).
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Moreover, the extremal function f∗r,h satisfies the following inequality

∀y ∈ Rd+1
+ , |f∗r,h(y)| ≤

ks√
2r

∥h∥α,n,2y2nd+1,

where ks is the constant given by the relation (3.12).

Example 4.9 For m ∈ L∞
α,n(R

d+1
+ ), we define the multiplier operator Lm by:

∀u ∈ H s
α,d,n(R

d+1
+ ), Lmu := (Fα,d,n

W )−1[mFα,d,n
W (u)].

For all s ≥ 0, the operator Lm is bounded from H s
α,d,n(R

d+1
+ ) into L2

α,n(R
d+1
+ ). The inner

product associated with the operator Lm is given by

⟨u, v⟩(2),H s
α,d,n

= C2
α+2n,d

∫
Rd+1

+

[|m(ξ)|2 + r(1 + ∥ξ∥2)s]Fα,d,n
W (u)(ξ)Fα,d,n

W (v)(ξ)dµα+2n,d(ξ).

The Hilbert space H s
α,d,n(R

d+1
+ ) admits the following reproducing kernel

Rs,r
Lm

(x, y) = C2
α+2n,d

∫
Rd+1

+

Λα,d,n(−x, ξ)Λα,d,n(y, ξ)

r(1 + ∥ξ∥2)s + |m(ξ)|2
dµα+2n,d(ξ).

For all h ∈ L2
α,n(R

d+1
+ ) and for all r > 0, the infimum

inf
f∈H s

α,d,n(R
d+1
+ )

[r∥f∥2(1),H s
α,d,n

+ ∥h− Lmf∥2α,n,2]

exists and it is attained by a unique function f∗r,h given by

f∗r,h(y) = ⟨h,LmRs,r
Lm

(., y)⟩L2
α,n(R

d+1
+ )

= C2
α+2n,d

∫
Rd+1

+

m(ξ)Λα,d,n(−y, ξ)Fα,d,n
W (h)(ξ)

r(1 + ∥ξ∥2)s + |m(ξ)|2
dµα+2n,d(ξ).

Moreover, the extremal function f∗r,h satisfies the following inequality

∀y ∈ Rd+1
+ , |f∗r,h(y)| ≤

ks√
2r

∥h∥α,n,2y2nd+1,

where ks is the constant given by the relation (3.12).
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