New Sobolev-Weinstein Spaces and Applications

Hassen BEN MOHAMED*, Youssef BETTAIBI
Department of Mathematics, Faculty of Sciences, Gabes University, Tunisia

Abstract

In this paper, we consider the generalized Weinstein operator $\Delta_{W}^{d, \alpha, n}$, we introduce new Sobolev-Weinstein spaces denoted $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, $s \in \mathbb{R}$, associated with the generalized Weinstein operator and we investigate their properties. Next, as application, we study the extremal functions on the spaces $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ using the theory of reproducing kernels.

Keywords generalized Weinstein operator; generalized Weinstein transform; sobolev spaces; extremal functions; reproducing kernels

MR(2020) Subject Classification 32A50; 32B10; 46E35; 46F12; 43A32

1. Introduction

In this paper, we consider the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ defined on $\mathbb{R}_{+}^{d+1}=$ $\mathbb{R}^{d} \times[0,+\infty]$, by

$$
\begin{equation*}
\Delta_{W}^{\alpha, d, n}=\sum_{i=1}^{d+1} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}}-\frac{4 n(\alpha+n)}{x_{d+1}^{2}}=\Delta_{d}+L_{\alpha, n} \tag{1.1}
\end{equation*}
$$

where $n \in \mathbb{N}, \alpha>-\frac{1}{2}, \Delta_{d}$ is the Laplacian for the d first variables and $L_{\alpha, n}$ is the second-order singular differential operator on the half line given by

$$
\begin{equation*}
L_{\alpha, n}=\frac{\partial^{2}}{\partial x_{d+1}^{2}}+\frac{2 \alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}}-\frac{4 n(\alpha+n)}{x_{d+1}^{2}} . \tag{1.2}
\end{equation*}
$$

For $n=0$, we regain the classical Weinstein operator $\Delta_{W}^{\alpha, d}$ given by

$$
\begin{equation*}
\Delta_{W}^{\alpha, d}=\sum_{i=1}^{d+1} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}}=\Delta_{d}+L_{\alpha} \tag{1.3}
\end{equation*}
$$

$L_{\alpha}=L_{\alpha, 0}$ is the Bessel operator [1-7].
The harmonic analysis associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ is studied by Aboulez, Achak, Daher and Loualid $[8,9]$.

For all $f \in L^{1}\left(\mathbb{R}_{+}^{d+1}, \mathrm{~d} \mu_{\alpha, d}(x)\right)$, we define the Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ by

$$
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Lambda_{\alpha, d, n}(x, \lambda) \mathrm{d} \mu_{\alpha, d}(x)
$$

Received August 1, 2021; Accepted December 23, 2021
Supported by Mathematics And Applications Laboratory, Faculty of Sciences, Gabes University, Tunisia.

* Corresponding author

E-mail address: hassenbenmohamed@yahoo.fr (Hassen BEN MOHAMED)
where $\mu_{\alpha, d}$ is the measure defined on \mathbb{R}_{+}^{d+1} by

$$
\begin{equation*}
\mathrm{d} \mu_{\alpha, d}(x)=x_{d+1}^{2 \alpha+1} \mathrm{~d} x \tag{1.4}
\end{equation*}
$$

and $\Lambda_{\alpha, d, n}$ is the generalized Weinstein kernel given by

$$
\forall x, y \in \mathbb{C}^{d+1}, \Lambda_{\alpha, d, n}(x, y)=x_{d+1}^{2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} j_{\alpha+2 n}\left(x_{d+1} y_{d+1}\right)
$$

$x=\left(x^{\prime}, x_{d+1}\right), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and j_{α} is the normalized Bessel function of index α defined by

$$
\begin{equation*}
\forall \xi \in \mathbb{C}, j_{\alpha}(\xi)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+\alpha+1)}\left(\frac{\xi}{2}\right)^{2 n} \tag{1.5}
\end{equation*}
$$

We design by $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1}, even with respect to the last variable and $\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ the subspace of $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$ consisting of functions f such that

$$
\forall k \in\{1, \ldots, 2 n-1\}, \frac{\partial^{k} f}{\partial x_{d+1}^{k}}\left(x^{\prime}, 0\right)=f\left(x^{\prime}, 0\right)=0
$$

For all $s \in \mathbb{R}$, we define the generalized Sobolev-Weinstein space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ as the set of all $u \in \mathscr{S}_{n, *}^{\prime}$ (the strong dual of the space $\left.\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)\right)$ such that $\mathscr{F}_{W}^{\alpha, d, n}(u)$ is a function and

$$
\int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{s}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)\right|^{2} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)<\infty
$$

We investigate the properties of $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Using the theory of reproducing kernels, we study the extremal functions on the spaces $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. The contents of the paper are as follows:

In the second section, we recapitulate some results related to the harmonic analysis associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ given by the relation (1.1).

The Section 3 is devoted to define and study the generalized Sobolev-Weinstein space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
Finally, in the last section, as application, using the theory of reproducing kernels, we give good estimates of extremal functions on the spaces $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic analysis associated with the Generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ defined on \mathbb{R}_{+}^{d+1} by the relation (1.1).

Notations. In what follows, we need the following notations

- $\mathscr{C}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of continuous functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of \mathscr{C}^{∞}-functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{D}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of \mathscr{C}^{∞}-functions on \mathbb{R}^{d+1} which are of compact support, even with respect to the last variable.
- $\mathscr{H}_{*}\left(\mathbb{C}^{d+1}\right)$, the space of entire functions on \mathbb{C}^{d+1}, even with respect to the last variable, rapidly decreasing and of exponential type.
- \mathscr{M}_{n}, the map defined by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, \mathscr{M}_{n}(f)(x)=x_{d+1}^{2 n} f(x) \tag{2.1}
\end{equation*}
$$

where $x=\left(x^{\prime}, x_{d+1}\right)$ and $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

- $L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right), 1 \leq p \leq+\infty$, the space of measurable functions on \mathbb{R}_{+}^{d+1} such that

$$
\begin{aligned}
\|f\|_{\alpha, n, p} & =\left[\int_{\mathbb{R}_{+}^{d+}}\left|\mathscr{M}_{n}^{-1} f(x)\right|^{p} \mathrm{~d} \mu_{\alpha+2 n, d}(x)\right]^{\frac{1}{p}}<+\infty, \text { if } 1 \leq p<+\infty ; \\
\|f\|_{\alpha, n, \infty} & =\underset{x \in \mathbb{R}_{+}^{d+1}}{\operatorname{ess} \sup _{n}}\left|\mathscr{M}_{n}^{-1} f(x)\right|<+\infty,
\end{aligned}
$$

where $\mu_{\alpha, d}$ is the measure given by the relation (1.4).

- $L_{\alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right):=L_{\alpha, 0}^{p}\left(\mathbb{R}_{+}^{d+1}\right), 1 \leq p \leq+\infty$, and $\|f\|_{\alpha, p}:=\|f\|_{\alpha, 0, p}$.
$\bullet \mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right), \mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, repespectively, stand for the subspace of $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, $\mathscr{D}_{*}\left(\mathbb{R}^{d+1}\right)$ and $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$ consisting of functions f such that

$$
\forall k \in\{1, \ldots, 2 n-1\}, \frac{\partial^{k} f}{\partial x_{d+1}^{k}}\left(x^{\prime}, 0\right)=f\left(x^{\prime}, 0\right)=0
$$

Let us begin by the following result.
Lemma 2.1 ($[8,9]$) (i) The map \mathscr{M}_{n} is an isomorphism from $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$ (resp., $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$) onto $\mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)\left(\right.$ resp., $\left.\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)\right)$.
(ii) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
L_{\alpha, n} \circ \mathscr{M}_{n}(f)=\mathscr{M}_{n} \circ L_{\alpha+2 n}(f) \tag{2.2}
\end{equation*}
$$

(iii) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\Delta_{W}^{\alpha, d, n} \circ \mathscr{M}_{n}(f)=\mathscr{M}_{n} \circ \Delta_{W}^{\alpha+2 n, d}(f) \tag{2.3}
\end{equation*}
$$

(iv) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$ and $g \in \mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \Delta_{W}^{\alpha, d, n}(f)(x) g(x) \mathrm{d} \mu_{\alpha, d}(x)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Delta_{W}^{\alpha, d, n} g(x) \mathrm{d} \mu_{\alpha, d}(x) \tag{2.4}
\end{equation*}
$$

Definition 2.2 The generalized Weinstein kernel $\Lambda_{\alpha, d, n}$ is the function given by

$$
\begin{equation*}
\forall x, y \in \mathbb{C}^{d+1}, \Lambda_{\alpha, d, n}(x, y)=x_{d+1}^{2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} j_{\alpha+2 n}\left(x_{d+1} y_{d+1}\right), \tag{2.5}
\end{equation*}
$$

where $x=\left(x^{\prime}, x_{d+1}\right), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel $\Lambda_{\alpha, d, n}$ satisfies the following properties.
Proposition 2.3 (i) We have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{d+1}, \overline{\Lambda_{\alpha, d, n}(x, y)}=\Lambda_{\alpha, d, n}(x,-y)=\Lambda_{\alpha, d, n}(-x, y) \tag{2.6}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{+}^{d+1},\left|\Lambda_{\alpha, d, n}(x, y)\right| \leq x_{d+1}^{2 n} \tag{2.7}
\end{equation*}
$$

(iii) The function $x \mapsto \Lambda_{\alpha, d, n}(x, y)$ satisfies the differential equation

$$
\begin{equation*}
\triangle_{W}^{\alpha, d, n}\left(\Lambda_{\alpha, d, n}(., y)\right)(x)=-\|y\|^{2} \Lambda_{\alpha, d, n}(x, y) \tag{2.8}
\end{equation*}
$$

(iv) For all $x, y \in \mathbb{C}^{d+1}$, we have

$$
\begin{equation*}
\Lambda_{\alpha, d, n}(x, y)=a_{\alpha+2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} x_{d+1}^{2 n} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha+2 n-\frac{1}{2}} \cos \left(t x_{d+1} y_{d+1}\right) \mathrm{d} t \tag{2.9}
\end{equation*}
$$

where a_{α} is the constant given by

$$
\begin{equation*}
a_{\alpha}=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} . \tag{2.10}
\end{equation*}
$$

Definition 2.4 The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ is given for $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ by

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Lambda_{\alpha, d, n}(x, \lambda) \mathrm{d} \mu_{\alpha, d}(x), \tag{2.11}
\end{equation*}
$$

where $\mu_{\alpha, d}$ is the measure on \mathbb{R}_{+}^{d+1} given by the relation (1.4).
Example 2.5 Let $E_{t, n}, t>0, n \in \mathbb{N}$, be the function defined by

$$
\forall x \in \mathbb{R}^{d+1}, E_{t, n}(x)=C_{\alpha+2 n, d} x_{d+1}^{2 n} e^{-t\|x\|^{2}},
$$

where $C_{\alpha, d}$ is the constant given by

$$
\begin{equation*}
C_{\alpha, d}=\frac{1}{(2 \pi)^{\frac{d}{2}} 2^{\alpha} \Gamma(\alpha+1)} \tag{2.12}
\end{equation*}
$$

Then the Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ of $E_{t, n}$ is given by

$$
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left(E_{t, n}\right)(\lambda)=\frac{1}{(2 t)^{\alpha+2 n+\frac{d}{2}+1}} e^{-\frac{\|\lambda\|^{2}}{4 t}}
$$

Remark 2.6 The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ can be written in the form:

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}=\mathscr{F}_{W}^{\alpha+2 n, d} \circ \mathscr{M}_{n}^{-1} \tag{2.13}
\end{equation*}
$$

where $\mathscr{F}_{W}^{\alpha, d}=\mathscr{F}_{W}^{\alpha, d, 0}$ is the classical Weinstein transform.
Some basic properties of the transform $\mathscr{F}_{W}^{\alpha, d, n}$ are summarized in the following results.
Proposition 2.7 ([9]) (i) For all $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\begin{equation*}
\left\|\mathscr{F}_{W}^{\alpha, d, n}(f)\right\|_{\alpha, n, \infty} \leq\|f\|_{\alpha, n, 1} . \tag{2.14}
\end{equation*}
$$

(ii) Let $m \in \mathbb{N}$ and $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$. We have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left[\left(\triangle_{W}^{\alpha, d, n}\right)^{m} f\right](\lambda)=(-1)^{m}\|\lambda\|^{2 m} \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \tag{2.15}
\end{equation*}
$$

(iii) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $m \in \mathbb{N}$. For all $\lambda \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\left(\triangle_{W}^{\alpha, d, n}\right)^{m}\left[\mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}(f)\right](\lambda)=\mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(P_{m} f\right)(\lambda) \tag{2.16}
\end{equation*}
$$

where $P_{m}(\lambda)=(-1)^{m}\|\lambda\|^{2 m}$.

Theorem 2.8 ([9]) (i) Let $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. If $\mathscr{F}_{W}^{\alpha, d, n}(f) \in L_{\alpha+2 n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, then we have

$$
\begin{equation*}
f(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(y) \Lambda_{\alpha, d, n}(-x, y) \mathrm{d} \mu_{\alpha+2 n, d}(y), \text { a.e., } x \in \mathbb{R}_{+}^{d+1} \tag{2.17}
\end{equation*}
$$

where $C_{\alpha, d}$ is the constant given by the relation (2.12).
(ii) The Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from $\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ onto $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$ and from $\mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$ onto $\mathscr{H}_{*}\left(\mathbb{C}^{d+1}\right)$.

The following Theorem is as an immediate consequence of the relation (2.13) and the properties of the transform $\mathscr{F}_{W}^{\alpha, d}$ (see [1-4]).

Theorem 2.9 (i) For all $f, g \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have the following Parseval formula

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} f(x) \overline{g(x)} \mathrm{d} \mu_{\alpha, d}(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \overline{\mathscr{F}_{W}^{\alpha, d, n}(g)(\lambda)} \mathrm{d} \mu_{\alpha+2 n, d}(\lambda) . \tag{2.18}
\end{equation*}
$$

(ii) (Plancherel formula) For all $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}|f(x)|^{2} \mathrm{~d} \mu_{\alpha, d}(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)\right|^{2} \mathrm{~d} \mu_{\alpha+2 n, d}(\lambda) \tag{2.19}
\end{equation*}
$$

(iii) (Plancherel Theorem) The transform $\mathscr{F}_{W}^{\alpha, d, n}$ extends uniquely to an isometric isomorphism from $L^{2}\left(\mathbb{R}_{+}^{d+1}, d \mu_{\alpha, d}(x)\right)$ onto $L^{2}\left(\mathbb{R}_{+}^{d+1}, C_{\alpha+2 n, d}^{2} d \mu_{\alpha+2 n, d}(x)\right)$.

Definition 2.10 The translation operator $T_{x}^{\alpha, d, n}, x \in \mathbb{R}_{+}^{d+1}$, associated with the operator $\Delta_{W}^{\alpha, d, n}$ is defined on $\mathscr{E}_{n, *}\left(\mathbb{R}_{+}^{d+1}\right)$ by

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, T_{x}^{\alpha, d, n} f(y)=x_{d+1}^{2 n} y_{d+1}^{2 n} T_{x}^{\alpha+2 n, d} \mathscr{M}_{n}^{-1} f(y) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{x}^{\alpha, d} f(y)=\frac{a_{\alpha}}{2} \int_{0}^{\pi} f\left(x^{\prime}+y^{\prime}, \sqrt{x_{d+1}^{2}+y_{d+1}^{2}+2 x_{d+1} y_{d+1} \cos \theta}\right)(\sin \theta)^{2 \alpha} \mathrm{~d} \theta \tag{2.21}
\end{equation*}
$$

$x^{\prime}+y^{\prime}=\left(x_{1}+y_{1}, \ldots, x_{d}+y_{d}\right)$ and a_{α} is the constant given by (2.10).
We need the following Lemmas.
Example 2.11 Let $\phi_{t, n}, t>0$, be the function defined by

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \phi_{t, n}(x)=\frac{x_{d+1}^{2 n}}{(2 t)^{\alpha+2 n+\frac{d}{2}+1}} e^{-\frac{\|x\|^{2}}{4 t}}
$$

For all $x, y \in \mathbb{R}_{+}^{d+1}$, we have

$$
T_{x}^{\alpha, d, n}\left(\phi_{t, n}\right)(y)=\frac{x_{d+1}^{2 n} y_{d+1}^{2 n}}{(2 t)^{\alpha+2 n+\frac{d}{2}+.1}} e^{-\frac{\|x\|^{2}+\|y\|^{2}}{4 t}} \Lambda_{\alpha+2 n, d}\left(x,-i \frac{y}{2 t}\right) .
$$

The following proposition summarizes some properties of the generalized Weinstein translation operator.

Proposition 2.12 (i) For $f \in \mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\forall x, y \in \mathbb{R}_{+}^{d+1}, T_{x}^{\alpha, d, n} f(y)=T_{y}^{\alpha, d, n} f(x)
$$

(ii) For all $f \in \mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $y \in \mathbb{R}_{+}^{d+1}$, the function $x \mapsto T_{x}^{\alpha, d, n} f(y)$ belongs to $\mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$.
(iii) Let $f \in L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right), 1 \leq p \leq+\infty$ and $x \in \mathbb{R}_{+}^{d+1}$. Then $T_{x}^{\alpha, d, n} f$ belongs to $L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\left\|T_{x}^{\alpha, d, n} f\right\|_{\alpha, n, p} \leq x_{d+1}^{2 n}\|f\|_{\alpha, n, p} \tag{2.22}
\end{equation*}
$$

(iv) The function $t \mapsto \Lambda_{\alpha, d, n}(t, \lambda), \lambda \in \mathbb{C}^{d+1}$, satisfies on \mathbb{R}_{+}^{d+1} the following product formula

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{+}^{d+1}, \Lambda_{\alpha, d, n}(x, \lambda) \Lambda_{\alpha, d, n}(y, \lambda)=T_{x}^{\alpha, d, n}\left[\Lambda_{\alpha, d, n}(., \lambda)\right](y) \tag{2.23}
\end{equation*}
$$

(v) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $x \in \mathbb{R}_{+}^{d+1}$. We have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left(T_{x}^{\alpha, d, n} f\right)(\lambda)=\Lambda_{\alpha, d, n}(-x, \lambda) \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) . \tag{2.24}
\end{equation*}
$$

(vi) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$. For all $x, y \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
T_{x}^{\alpha, d, n} f(y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \Lambda_{\alpha, d, n}(-x, \lambda) \Lambda_{\alpha, d, n}(-y, \lambda) \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \mathrm{d} \mu_{\alpha+2 n, d}(\lambda) \tag{2.25}
\end{equation*}
$$

Proof The results can be obtained by a simple calculation by using the relation (2.20).
Definition 2.13 Let $f, g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. The generalized Weinstein convolution product of f and g is given by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, f *_{\alpha, n} g(x)=\int_{\mathbb{R}_{+}^{d+1}} T_{x}^{\alpha, d, n} f(-y) g(y) \mathrm{d} \mu_{\alpha, d}(y) \tag{2.26}
\end{equation*}
$$

Lemma 2.14 Let $f, g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. We have

$$
f *_{\alpha, n} g=\mathscr{M}_{n}\left(\mathscr{M}_{n}^{-1} f *_{\alpha} \mathscr{M}_{n}^{-1} g\right),
$$

where for all $\varphi, \psi \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \varphi *_{\alpha} \psi(x):=\varphi *_{\alpha, 0} \psi(x)=\int_{\mathbb{R}_{+}^{d+1}} T_{x}^{\alpha, d} \varphi(-y) \psi(y) \mathrm{d} \mu_{\alpha, d}(y)
$$

Proposition 2.15 ([9]) (i) Let $p, q, r \in[1,+\infty]$ such that $\frac{1}{p}+\frac{1}{q}-\frac{1}{r}=1$. Then for all $f \in L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ and $g \in L_{\alpha, n}^{q}\left(\mathbb{R}_{+}^{d+1}\right)$, the function $f *_{\alpha, n} g \in L_{\alpha, n}^{r}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\left\|f *_{\alpha, n} g\right\|_{\alpha, n, r} \leq\|f\|_{\alpha, n, p}\|g\|_{\alpha, n, q} . \tag{2.27}
\end{equation*}
$$

(ii) For all $f, g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right), f *_{\alpha, n} g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}\left(f *_{\alpha, n} g\right)=\mathscr{F}_{W}^{\alpha, d, n}(f) \mathscr{F}_{W}^{\alpha, d, n}(g) . \tag{2.28}
\end{equation*}
$$

(iii) Let $f, g \in L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$. Then, we have

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{d+1}}\left|f *_{\alpha, n} g(x)\right|^{2} \mathrm{~d} \mu_{\alpha, d}(x) \\
& \quad=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)\right|^{2}\left|\mathscr{F}_{W}^{\alpha, d, n}(g)(\lambda)\right|^{2} \mathrm{~d} \mu_{\alpha+2 n, d}(\lambda), \tag{2.29}
\end{align*}
$$

where both sides are finite or infinite.
Notation. We denote by \mathscr{S}_{*}^{\prime}, (resp., $\left.\mathscr{S}_{n, *}^{\prime}\right)$ the strong dual of the space $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$, (resp., $\left.\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)\right)$.

Definition 2.16 The generalized Fourier-Weinstein transform of a distribution $u \in \mathscr{S}_{n, *}^{\prime}$ is defined by

$$
\begin{equation*}
\forall \phi \in \mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right),\left\langle\mathscr{F}_{W}^{\alpha, d, n}(u), \phi\right\rangle=\left\langle u,\left(\mathscr{F}_{W}^{\alpha, d, n}\right)^{-1}(\phi)\right\rangle . \tag{2.30}
\end{equation*}
$$

The following proposition is as an immediate consequence of Theorem 2.8.
Proposition 2.17 The transform $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from $\mathscr{S}_{n, *}^{\prime}$ onto \mathscr{S}_{*}^{\prime}.
Lemma 2.18 ([9]) Let $m \in \mathbb{N}$ and $u \in \mathscr{S}_{n, *}^{\prime}$. We have

$$
\begin{equation*}
\left(\mathscr{F}_{W}^{\alpha, d, n}\right)\left[\left(\Delta_{W}^{\alpha, d, n}\right)^{m} u\right]=(-1)^{m}\|x\|^{2 m}\left(\mathscr{F}_{W}^{\alpha, d, n}\right)(u), \tag{2.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\forall \phi \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right),\left\langle\Delta_{W}^{\alpha, d, n} u, \phi\right\rangle=\left\langle u, \Delta_{W}^{\alpha, d, n} \phi\right\rangle . \tag{2.32}
\end{equation*}
$$

3. Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$.

Definition 3.1 Let $s \in \mathbb{R}$ and $p \in[1,+\infty]$. We define the generalized Sobolev-Weinstein space of order s, that will be denoted $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$, as the set of all $u \in \mathscr{S}_{n, *}^{\prime}$ such that $\mathscr{F}_{W}^{\alpha, d, n}(u)$ is a function and

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{\frac{s p}{2}}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)\right|^{p} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)<\infty \tag{3.1}
\end{equation*}
$$

We provide the space $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ with the norm

$$
\begin{equation*}
\|u\|_{\mathscr{W}_{\alpha, d, n}^{s, p}}=\left[\left.C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{\frac{s p}{2}} \right\rvert\, \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)^{p} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)\right]^{\frac{1}{p}} \tag{3.2}
\end{equation*}
$$

For $p=2$, we provide the $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right):=\mathscr{W}_{\alpha, d, n}^{s, 2}\left(\mathbb{R}_{+}^{d+1}\right)$ with the inner product

$$
\begin{equation*}
\langle u, v\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{s} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)(\xi)} \mathrm{d} \mu_{\alpha+2 n, d}(\xi) \tag{3.3}
\end{equation*}
$$

and the norm

$$
\begin{equation*}
\|u\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}=\left[C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{s}\left|\mathscr{F}_{W}^{\alpha, d}(u)(\xi)\right|^{2} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)\right]^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

We give the following properties of the spaces $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$.
Proposition 3.2 (i) Let $1 \leq p<+\infty$ and $s, t \in \mathbb{R}$ such that $t>s$. Then the space $\mathscr{W}_{\alpha, d, n}^{t, p}\left(\mathbb{R}_{+}^{d+1}\right)$ is continuously contained in $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$.
(ii) Let $s \in \mathbb{R}$ and $1 \leq p<+\infty$. The space $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ provided with the norm $\|\cdot\|_{\substack{s, d, n}}$ is a Banach space.
(iii) For all $s \in \mathbb{R}$ and $1 \leq p<+\infty$, the space $\mathscr{D}_{*}\left(\mathbb{R}^{d+1}\right)$ is dense in $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$.

Proof (i) The result is immediately from the Definition 3.1.
(ii) Let $\left(f_{m}\right)_{m \in \mathbb{N}}$ be a Cauchy sequence of $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$. From the definition of the norm $\|\cdot\|_{\mathscr{W}_{\substack{s, d, n}}^{s, p}}$, it is clear that $\left(\mathscr{F}_{W}^{\alpha, d, n}\left(f_{m}\right)\right)_{m \in \mathbb{N}}$ is a Cauchy sequence of $L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right):=L^{p}\left(\mathbb{R}_{+}^{d+1},(1+\right.$ $\left.\left.\|\xi\|^{2}\right)^{\frac{s p}{2}} d \mu_{\alpha+2 n, d}(x)\right)$.

Since $L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ is complete, there exists a function $g \in L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty}\left\|\mathscr{F}_{W}^{\alpha, d, n}\left(f_{m}\right)-g\right\|_{L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right)}=0 . \tag{3.5}
\end{equation*}
$$

Then $g \in \mathscr{S}_{*}^{\prime}$ and $f=\left(\mathscr{F}_{W}^{\alpha, d, n}\right)^{-1}(g) \in \mathscr{S}_{n, *}^{\prime}$. So, $\mathscr{F}_{W}^{\alpha, d, n}(f)=g \in L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ which proves that $f \in \mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|f_{m}-f\right\|_{\mathscr{W}_{\alpha, d, n}^{s, p}}=C_{\alpha+2 n, d}^{\frac{2}{p}}\left\|\mathscr{F}_{W}^{\alpha, d, n}\left(f_{m}\right)-g\right\|_{L_{s, n, \alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right)}^{m \rightarrow+\infty} \underset{\rightarrow}{\rightarrow} 0
$$

Hence, $\mathscr{W}_{\alpha, d, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ is complete.
(iii) We proceed as [10] to prove the result.

The following theorem gives a relation between the dual of $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $\mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$. Theorem 3.3 The dual of $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ can be identified with $\mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$. The relation of the identification is as follows

$$
\begin{equation*}
\langle u, v\rangle_{(0)}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)(\xi)} \mathrm{d} \mu_{\alpha+2 n, d}(\xi) \tag{3.6}
\end{equation*}
$$

with $u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $v \in \mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$.
Proof For all $u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $v \in \mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\begin{equation*}
\left|\langle u, v\rangle_{(0)}\right| \leq\|u\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}\|v\|_{(1), \mathscr{H}_{\alpha, d, n}^{-s}} \tag{3.7}
\end{equation*}
$$

Then, $(u, v) \mapsto\langle u, v\rangle_{(0)}$ is a continuous bilinear form on

$$
\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \times \mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)
$$

Let $v \in \mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$. We consider the function $\phi_{v}: u \mapsto\langle u, v\rangle_{(0)}$.
From the relation (3.7), we see that ϕ_{v} is a continuous linear form on $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|\phi_{v}\right\| \leq\|v\|_{(1), \mathscr{H}_{\alpha, d, n}^{-s}}
$$

On the other hand for $u_{0}(\lambda)=\left[\mathscr{F}_{W}^{\alpha, d, n}\right]^{-1}\left(\left(1+\|\lambda\|^{2}\right)^{-s} \mathscr{F}_{W}^{\alpha, d, n}(v)\right)(\lambda)$, we obtain

$$
u_{0} \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \text { and }\left\langle u_{0}, v\right\rangle_{(0)}=\|v\|_{(1), \mathscr{H}_{\alpha, d, n}^{-s}}^{2}
$$

Then $\left\|\phi_{v}\right\|=\|v\|_{(1), \mathscr{H}_{\alpha, d, n}^{-s}}$.
Let now $v^{*} \in\left(\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)\right)^{\prime}$. By the Riesz representation theorem and the relation (3.3), one can see that there exists $w \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, such that for all $u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\begin{aligned}
v^{*}(u) & =\langle u, w\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \\
& =\int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\lambda\|^{2}\right)^{s} \mathscr{F}_{W}^{\alpha, d, n}(w)(\lambda) \overline{\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)} \mathrm{d} \mu_{\alpha, d}(\lambda)
\end{aligned}
$$

We put

$$
v(\lambda)=\left[\mathscr{F}_{W}^{\alpha, d, n}\right]^{-1}\left(\left(1+\|\lambda\|^{2}\right)^{s} \mathscr{F}_{W}^{\alpha, d, n}(w)(\lambda)\right)
$$

Then, $v \in \mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\forall u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right), v^{*}(u)=\langle u, v\rangle_{(0)}
$$

Hence the map $v \mapsto\langle., v\rangle_{(0)}$ is an isometry from $\mathscr{H}_{\alpha, d, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$ into $\left(\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)\right)^{\prime}$.
Thus the proof is completed.
Proposition 3.4 For $s>\frac{d}{2}+\alpha+2 n+1$, the Hilbert space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ admits the reproducing kernel

$$
\begin{equation*}
\mathscr{R}_{s}^{\alpha, d, n}(x, y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{-s} \Lambda_{\alpha, d, n}(-x, \xi) \Lambda_{\alpha, d, n}(y, \xi) \mathrm{d} \mu_{\alpha+2 n, d}(\xi) \tag{3.8}
\end{equation*}
$$

where $C_{\alpha, d}$ is the constant given by the relation (2.12). That is
(i) For every $y \in \mathbb{R}_{+}^{d+1}$, the distribution given by the function $x \mapsto \mathscr{R}_{s}^{\alpha, d, n}(x, y)$ belongs to $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
(ii) For every $f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\forall y \in \mathbb{R}_{+}^{d+1},\left\langle f, \mathscr{R}_{s}^{\alpha, d, n}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}=f(y)
$$

Proof (i) It is easy to see that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{-s} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)<+\infty \text { if and only if } s>\frac{d}{2}+\alpha+2 n+1 \tag{3.9}
\end{equation*}
$$

Then using the relation (2.7), we deduce that the function $(x, y) \mapsto \mathscr{R}_{s}^{\alpha, d, n}(x, y)$ is well-defined.
Moreover for all $y \in \mathbb{R}_{+}^{d+1}$ and $s>\frac{d}{2}+\alpha+2 n+1$, the function $\xi \mapsto\left(1+\|\xi\|^{2}\right)^{-s} \Lambda_{\alpha, d, n}(y, \xi)$ belongs to $L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right) \cap L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$. Then, from the relation (2.17), the function $\mathscr{R}_{s, y}^{\alpha, d, n}: x \mapsto$ $\mathscr{R}_{s}^{\alpha, d, n}(x, y)$ belongs to $L_{\alpha}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\forall \xi \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left[\mathscr{R}_{s, y}^{\alpha, d, n}\right](\xi)=\left(1+\|\xi\|^{2}\right)^{-s} \Lambda_{\alpha, d, n}(y, \xi) \tag{3.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\mathscr{R}_{s, y}^{\alpha, d, n}\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \leq k_{s} y_{d+1}^{2 n} \tag{3.11}
\end{equation*}
$$

where for all $s>\frac{d}{2}+\alpha+2 n+1$, we have

$$
\begin{equation*}
k_{s}=k_{s}(\alpha, d, n)=C_{\alpha+2 n, d}\left(\int_{\mathbb{R}_{+}^{d+1}}\left(1+\|\xi\|^{2}\right)^{-s} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)\right)^{\frac{1}{2}} \tag{3.12}
\end{equation*}
$$

Hence for all $y \in \mathbb{R}_{+}^{d+1}$ and $s>\frac{d}{2}+\alpha+2 n+1, \mathscr{R}_{s, y}^{\alpha, d, n} \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
(ii) Let $f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $y \in \mathbb{R}_{+}^{d+1}$. Using the relations (3.3), (3.10) and (2.17), we obtain

$$
\begin{aligned}
\left\langle f, \mathscr{R}_{s}^{\alpha, d, n}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}} & =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(\xi) \Lambda_{\alpha, d, n}(-y, \xi) \mathrm{d} \mu_{\alpha+2 n, d}(\xi) \\
& =f(y)
\end{aligned}
$$

4. Extremal functions on $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$

The theory of reproducing kernels started with two papers of 1921 (see [11]) and 1922 (see [12]) which dealt with typical reproducing kernels of Szegö and Bergman and since then the theory has been developed into a large and deep theory in complex analysis by many mathematicians. In this section, using the theory of reproducing kernels, we study the extremal functions on the Hilbert space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.

Definition 4.1 Let $r>0, \mathcal{H}$ be a Hilbert space and $\mathscr{L}: \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \rightarrow \mathcal{H}$ be a bounded linear operator. For all $f, h \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, we define the inner product in $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ by

$$
\begin{equation*}
\langle f, h\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}}=r\langle f, h\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}+\langle\mathscr{L} f, \mathscr{L} h\rangle_{\mathcal{H}} . \tag{4.1}
\end{equation*}
$$

The norm associated with this inner product is given by

$$
\begin{equation*}
\|f\|_{(2), \mathscr{H}_{s, d, n}^{s}}^{2}=r\|f\|_{(1), \mathscr{H}_{s, d, n}^{s}}^{2}+\|\mathscr{L} f\|_{\mathcal{H}}^{2} . \tag{4.2}
\end{equation*}
$$

Lemma 4.2 The norms $\|\cdot\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}$ and $\|\cdot\|_{(2), \mathscr{H}_{\alpha, d, n}^{s}}$ are equivalent.
Proof Let $u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. We have

$$
\sqrt{r}\|u\|_{(1), \mathscr{H}_{s, d, n}^{s}} \leq\|u\|_{(2), \mathscr{H}_{s, d, n}^{s}} \leq \sqrt{r+\|\mathscr{L}\|^{2}}\|u\|_{(1), \mathscr{H}_{s, d, n}^{s}} .
$$

This clearly yields the result.
Proposition 4.3 Let $r>0$ and $s>\frac{d}{2}+\alpha+2 n+1$. The space $\left(\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right),\langle., .\rangle_{(2), \mathscr{e}_{\alpha, d, n}^{s}}\right)$ possesses a reproducing $\mathscr{R}_{\mathscr{L}}^{s, r}$ satisfying the identity

$$
\begin{equation*}
\mathscr{R}_{\mathscr{L}}^{s, r}(., y)=\left(r I+\mathscr{L}^{*} \mathscr{L}\right)^{-1} \mathscr{R}_{s}^{\alpha, d, n}(., y) \tag{4.3}
\end{equation*}
$$

where $I=I d$ and $\mathscr{L}^{*}: \mathcal{H} \rightarrow \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ is the adjoint of \mathscr{L} given by

$$
\forall f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right), \forall h \in \mathcal{H},\langle\mathscr{L} f, h\rangle_{\mathcal{H}}=\left\langle f, \mathscr{L}^{*} h\right\rangle_{(1), \mathscr{\mathscr { C } _ { \alpha , d , n } ^ { s }}} .
$$

Proof From [13], the space $\left(\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right),\langle., .\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}}\right)$ has a reproducing kernel denoted by $\mathscr{R}_{\mathscr{\mathscr { L }}}^{s, r}$ and we have

$$
\begin{aligned}
f(y) & =\left\langle f, \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}} \\
& =r\left\langle f, \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{s, d, n}^{s}}+\left\langle\mathscr{L}_{\left.f, \mathscr{L}^{s} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{\mathcal{H}}}\right. \\
& =\left\langle f,\left(r I+\mathscr{L}^{*} \mathscr{L}\right) \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{\mathscr { C }}_{\alpha, d, n}^{s}} .
\end{aligned}
$$

Then for all $y \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\left(r I+\mathscr{L}^{*} \mathscr{L}\right) \mathscr{R}_{\mathscr{L}}^{s, r}(., y)=\mathscr{R}_{s}^{\alpha, d, n}(., y) . \tag{4.4}
\end{equation*}
$$

Thus the proof is completed.
The following proposition summarizes some properties of the kernel $\mathscr{R}_{\mathscr{L}}^{s, r}$.
Proposition 4.4 The kernel $\mathscr{R}_{\mathscr{L}}^{s, r}$ satisfies the following properties
(i) We have

$$
\begin{equation*}
\left\|\mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{(1), \mathscr{\mathscr { S } _ { \alpha , d , n } ^ { s }}} \leq \frac{k_{s}}{r} y_{d+1}^{2 n}, \tag{4.5}
\end{equation*}
$$

where k_{s} is the constant given by the relation (3.12).
(ii) We have

$$
\begin{equation*}
\left\|\mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{\mathcal{H}} \leq \frac{k_{s}}{\sqrt{2 r}} y_{d+1}^{2 n} \tag{4.6}
\end{equation*}
$$

(iii) For all $y \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\left\|\mathscr{L}^{*} \mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \leq k_{s} y_{d+1}^{2 n} . \tag{4.7}
\end{equation*}
$$

Proof Using the relation (3.11) and (4.4), for all $y \in \mathbb{R}_{+}^{d+1}$, we get

$$
\begin{aligned}
& r^{2}\left\|\mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2}+2 r\left\|\mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{\mathcal{H}}^{2}+\left\|\mathscr{L}^{*} \mathscr{L}_{\mathscr{R}_{\mathscr{L}}}^{s, r}(., y)\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2} \\
& \quad=\left\|\mathscr{R}_{s}^{\alpha, d, n}(., y)\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2} \leq k_{s}^{2} y_{d+1}^{4 n} .
\end{aligned}
$$

Then the assertions (i)-(iii) are an immediate consequence of the above result.
The main result of this section can be stated as follows.
Theorem 4.5 Let $s>\frac{d}{2}+\alpha+2 n+1$. For all $h \in \mathcal{H}$ and for all $r>0$, the infimum

$$
\begin{equation*}
\inf _{f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)}\left[r\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2}+\|h-\mathscr{L} f\|_{\mathcal{H}}^{2}\right] \tag{4.8}
\end{equation*}
$$

is attained by a unique function $f_{r, h}^{*}$ given by

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, f_{r, h}^{*}(y)=\left\langle h, \mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{\mathcal{H}} . \tag{4.9}
\end{equation*}
$$

Moreover, the extremal function $f_{r, h}^{*}$ satisfies the following inequality

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1},\left|f_{r, h}^{*}(y)\right| \leq \frac{k_{s}}{\sqrt{2 r}}\|h\|_{\mathcal{H}} y_{d+1}^{2 n} \tag{4.10}
\end{equation*}
$$

Proof The existence and unicity of extremal function $f_{r, h}^{*}$ represented by the relation (4.8) is given by [13]. On the other hand from the relation (4.6), we get

$$
\forall y \in \mathbb{R}_{+}^{d+1},\left|f_{r, h}^{*}(y)\right| \leq\left\|\mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\|_{\mathcal{H}}\|h\|_{\mathcal{H}} \leq \frac{k_{s}}{\sqrt{2 r}}\|h\|_{\mathcal{H}} y_{d+1}^{2 n}
$$

Corollary 4.6 Let $s>\frac{d}{2}+\alpha+2 n+1$ and $r>0$. If \mathscr{L} is isometry ($\left.\mathscr{L}^{*} \mathscr{L}=\mathrm{Id}\right)$, then
(i) $\langle., .\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}}=(r+1)\langle., .\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}$.
(ii) For all $x, y \in \mathbb{R}_{+}^{d+1}$, we have $\mathscr{R}_{\mathscr{L}}^{s, r}(x, y)=\frac{1}{r+1} \mathscr{R}_{s}^{\alpha, d, n}(., y)$.
(iii) For all $h \in \mathcal{H}$, we have $\forall y \in \mathbb{R}_{+}^{d+1}, f_{r, h}^{*}(y)=\frac{1}{r+1} \mathscr{L}^{*} h(y)$.
(iv) For all $f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, we have $\forall y \in \mathbb{R}_{+}^{d+1}, f_{r, \mathscr{L} f}^{*}(y)=\frac{1}{r+1} f(y)$.

Corollary 4.7 Let $s>\frac{d}{2}+\alpha+2 n+1$ and $r>0$. Let $f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $h=\mathscr{L} f$.
(i) For all $y \in \mathbb{R}_{+}^{d+1}$, we have $f(y)=\lim _{r \rightarrow 0^{+}} f_{r, h}^{*}(y)$.
(ii) We have $\forall y \in \mathbb{R}_{+}^{d+1},\left|f(y)-f_{r, h}^{*}(y)\right| \leq k_{s}\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} y_{d+1}^{2 n}$.
(iii) We have $\forall y \in \mathbb{R}_{+}^{d+1},\left|f_{r, h}^{*}(y)\right| \leq k_{s}\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} y_{d+1}^{2 n}$.

Proof Let $f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $h=\mathscr{L} f$.
(i) From the relations (4.4) and (4.9), we get

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, f_{r, h}^{*}(y)=\left\langle f, \mathscr{L}^{*} \mathscr{L} \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \tag{4.11}
\end{equation*}
$$

Then, for all $y \in \mathbb{R}_{+}^{d+1}$, we obtain

$$
f_{r, h}^{*}(y)=\left\langle f, \mathscr{R}_{s}^{\alpha, d, n}(., y)-r \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}
$$

Hence

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, f_{r, h}^{*}(y)=f(y)-r\left\langle f, \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \tag{4.12}
\end{equation*}
$$

and we have

$$
\lim _{r \rightarrow 0^{+}} f_{r, h}^{*}(y)=\lim _{r \rightarrow 0^{+}}\left[f(y)-r\left\langle f, \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}\right]=f(y)
$$

(ii) By invoking (4.5) and (4.12), for all $y \in \mathbb{R}_{+}^{d+1}$, we can write

$$
\begin{aligned}
\left|f(y)-f_{r, h}^{*}(y)\right| & =r\left|\left\langle f, \mathscr{R}_{\mathscr{L}}^{s, r}(., y)\right\rangle_{(1), \mathscr{H}_{\alpha, d, n}^{s}}\right| \leq r\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \mathscr{R}_{\mathscr{L}}^{s, r}(., y) \|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \\
& \leq k_{s}\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} y_{d+1}^{2 n}
\end{aligned}
$$

(iii) Using the relations (4.7) and (4.11), for all $y \in \mathbb{R}_{+}^{d+1}$, we obtain

$$
\begin{aligned}
\left|f_{r, h}^{*}(y)\right| & \leq\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}\left\|\mathscr{L}^{*} \mathscr{L}_{\mathscr{R}_{\mathscr{L}}^{s, r}}(., y)\right\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} \\
& \leq k_{s}\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}} y_{d+1}^{2 n} .
\end{aligned}
$$

Example 4.8 For all $s \geq 0$, the identity operator id : $\mathscr{H}_{\alpha, d, n}^{s} \rightarrow L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is bounded and we have

$$
\forall u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right),\|\operatorname{id}(u)\|_{\alpha, n, 2} \leq\|u\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}
$$

Its adjoint operator $\mathrm{id}^{*}: L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right) \rightarrow \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ is given by

$$
\forall v \in L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right), \operatorname{id}^{*}(v)=\left(\mathscr{F}_{W}^{\alpha, d, n}\right)^{-1}\left[\left(1+\|\xi\|^{2}\right)^{-s} \mathscr{F}_{W}^{\alpha, d, n}(v)\right]
$$

On the other hand, the inner product associated with the operator id can be written

$$
\langle u, v\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left[1+r\left(1+\|\xi\|^{2}\right)^{s}\right] \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)}(\xi) \mathrm{d} \mu_{\alpha+2 n, d}(\xi) .
$$

In this case, the Hilbert space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ admits the following reproducing kernel

$$
\mathscr{R}_{i d}^{s, r}(x, y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \frac{\Lambda_{\alpha, d, n}(-x, \xi) \Lambda_{\alpha, d, n}(y, \xi)}{1+r\left(1+\|\xi\|^{2}\right)^{s}} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi)
$$

For all $h \in L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and for all $r>0$, the infimum

$$
\inf _{f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)}\left[r\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2}+\|h-f\|_{\alpha, n, 2}^{2}\right]
$$

exists and it is attained by a unique function $f_{r, h}^{*}$ given by

$$
\begin{aligned}
f_{r, h}^{*}(y) & =\left\langle h, \mathscr{R}_{\mathrm{id}}^{s, r}(., y)\right\rangle_{L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)} \\
& =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(h)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{R}_{i d}^{s, r}(., y)\right)(\xi)} \mathrm{d} \mu_{\alpha+2 n, d}(\xi) \\
& =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \frac{\Lambda_{\alpha, d, n}(-y, \xi) \mathscr{F}_{W}^{\alpha, d, n}(h)(\xi)}{1+r\left(1+\|\xi\|^{2}\right)^{s}} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi) .
\end{aligned}
$$

Moreover, the extremal function $f_{r, h}^{*}$ satisfies the following inequality

$$
\forall y \in \mathbb{R}_{+}^{d+1},\left|f_{r, h}^{*}(y)\right| \leq \frac{k_{s}}{\sqrt{2 r}}\|h\|_{\alpha, n, 2} y_{d+1}^{2 n}
$$

where k_{s} is the constant given by the relation (3.12).
Example 4.9 For $m \in L_{\alpha, n}^{\infty}\left(\mathbb{R}_{+}^{d+1}\right)$, we define the multiplier operator \mathscr{L}_{m} by:

$$
\forall u \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right), \mathscr{L}_{m} u:=\left(\mathscr{F}_{W}^{\alpha, d, n}\right)^{-1}\left[m \mathscr{F}_{W}^{\alpha, d, n}(u)\right]
$$

For all $s \geq 0$, the operator \mathscr{L}_{m} is bounded from $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ into $L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$. The inner product associated with the operator \mathscr{L}_{m} is given by

$$
\langle u, v\rangle_{(2), \mathscr{H}_{\alpha, d, n}^{s}}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left[|m(\xi)|^{2}+r\left(1+\|\xi\|^{2}\right)^{s}\right] \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)}(\xi) \mathrm{d} \mu_{\alpha+2 n, d}(\xi)
$$

The Hilbert space $\mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ admits the following reproducing kernel

$$
\mathscr{R}_{\mathscr{L}_{m}}^{s, r}(x, y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \frac{\Lambda_{\alpha, d, n}(-x, \xi) \Lambda_{\alpha, d, n}(y, \xi)}{r\left(1+\|\xi\|^{2}\right)^{s}+|m(\xi)|^{2}} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi) .
$$

For all $h \in L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and for all $r>0$, the infimum

$$
\inf _{f \in \mathscr{H}_{\alpha, d, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)}\left[r\|f\|_{(1), \mathscr{H}_{\alpha, d, n}^{s}}^{2}+\left\|h-\mathscr{L}_{m} f\right\|_{\alpha, n, 2}^{2}\right]
$$

exists and it is attained by a unique function $f_{r, h}^{*}$ given by

$$
\begin{aligned}
f_{r, h}^{*}(y) & =\left\langle h, \mathscr{L}_{m} \mathscr{R}_{\mathscr{L}_{m}}^{s, r}(., y)\right\rangle_{L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)} \\
& =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \frac{\overline{m(\xi)} \Lambda_{\alpha, d, n}(-y, \xi) \mathscr{F}_{W}^{\alpha, d, n}(h)(\xi)}{r\left(1+\|\xi\|^{2}\right)^{s}+|m(\xi)|^{2}} \mathrm{~d} \mu_{\alpha+2 n, d}(\xi) .
\end{aligned}
$$

Moreover, the extremal function $f_{r, h}^{*}$ satisfies the following inequality

$$
\forall y \in \mathbb{R}_{+}^{d+1},\left|f_{r, h}^{*}(y)\right| \leq \frac{k_{s}}{\sqrt{2 r}}\|h\|_{\alpha, n, 2} y_{d+1}^{2 n}
$$

where k_{s} is the constant given by the relation (3.12).
Acknowledgements We thank the referees for their time and comments.

References

[1] H. BEN MOHAMED, N. BETTAIBI, S. H. JAH. Sobolev type spaces associated with the Weinstein operator. Int. J. Math. Anal. (Ruse), 2011, 5(25-28): 1353-1373.
[2] H. BEN MOHAMED, B. GHRIBI. Weinstein-Sobolev spaces of exponential type and applications. Acta Math. Sin. (Engl. Ser.), 2013, 29(3): 591-608.
[3] H. BEN MOHAMED, A. GASMI, N. BETTAIBI. Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets. An. St. Univ. Ovidius Constanta. Nr1, 2016, 1: 1-19.
[4] H. BEN MOHAMED. On the Weinstein equations in spaces $\mathscr{D}_{\alpha, d}^{p}$ type. International Journal of Open Problems in Complex Analysis, Vol.9, Nr 1, 2017.
[5] A. SAOUDI, N. BOCHRA. Boudeness and compactness of localization operators for Weinstein-Winer transform. J. Pseudo-Differ. Oper. Apll., 2020, 11: 675-702.
[6] A. SAOUDI. A variation of L^{p} uncertainty principles in Weinstein setting. Indian J. Pure Appl. Math., 2020, 51(4): 1697-1712.
[7] A. SAOUDI. On the Weinstein-Wigner transform and Weinstein-Weyl transform. J. Pseudo-Differ. Oper. Appl., 2020, 11(1): 1-14.
[8] A. ABOULEZ, A. ACHAK, R. DAHER, et al. Harmonic analysis associated with the generalized Weinstein operator. International. J. Anal. Appl., 2015, 9(1): 19-28.
[9] H. BEN MOHAMED, M. M. CHAFFAR. Generalized Weinstein and Sobolev Spaces. International Journal of Mathematics Trends and Technology, 2021, $\mathbf{6 7}(2): 28-44$.
[10] H. TRIEBEL. Spaces of distributions of Besov type on Euclidean n-space. Duality interpolation. Ark. Mat., 1973, 11: 13-64.
[11] S. SZEGÖ. Über orthogonale Polynome, die zu einer gegebenen Kurve der Komplexen Ebene gehören. Math. Z., 1921, 9: 218-270.
[12] S. BERGMAN. Über die Entwicklung der harmischen Funktionen der Ebene und des Rümes nach Orthogonal Functionen. Math. Ann., 1922, 86: 238-271.
[13] S. SAITOH. Integral Transform, Reproducing Kernels and Their Applications. Longman, Harlow, 1997.
[14] L. HÖRMANDER. The Analysis of Linear Partiel Differentiel Operator. Springer-Verlag, Berlin-Newyork, 1983.
[15] D. H. PAHK, B. H. KANG. Sobolev spaces in the generlized distribution spaces of Beurling type. Tsukuba J. Math., 1991, 15: 325-334.
[16] S. SAITOH. Theory of Reproducing Kernels and Its Applications. Longman Scientific Technical, Harlow, 1988.

