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New Sobolev-Weinstein Spaces and Applications

Hassen BEN MOHAMED*, Youssef BETTAIBI

Department of Mathematics, Faculty of Sciences, Gabes University, Tunisia

Abstract In this paper, we consider the generalized Weinstein operator Aé{,a’", we introduce
new Sobolev-Weinstein spaces denoted %S’d’n(R‘frl), s € R, associated with the generalized
Weinstein operator and we investigate their properties. Next, as application, we study the
extremal functions on the spaces %S,dm(]Ri"'l) using the theory of reproducing kernels.
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1. Introduction

In this paper, we consider the generalized Weinstein operator A%}d’” defined on Riﬂ =
R x [0, +0oc], by

U192 2a+1 0 _An(a+n)

2 2
pt 0x; Tar1 O0Tgq1 o

AZ = =Ag+ Loy (1.1)

where n € N, a > —%, Ay is the Laplacian for the d first variables and L, ,, is the second-order

singular differential operator on the half line given by

0? 24+1 3 4n(a+n)

Lon = 1.2
’ o3, Tar1 Oxgyq x5 (1.2)
For n = 0, we regain the classical Weinstein operator A%}d given by
d+1
o 0% 2 1 0
AR = ar = Ag+ La, (1.3)

2
~ ox; Tar1 OTgyq

L, = L is the Bessel operator [1-7].
The harmonic analysis associated with the generalized Weinstein operator A{'}[}d’" is studied
by Aboulez, Achak, Daher and Loualid [8,9].
For all f € LY(RY™, djg,a(z)), we define the Weinstein transform T by
AR FENN = | F@)Aaan(@ N)dpea()

d+1
Ry

Received August 1, 2021; Accepted December 23, 2021

Supported by Mathematics And Applications Laboratory, Faculty of Sciences, Gabes University, Tunisia.
* Corresponding author

E-mail address: hassenbenmohamed@yahoo.fr (Hassen BEN MOHAMED)



248 Hassen BEN MOHAMED and Youssef BETTAIBI
where 14,4 is the measure defined on Riﬂ by
dpte,a(x) = xfl‘ﬂ'ldx (1.4)
and Aq g, is the generalized Weinstein kernel given by
Va,y€ C A an(z,y) = 5”3111€7i<$l’y/>ja+2n($d+1yd+1),

x= (2 x411), ¥’ = (x1,%2,...,24) and j, is the normalized Bessel function of index a defined
by
= =

VEE T, jul€) =T(a+ 1)) :

On!F(n—Fa—!—l)(i)Q”' (15)

We design by .7, (R%*1), the Schwartz space of rapidly decreasing functions on R¥*!, even with
respect to the last variable and .7, . (R%*1) the subspace of .7, (R%*!) consisting of functions f

such that
oFf

E
O

Vke{l,...,2n—1}, (2',0) = f(z',0) = 0.

For all s € R, we define the generalized Sobolev-Weinstein space 7] dm(R‘fl) as the set of all
u € &), (the strong dual of the space .7, .(R?*!)) such that FZ5™ (u) is a function and

L O TERPIZ )€ Ptnsn ) < o

T
We investigate the properties of 7} dm(R‘i‘H). Using the theory of reproducing kernels, we study
the extremal functions on the spaces J; d,n(Riﬂ)’ The contents of the paper are as follows:
In the second section, we recapitulate some results related to the harmonic analysis associated
with the generalized Weinstein operator A%®™ given by the relation (1.1).
The Section 3 is devoted to define and study the generalized Sobolev-Weinstein space 7, dm(Riﬂ).
Finally, in the last section, as application, using the theory of reproducing kernels, we give

good estimates of extremal functions on the spaces 7] d’n(R_dﬁl).

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic
analysis associated with the Generalized Weinstein operator A%}d’n defined on Rff_“ by the
relation (1.1).

Notations. In what follows, we need the following notations

e €. (R91), the space of continuous functions on R?*!, even with respect to the last variable.

o &, (R¥*1) the space of €>-functions on R%*!  even with respect to the last variable.

o .7, (R¥H1) the Schwartz space of rapidly decreasing functions on R4*!, even with respect
to the last variable.

e 2.(R¥1) the space of ¥ >-functions on R¥*! which are of compact support, even with
respect to the last variable.

o J,(C3*1Y), the space of entire functions on C%*!, even with respect to the last variable,

rapidly decreasing and of exponential type.
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o #,, the map defined by
Vo € RYH, A (f)(2) = o3y f(2), (2.1)

where z = (2/,x441) and 2’ = (21,29, ...,24)-
° Lgm(Riﬂ), 1 < p < 400, the space of measurable functions on Riﬂ such that

1
Bl = [ [ |1t )P tnsan )] < oc, i1 < p < oo
R+

1 £llan,cc = ess sup [ f(z)] < +o0,
xzeRIT!
¢

where 4,4 is the measure given by the relation (1.4).

o LE(RYM) = Lk o (REM), 1 < p < 400, and || fllap = [l flla0s-

¢ &, (R, 9, (RT1) and .7, .(R¥*1), repespectively, stand for the subspace of &, (R4*1),
2,(R¥1) and .7, (R?*1) consisting of functions f such that

o*f /
Vke{l,...72n—1},ak (',0) = f(2',0) = 0.
Tap1

Let us begin by the following result.

Lemma 2.1 ([8,9]) (i) The map .#,, is an isomorphism from &,(R*!) (resp., .7, (R%*1)) onto
Enw(RITY) (vesp., 7, (RITL)).
(ii) For all f € & (R, we have

Loy o My(f) = My o Loyon(f). (2.2)

(iii) For all f € &.(R*Y), we have

AGE 0 M (f) = My 0 AFFPUS). (2.3)
(iv) For all f € &(RY) and g € 2, .(RIHY), we have
[ A5 (@b e / F (@) AZE (1) A a(). (2.4
4
Definition 2.2 The generalized Weinstein kernel A, 4, is the function given by
Va,y€ C, Agan(@,y) = 231e 7 o son (Tar1yas), (2.5)
where x = (2',2441), ¥’ = (x1,%2,...,24) and j, is the normalized Bessel function of index

« defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel A, 4, satisfies the following properties.
Proposition 2.3 (i) We have
Vz,ye RO Ao an(x,y) =Aadn(x,—y) = Ag.an(—2,7). (2.6)

(ii)) We have
2,y € RYY, [Aaan(,y)| < 2715 (2.7)
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(iii) The function x «— Mg qn(z,y) satisfies the differential equation
d,
B Rt (9 @) = 32N an(e, ). (2.9

(iv) For all x, y € C**!, we have

1
il 1
Aadn(T,y) = Gapane 7Y >$§il/ (1 —t%)*F2"72 cos(tzaq1yasr1)dt, (2.9)
0

where a,, is the constant given by

o = _2(a+1) (2.10)

Vil(a+3)

Definition 2.4 The generalized Weinstein transform ﬂ{f{,’d’" is given for f € L}l’n(Rf'l) by
YACREL FE (D) = [ @) et N b a(o), (2.11)
R

where fiq,q is the measure on R given by the relation (1.4).
Example 2.5 Let E;,,t >0, n € N, be the function defined by
2
Vo e R E,,(z) = C’a+2n,dx§1167t|‘m|‘ ,

where C,, 4 is the constant given by

1

Cot = (2m)520T(a+ 1) (212)
Then the Weinstein transform f‘f{/’d’" of E;, is given by
VAR, Ftn (Er)() = (%)jH B
Remark 2.6 The generalized Weinstein transform ﬁ%d’" can be written in the form:
Tt = F5 e (2.13)

d d.o . . . .
where ﬁ‘f{, = ﬁ‘f{, " is the classical Weinstein transform.

Some basic properties of the transform ﬁvav’d’”

are summarized in the following results.
Proposition 2.7 ([9]) (i) For all f € Lém(R‘fl), we have
175" (Dllanoo < 1 a1 (2.14)
(i) Let m € N and f € .%, .(R**1). We have
YA € RETL Z0 (AR AN = (D)™ AP (). (2.15)
(iii) Let f € 7, (R¥1) and m € N. For all A € R4 we have
(AT et P (D) = A T (P )N, (2.16)

where P,,(X) = (—1)™[|\[]?™.
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Theorem 2.8 ([9]) (i) Let f € L, (R{). If Z507(f) e LY o, (RETY) then we have
f( = o/+2n d/ ﬂa ¢ n (y)Aa,d,n(*xay)d,uoz—i-Zn,d(y), a.e, T < R(jj_la (217)
d+1

where Cy, g is the constant given by the relation (2.12).

(ii) The Weinstein transform 9‘5‘[,’(1’” is a topological isomorphism from %, .(R4T1) onto

Z(R¥*Y) and from 9, .(R¥1) onto #,(CIHL).
The following Theorem is as an immediate consequence of the relation (2.13) and the prop-
erties of the transform .Z57 (see [1-4]).

Theorem 2.9 (i) For all f,g € .7, .(R?*), we have the following Parseval formula
L 100 a0) = Coina [, F (DNFG @ N pasnah): (219
+
(i) (Plancherel formula) For all f € .7, .(R**1), we have

[ B @Pdbaa(e) = Coinn [ 175" (DN Ptz a(V) (219)
R++1 Ri+1

(iii) (Plancherel Theorem) The transform f{f{,’d’" extends uniquely to an isometric isomor-
phism from L2(Ri+1, dfie,a()) onto L? (R‘f‘l, Cﬁ“n,ddua”n,d(x)).

Definition 2.10 The translation operator TS%", & € R‘ﬁl, associated with the operator A%}d’”
is defined on &, (R4 by

vy € R Tt fy) = alltyyaa T 20t f (y), (2.20)

where

T (y) / f@ +y, (a3 + Y5+ 2Tayan cos 0)(sin 0)%*d, (2.21)

2 +y =(x1+y1,...,2q +ya) and a,, is the constant given by (2.10).

We need the following Lemmas.

Example 2.11 Let ¢; 5, t > 0, be the function defined by

2n 2

d+1 S S
Vo €R+ 5 ¢t’n( ) (2t)0£+2n+ 1 4t

For all z,y € R‘fl, we have

2n ,2n
Tagri¥Yap1 l=iP4iw? Y
Tgﬁd,n((bt,n)(y) = Wﬁe it Aa+2n,d(-73; —’L%),

The following proposition summarizes some properties of the generalized Weinstein transla-

tion operator.
Proposition 2.12 (i) For f € &, .(R%*1), we have

va, y € RYF, Todn f(y) = T f(x).
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(ii) For all f € &, .(R) andy € R, the function x — T4" f(y) belongs to &, . (R¥+1).
(iii) Let f € L’O’W(Riﬂ), 1 <p< +oo and x € RE. Then T:4" f belongs to Lgm(Riﬂ)

and we have
1T Fllasmp < 2301l lan.p- (2.22)

(iv) The functiont — Ay an(t,\), A € C4H1 | satisfies on R‘fl the following product formula

Y,y € Rcfrlv Aa,d,n(xa )‘)Aa,d,n(ya A) = Tg’d’n[Aa,d,n('v )\)](y) (2.23)
(v) Let f € S (R™) and x € RET. We have
VA€ R FIN TR £)(A) = Aasan (=, ) FG " ()N, (2.24)

(vi) Let f € Z (R*1). For all z,y € RE™, we have

T2 1(3) = Coizna [, Bt V(=0 NG (02N, (225)
+

Proof The results can be obtained by a simple calculation by using the relation (2.20). O

Definition 2.13 Let f,g € L}Ln(Riﬂ). The generalized Weinstein convolution product of f
and g is given by
Vo € RIM, Frang@)= [ T2 F(-y)gu)due.als) (226)

d+1
RY

Lemma 2.14 Let f,g € L}Ln(R‘ﬁl). We have
f *an § = %n(%n_lf *o '%n_lg)v

where for all 1 € LL(RE™), we have

Vo € REL oo (@)= 9t 0l) = [ T a(v)

Proposition 2.15 ([9]) (i) Let p,q,r € [1, +oo] such that %—I— % — 1 = 1. Then for all

fe Lg)n(R‘f’l) and g € L‘ém(R‘ﬁl), the function f %4, g € Lg,n(R‘iﬂ) and we have

I1f *an gllayn,r < I fllampllgllan.g- (2:27)
(ii) For all f,g € Li’n(Riﬂ), f*ang€ Lé’n(Riﬂ) and we have
T (f ramg) = FW (DTG (9): (2.28)

(iii) Let f,g € Lim(Riﬂ). Then, we have

/d |f *a,n g(x)|2d/ia7d(m)
RET!

+

= C2ona / o TR DOPIFG T (@) NP dbatan.a(), (2:29)
+

where both sides are finite or infinite.
Notation. We denote by ./, (resp., ., ,) the strong dual of the space Z (R (resp.,
S (RIT)).
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Definition 2.16 The generalized Fourier-Weinstein transform of a distribution u € .7 , is
defined by
Vo € LRI, (FH (), ¢) = (u, (F™") (). (2.30)

The following proposition is as an immediate consequence of Theorem 2.8.
Proposition 2.17 The transform fvav’d’" is a topological isomorphism from .7, , onto .7].
Lemma 2.18 ([9]) Let m € N and u € .7, .. We have
(Fw AT ] = (=)™ |2l (F ") (w), (231)

where
Vo € SR, (AT u, d) = (u, A" ¢). (2.32)

3. Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the

. o d
generalized Weinstein operator Ajy™".

Definition 3.1 Let s € R and p € [1,400]. We define the generalized Sobolev-Weinstein space
of order s, that will be denoted #.> (R{T), as the set of all u € ., , such that T () is

a,d,n n,*

[ e
R+

We provide the space W;,’g’n(Ri‘H) with the norm

a function and
F ™ () (€) Pdpiaran,a(€) < oo. (3.1)

1
P

93dd’n(u)(f)pdﬂa+2n,d(§) . (3.2)

.
lulbwzg, = [Caoana [, (4 eI
s @y R++l

For p = 2, we provide the %, (RT) := Ws’jn(RiH) with the inner product

a,d,n a,

()5, = Ciona [, 1+ WP Zi @O @ dhasznale) (33

and the norm

llwyoee ., = [C2ana / (1 JEI2) 175 () (©) Pt 2n.a(©)] (3.4)

d+1
RY

D=

We give the following properties of the spaces 7,7}, (RE).
Proposition 3.2 (i) Let 1 < p < 400 and s,t € R such that t > s. Then the space W;:g’n(R‘fl)
is continuously contained in ¥} | (Riﬂ).

(ii) Let s € R and 1 < p < 4+o00. The space #.>F (RiH) provided with the norm ||. ||, =»

a,d,n a,d,n

is a Banach space.
(iii) For all s € R and 1 < p < +o00, the space Z,(R4t1) is dense in #.>F (Rf‘l).

a,d,n

Proof (i) The result is immediately from the Definition 3.1.
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(ii) Let (fm)men be a Cauchy sequence of ”‘//oi’in(Riﬂ). From the definition of the norm
[z it s clear that (Z5""™(fin))men is a Cauchy sequence of L§7n7a(Ri+1) = LP(RYH, (1+
I€17) % dpatzn,a(@))-

Since L2, ,(R%M) is complete, there exists a function g € L2, ,(R4™) such that

s,n,x s,n,x

. a,d,n
Um [l (fm) — gHL?,n,a(Ri“) =0. (3.5)

m—+00
Then g € .7/ and f = (F3*") ") € S S0, FHI(f) =g € L§7n7a(Ri+1) which proves
that f € 7.7, (R and we have

2
P ,d,
||fm - f||“/ﬂcf;5m = o€+2n,d||§1(/xv n(fm) - g||L§,n,a(Ri+l) m—t)i-oo 0.

Hence, 7,07 (R%M) is complete.

(iii) We proceed as [10] to prove the result. O
(RETY) and 25 (R,

The following theorem gives a relation between the dual of JZ° odon

a,d,n

Theorem 3.3 The dual of g%{j’dm(Ri“) can be identified with ;5 (R%). The relation of

a,d,n

the identification is as follows

()0 = Clina [, F" O T 0) € s2,0(6 (36)

with u € <%’jj7d7n(R‘_i._+1) and v € S5 (RE).

a,d,n

Proof For all u € %ﬂoid’n(RiH) and v e 7 (R‘fl), we have

a,d,n

(, 0ol < Ty, Aol gy oe—s - (3.7)

a,d,n

Then, (u, v) = (u, v)() is a continuous bilinear form on

an(RED) X 5 (RE),

a,d,n a,d,n

Let v € ,%”afdsm(RiH). We consider the function ¢, : u + (u, v) ().
From the relation (3.7), we see that ¢, is a continuous linear form on J; d)n(IRff_H) and we

have

I @oll < lvll (1), s -
On the other hand for ug(\) = [Zy4" (1 + ||\[2) " F 55" (v))(A), we obtain

o € A (RED) and (uo, v}y = ol s -

Then ||¢,| = ||v|‘(1),3f;;n'
Let now v* € (jf;’dvn(Riﬂ))'. By the Riesz representation theorem and the relation (3.3),

one can see that there exists w € %ﬁd,n(Riﬂ), such that for all u € %ﬁd)n(Ri+l), we have

v*(u) = (u, w>(1)7%>s

a,d,n

= [ P ) O F ™ ) O ().

+
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We put
v(A) = [FTTHA A+ AP F " (w) (V).

Then, v € . (]Ri“) and we have

a,d,n
Vu € ‘%’;}id,n(Ri—H)v U*(u) = <u> U>(0)'

Hence the map v (., v)(q) is an isometry from 7 s (R™) into (£, (RTT)).

a,d,n

Thus the proof is completed. O

Proposition 3.4 For s > g+a+2n+ 1, the Hilbert space %ﬁd’n(Riﬂ) admits the reproducing

kernel
%S,d,n(x7y) = Ci+2n,d /RdH(l + ||§||2)75Aa,d,n(_$ag)Aa,d,n(yvf)dﬂa-&-?n,d(f)y (3.8)
¥

where C,, 4 is the constant given by the relation (2.12). That is
(i) For every y € R‘fﬁl, the distribution given by the function
d+1
x> B4 (2, y) belongs to %257(17"(R++ ).

ii) For every f € 2%, (R, we have
a,d,n\">+

vy € RE (f, 28 () yoes, = FY):

Proof (i) It is easy to see that
d
/d+1(1 + [|EI1P) " dptas2n,a(€) < +oo if and only if s > 5 ta+t 2n + 1. (3.9)
]R+

Then using the relation (2.7), we deduce that the function (x,y) +— Z%%"(z,vy) is well-defined.

Moreover for all y € R and s > ¢ + a +2n + 1, the function & — (1 + [[£]2)™*Aa,a,n (v, &)
belongs to Lé,n(Riﬂ) N Li,n(RiH). Then, from the relation (2.17), the function 2" : 2 —
B (x,y) belongs to L2 (R%T!) and we have

Ve e RE, Ft 2 (6) = (L4 €17 ™ Aasan (1, 6). (3.10)
Then

1255 vy s, < syt (3.11)

where for all s > % 4+ a+2n+ 1, we have

1
2

o = kole,d,n) = Cayana / (1+ €13 dptar2na(©)) (3.12)

d+1
RY

Hence for all y € RT™ and s > ¢ + a +2n+ 1, Z80" € A2, (RTT.
(ii) Let f € %S,d,n(R—di-+l) and y € R, Using the relations (3.3), (3.10) and (2.17), we

obtain
(f 28 (), = Catand /Rdﬂ F P () Aadan(—y, ) diaran.al€)
+

= f(y). O
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. dt1
4. Extremal functions on J7, (R{™)

The theory of reproducing kernels started with two papers of 1921 (see [11]) and 1922 (see [12])
which dealt with typical reproducing kernels of Szegd and Bergman and since then the theory
has been developed into a large and deep theory in complex analysis by many mathematicians.

In this section, using the theory of reproducing kernels, we study the extremal functions on the
Hilbert space 77, d,n(Ri+1)'

Definition 4.1 Let r > 0, H be a Hilbert space and .Z : jf(f’d,n(Riﬂ) — H be a bounded

linear operator. For all f,h € ﬁ’d,n(Riﬂ), we define the inner product in ﬁ@,n(Riﬂ) by

(il @, =rfhae:,, +{L5Lh)n. (4.1)
The norm associated with this inner product is given by
1Py, =l Ry e+ 1213 (4.2)
Lemma 4.2 The norms ||.|| (1), , and ||.|[(2),2: , —are equivalent.

Proof Let u € %ﬁd’n(Riﬂ). We have
Vilullay e, < o, . < V7 T2l e,

a,d,n o4

This clearly yields the result. O

d
Proposition 4.3 Let r > 0 and s > 3 + o+ 2n + 1. The space (€7 (Riﬂ), (@0, )

a,d,n

possesses a reproducing #%, satisfying the identity
Ry (y) = (rl + L L) R4 (Ly) (4.3)
where I = Id and £* : H — %ﬁd,n(Riﬂ) is the adjoint of £ given by
Vf € AL anRE), VR € H, (Lf M) = (f, L W) ) ez, -
Proof From [13], the space (J£7

a,d,n

(R‘fl), (., .>(2),ﬁj1d,n) has a reproducing kernel denoted by

7, and we have
f(y) = <fa %}T('a y)>(2)7%of‘d,n
= T<f7 %;T(w y))(l),ﬁf;’dm + <gf7 X%;T(7 y)>7—l
= <fv (TI + g*f)‘%gﬂr(a y)>(1)“7f;,d’"-
Then for all y € Riﬂ, we have
(rl + Z* )% (y) = B (). (4.4)
Thus the proof is completed. O
The following proposition summarizes some properties of the kernel 27"
Proposition 4.4 The kernel Z%, satisfies the following properties
(i) We have
s,T ks n
|25 (~7y)|\(1),yf;7dyn < 7y§+17 (4.5)
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where ks is the constant given by the relation (3.12).
(ii)) We have

S,7 kS n
L% ()|l < \/7273134-1- (4.6)

(iii) For all y € RE™, we have
12" 2HS e, < ot (4.7)
Proof Using the relation (3.11) and (4.4), for all y € RTM, we get
PR oy e+ 21 LRG B+ 1L LB )y e,
= ||=%?’d’n(-ay)||%1),yf(j) <k} yd+1

Then the assertions (i)—(iii) are an immediate consequence of the above result. O

The main result of this section can be stated as follows.
Theorem 4.5 Let s > % +a+2n+ 1. For all h € H and for all r > 0, the infimum

inf d+1y [ ”f” (1), Ea + ”h - gf”%—[] (48)
fer; 4., (RY

is attained by a unique function f: 5 given by
vy € RYY fin(y) = (0 LR (L y))n (4.9)

Moreover, the extremal function f;, satisfies the fo]lowmg inequality

vy € REL 1S5 )] < IAll2y3ts- (4.10)

\ﬁ

Proof The existence and unicity of extremal function f), represented by the relation (4.8) is
given by [13]. On the other hand from the relation (4.6), we get

vy € REL | FEn) < 1225 (y)llallmlla < O

k
—==hll2yat,
\/?” H?'lyd—i-l

d
Corollary 4.6 Let s > 2 +a+2n+1andr > 0. If £ is isometry (£*% =1d), then
(1) <., '>(2)7‘9/f:,d,,n = (7" + ].)<, '>(1)7‘}/f:,d,n'
(ii) For all z,y € R, we have Z% (x,y) = H_l,@o‘ dn(y).
(iii) For all h € H, we have Yy € R‘f‘l, finy) = L Z*h(y).

r+1
(iv) Forall f € A, (RT™), we have Vy € R1™, fr o (y) = 25 f ().

Corollary 4.7 Let s> ¢ +a+2n+1 and r > 0. Let f E%Sdn(RdH) and h=<f.
(i) For al]ye]R‘f‘l, we have f(y) = hm f w(Y)-

(i) We have Vy € RE™ |f(y) — f7u(y )| < ksl fll oz, vt
(iii) We have ¥y € R | £, (y)] < ksl fllqy,oez vt

Proof Let f € 5! dn(Rd'H) and h = Zf.
(i) From the relations (4.4) and (4.9), we get

vy e R frny) = (1L LAY (o). (4.11)

adn'
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Then, for all y € R‘fl, we obtain

Frn(y) = {F 280 (oy) =Ry (L v)) e, -
Hence
vy e R £ () = F) — (£ () e, (4.12)

and we have
lim f7,(y) = lim [f(y) = r(f, 2% (. 9))0e

r—0t "’ r—0+ od,n

| = fy)
(i) By invoking (4.5) and (4.12), for all y € RT™, we can write

[f@) = Fn@) =25 Gy, | <7l 27 Co)loe:, .,
< ks”f”(l),%;dmygil'

(iii) Using the relations (4.7) and (4.11), for all y € Ri“, we obtain

Fn ) < Wl , N2 225 o)l
< ksl flly,oe:, Vit O

Example 4.8 For all s > 0, the identity operator id : J2°

a,d,n

— L2 (R%™) is bounded and we
have
Vu € A5 00 (RET), [id(w)llain2 < llullay,;

a,d,n’
Its adjoint operator id* : L2, (RE) — <%”of7d7n(Ri+1) is given by
. 1% a,d,n\— —s gga,d,n
Yo e L7 (R, id"(v) = (F™") A+ [1€)7) 7" (v)].

On the other hand, the inner product associated with the operator id can be written

(0 2y, . = C2poma / 1+ (L €121 5" () () P ™ (0)(€) bt 2n.a(€)-

+

In this case, the Hilbert space ¢

%d’n(Riﬂ) admits the following reproducing kernel

Aadn(fx E)Aadn(y f)
ST — (2 &, ’ &, US| oo )
’%zd (I,y) Oa+2n,d /]ijl 1+T(1+ ”5”2)5 Ha+2 7d(§)

For all h e L2, (Riﬂ) and for all r > 0, the infimum

inf Iy e, 1P = e
fE%;)dm(Riﬂ)[ H H(l)"%ou,d,n ” H ) :2]

exists and it is attained by a unique function f, given by
Fin(y) = (A (0D | ey

= Clinna [, P O T T (D)6

Aa W=y, ga,d,n h
/d+1 = ( b.<) T ( )(f)dMaJrQn,d(g)'

L+r(L+&l?)°
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Moreover, the extremal function f;, satisfies the following inequality

k
d *
vy € R++17 |fr,h(y)| S \/%Hh”a,n,ﬂygip

where ks is the constant given by the relation (3.12).

Example 4.9 For m € LZ‘jn(Rfl), we define the multiplier operator .%,, by:
s a,d,ny— a,d,n
Yu € A2 4, (REY), Lou = (F50")  mFpt" (u).

For all s > 0, the operator %, is bounded from %57d7,L(Ri+1) into Li’n(Riﬂ). The inner

«

product associated with the operator %, is given by
(w,0)@) 00, =C2iana / M@ + (L4 €175 (w) () F ™" (0)(€)dttas2n,a(€)-
+

The Hilbert space 2, ,(R{™") admits the following reproducing kernel

s,7 A(x n(_x7§)Aadn(y7€)
R (w,y) = C2 0 / L - dfta+on,a(€)-
fm(x y) +2n,d ]Rf:rl T(]. + HE”Q)S I |m(£)|2 Ha+2 7d(§)

For all h e L2, (Riﬂ) and for all r > 0, the infimum

inf T f 2 s + h_gmf in
feaf;’dm(Riﬂ)[ I H(l)x%’a,m [ I5.n.2]

exists and it is attained by a unique function f, given by

frn(y) = <h7$m‘%2”;("y)>Liyn(Ri+l)

_ 2 / m(€)Aaan(~y, O Fiy" " (h)(€)
o Jarr eI € + Im@P

Moreover, the extremal function f, satisfies the following inequality

d,ufa—i-Qn,d(g)'

k
Yy € Rd+1, : < s h wn 2n ,
Yy + |f,h(y)| = \/?H || 5 »de+1
where k; is the constant given by the relation (3.12).
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