Journal of Mathematical Research with Applications May, 2022, Vol. 42, No. 3, pp. 247–260 DOI:10.3770/j.issn:2095-2651.2022.03.004 Http://jmre.dlut.edu.cn

New Sobolev-Weinstein Spaces and Applications

Hassen BEN MOHAMED*, Youssef BETTAIBI

Department of Mathematics, Faculty of Sciences, Gabes University, Tunisia

Abstract In this paper, we consider the generalized Weinstein operator $\Delta_W^{d,\alpha,n}$, we introduce new Sobolev-Weinstein spaces denoted $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$, $s \in \mathbb{R}$, associated with the generalized Weinstein operator and we investigate their properties. Next, as application, we study the extremal functions on the spaces $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ using the theory of reproducing kernels.

Keywords generalized Weinstein operator; generalized Weinstein transform; sobolev spaces; extremal functions; reproducing kernels

MR(2020) Subject Classification 32A50; 32B10; 46E35; 46F12; 43A32

1. Introduction

In this paper, we consider the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ defined on $\mathbb{R}^{d+1}_+ = \mathbb{R}^d \times [0, +\infty]$, by

$$\Delta_W^{\alpha,d,n} = \sum_{i=1}^{d+1} \frac{\partial^2}{\partial x_i^2} + \frac{2\alpha + 1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} - \frac{4n(\alpha + n)}{x_{d+1}^2} = \Delta_d + L_{\alpha,n}$$
(1.1)

where $n \in \mathbb{N}$, $\alpha > -\frac{1}{2}$, Δ_d is the Laplacian for the *d* first variables and $L_{\alpha,n}$ is the second-order singular differential operator on the half line given by

$$L_{\alpha,n} = \frac{\partial^2}{\partial x_{d+1}^2} + \frac{2\alpha + 1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} - \frac{4n(\alpha + n)}{x_{d+1}^2}.$$
 (1.2)

For n = 0, we regain the classical Weinstein operator $\Delta_W^{\alpha,d}$ given by

$$\Delta_W^{\alpha,d} = \sum_{i=1}^{d+1} \frac{\partial^2}{\partial x_i^2} + \frac{2\alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} = \Delta_d + L_\alpha, \qquad (1.3)$$

 $L_{\alpha} = L_{\alpha,0}$ is the Bessel operator [1–7].

The harmonic analysis associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ is studied by Aboulez, Achak, Daher and Loualid [8,9].

For all $f \in L^1(\mathbb{R}^{d+1}_+, \mathrm{d}\mu_{\alpha,d}(x))$, we define the Weinstein transform $\mathscr{F}^{\alpha,d,n}_W$ by

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}_+} f(x) \Lambda_{\alpha,d,n}(x,\lambda) \mathrm{d}\mu_{\alpha,d}(x)$$

Received August 1, 2021; Accepted December 23, 2021

Supported by Mathematics And Applications Laboratory, Faculty of Sciences, Gabes University, Tunisia. * Corresponding author

E-mail address: hassenbenmohamed@yahoo.fr (Hassen BEN MOHAMED)

Hassen BEN MOHAMED and Youssef BETTAIBI

where $\mu_{\alpha,d}$ is the measure defined on \mathbb{R}^{d+1}_+ by

$$\mathrm{d}\mu_{\alpha,d}(x) = x_{d+1}^{2\alpha+1} \mathrm{d}x \tag{1.4}$$

and $\Lambda_{\alpha,d,n}$ is the generalized Weinstein kernel given by

$$\forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha,d,n}(x,y) = x_{d+1}^{2n} e^{-i\langle x', y' \rangle} j_{\alpha+2n}(x_{d+1}y_{d+1}),$$

 $x = (x', x_{d+1}), x' = (x_1, x_2, \dots, x_d)$ and j_{α} is the normalized Bessel function of index α defined by

$$\forall \xi \in \mathbb{C}, \ j_{\alpha}(\xi) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+\alpha+1)} (\frac{\xi}{2})^{2n}.$$
(1.5)

We design by $\mathscr{S}_*(\mathbb{R}^{d+1})$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1} , even with respect to the last variable and $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ the subspace of $\mathscr{S}_*(\mathbb{R}^{d+1})$ consisting of functions f such that

$$\forall k \in \{1, \dots, 2n-1\}, \ \frac{\partial^k f}{\partial x_{d+1}^k}(x', 0) = f(x', 0) = 0.$$

For all $s \in \mathbb{R}$, we define the generalized Sobolev-Weinstein space $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ as the set of all $u \in \mathscr{S}'_{n,*}$ (the strong dual of the space $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$) such that $\mathscr{F}^{\alpha,d,n}_W(u)$ is a function and

$$\int_{\mathbb{R}^{d+1}_+} (1 + \|\xi\|^2)^s |\mathscr{F}^{\alpha,d,n}_W(u)(\xi)|^2 \mathrm{d}\mu_{\alpha+2n,d}(\xi) < \infty.$$

We investigate the properties of $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$. Using the theory of reproducing kernels, we study the extremal functions on the spaces $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$. The contents of the paper are as follows:

In the second section, we recapitulate some results related to the harmonic analysis associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ given by the relation (1.1).

The Section 3 is devoted to define and study the generalized Sobolev-Weinstein space $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$.

Finally, in the last section, as application, using the theory of reproducing kernels, we give good estimates of extremal functions on the spaces $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic analysis associated with the Generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ defined on \mathbb{R}^{d+1}_+ by the relation (1.1).

Notations. In what follows, we need the following notations

- $\mathscr{C}_*(\mathbb{R}^{d+1})$, the space of continuous functions on \mathbb{R}^{d+1} , even with respect to the last variable.
- $\mathscr{E}_*(\mathbb{R}^{d+1})$, the space of \mathscr{C}^{∞} -functions on \mathbb{R}^{d+1} , even with respect to the last variable.

• $\mathscr{S}_*(\mathbb{R}^{d+1})$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1} , even with respect to the last variable.

• $\mathscr{D}_*(\mathbb{R}^{d+1})$, the space of \mathscr{C}^{∞} -functions on \mathbb{R}^{d+1} which are of compact support, even with respect to the last variable.

• $\mathscr{H}_*(\mathbb{C}^{d+1})$, the space of entire functions on \mathbb{C}^{d+1} , even with respect to the last variable, rapidly decreasing and of exponential type.

• \mathcal{M}_n , the map defined by

$$\forall x \in \mathbb{R}^{d+1}_+, \ \mathscr{M}_n(f)(x) = x^{2n}_{d+1}f(x), \tag{2.1}$$

where $x = (x', x_{d+1})$ and $x' = (x_1, x_2, \dots, x_d)$.

• $L^p_{\alpha,n}(\mathbb{R}^{d+1}_+), 1 \leq p \leq +\infty$, the space of measurable functions on \mathbb{R}^{d+1}_+ such that

$$\|f\|_{\alpha,n,p} = \left[\int_{\mathbb{R}^{d+1}_+} |\mathscr{M}_n^{-1} f(x)|^p \mathrm{d}\mu_{\alpha+2n,d}(x)\right]^{\frac{1}{p}} < +\infty, \text{ if } 1 \le p < +\infty;$$
$$\|f\|_{\alpha,n,\infty} = \operatorname{ess}\sup_{x \in \mathbb{R}^{d+1}_+} |\mathscr{M}_n^{-1} f(x)| < +\infty,$$

where $\mu_{\alpha,d}$ is the measure given by the relation (1.4).

• $L^p_{\alpha}(\mathbb{R}^{d+1}_+) := L^p_{\alpha,0}(\mathbb{R}^{d+1}_+), \ 1 \le p \le +\infty, \ \text{and} \ \|f\|_{\alpha,p} := \|f\|_{\alpha,0,p}.$

• $\mathscr{E}_{n,*}(\mathbb{R}^{d+1})$, $\mathscr{D}_{n,*}(\mathbb{R}^{d+1})$ and $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, repespectively, stand for the subspace of $\mathscr{E}_*(\mathbb{R}^{d+1})$, $\mathscr{D}_*(\mathbb{R}^{d+1})$ and $\mathscr{S}_*(\mathbb{R}^{d+1})$ consisting of functions f such that

$$\forall k \in \{1, \dots, 2n-1\}, \ \frac{\partial^k f}{\partial x_{d+1}^k}(x', 0) = f(x', 0) = 0.$$

Let us begin by the following result.

Lemma 2.1 ([8,9]) (i) The map \mathcal{M}_n is an isomorphism from $\mathscr{E}_*(\mathbb{R}^{d+1})$ (resp., $\mathscr{S}_*(\mathbb{R}^{d+1})$) onto $\mathscr{E}_{n,*}(\mathbb{R}^{d+1})$ (resp., $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$).

(ii) For all $f \in \mathscr{E}_*(\mathbb{R}^{d+1})$, we have

$$L_{\alpha,n} \circ \mathscr{M}_n(f) = \mathscr{M}_n \circ L_{\alpha+2n}(f).$$
(2.2)

(iii) For all $f \in \mathscr{E}_*(\mathbb{R}^{d+1})$, we have

$$\Delta_W^{\alpha,d,n} \circ \mathscr{M}_n(f) = \mathscr{M}_n \circ \Delta_W^{\alpha+2n,d}(f).$$
(2.3)

(iv) For all $f \in \mathscr{E}_*(\mathbb{R}^{d+1})$ and $g \in \mathscr{D}_{n,*}(\mathbb{R}^{d+1})$, we have

$$\int_{\mathbb{R}^{d+1}_+} \Delta_W^{\alpha,d,n}(f)(x)g(x)\mathrm{d}\mu_{\alpha,d}(x) = \int_{\mathbb{R}^{d+1}_+} f(x)\Delta_W^{\alpha,d,n}g(x)\mathrm{d}\mu_{\alpha,d}(x).$$
(2.4)

Definition 2.2 The generalized Weinstein kernel $\Lambda_{\alpha,d,n}$ is the function given by

$$\forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha,d,n}(x,y) = x_{d+1}^{2n} e^{-i\langle x', y' \rangle} j_{\alpha+2n}(x_{d+1}y_{d+1}), \tag{2.5}$$

where $x = (x', x_{d+1})$, $x' = (x_1, x_2, ..., x_d)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel $\Lambda_{\alpha,d,n}$ satisfies the following properties.

Proposition 2.3 (i) We have

$$\forall x, y \in \mathbb{R}^{d+1}, \ \overline{\Lambda_{\alpha,d,n}(x,y)} = \Lambda_{\alpha,d,n}(x,-y) = \Lambda_{\alpha,d,n}(-x,y).$$
(2.6)

(ii) We have

$$\forall x, y \in \mathbb{R}^{d+1}_+, \ |\Lambda_{\alpha,d,n}(x,y)| \le x^{2n}_{d+1}.$$

$$(2.7)$$

(iii) The function $x \mapsto \Lambda_{\alpha,d,n}(x,y)$ satisfies the differential equation

$$\Delta_W^{\alpha,d,n}(\Lambda_{\alpha,d,n}(.,y))(x) = -\|y\|^2 \Lambda_{\alpha,d,n}(x,y).$$

$$(2.8)$$

(iv) For all $x, y \in \mathbb{C}^{d+1}$, we have

$$\Lambda_{\alpha,d,n}(x,y) = a_{\alpha+2n} e^{-i\langle x',y'\rangle} x_{d+1}^{2n} \int_0^1 (1-t^2)^{\alpha+2n-\frac{1}{2}} \cos(tx_{d+1}y_{d+1}) \mathrm{d}t,$$
(2.9)

where a_{α} is the constant given by

$$a_{\alpha} = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}.$$
(2.10)

Definition 2.4 The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha,d,n}$ is given for $f \in L^{1}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$ by

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}_+} f(x) \Lambda_{\alpha,d,n}(x,\lambda) \mathrm{d}\mu_{\alpha,d}(x), \tag{2.11}$$

where $\mu_{\alpha,d}$ is the measure on \mathbb{R}^{d+1}_+ given by the relation (1.4).

Example 2.5 Let $E_{t,n}$, t > 0, $n \in \mathbb{N}$, be the function defined by

$$\forall x \in \mathbb{R}^{d+1}, \ E_{t,n}(x) = C_{\alpha+2n,d} x_{d+1}^{2n} e^{-t ||x||^2},$$

where $C_{\alpha,d}$ is the constant given by

$$C_{\alpha,d} = \frac{1}{(2\pi)^{\frac{d}{2}} 2^{\alpha} \Gamma(\alpha+1)}.$$
(2.12)

Then the Weinstein transform $\mathscr{F}_{W}^{\alpha,d,n}$ of $E_{t,n}$ is given by

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(E_{t,n})(\lambda) = \frac{1}{(2t)^{\alpha+2n+\frac{d}{2}+1}} e^{-\frac{\|\lambda\|^2}{4t}}.$$

Remark 2.6 The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha,d,n}$ can be written in the form:

$$\mathscr{F}_W^{\alpha,d,n} = \mathscr{F}_W^{\alpha+2n,d} \circ \mathscr{M}_n^{-1}, \tag{2.13}$$

where $\mathscr{F}_W^{\alpha,d}=\mathscr{F}_W^{\alpha,d,0}$ is the classical Weinstein transform.

Some basic properties of the transform $\mathscr{F}_W^{\alpha,d,n}$ are summarized in the following results.

Proposition 2.7 ([9]) (i) For all $f \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$, we have

$$\|\mathscr{F}_{W}^{\alpha,d,n}(f)\|_{\alpha,n,\infty} \le \|f\|_{\alpha,n,1}.$$
(2.14)

(ii) Let $m \in \mathbb{N}$ and $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$. We have

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W[(\Delta^{\alpha,d,n}_W)^m f](\lambda) = (-1)^m \|\lambda\|^{2m} \mathscr{F}^{\alpha,d,n}_W(f)(\lambda).$$
(2.15)

(iii) Let $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ and $m \in \mathbb{N}$. For all $\lambda \in \mathbb{R}^{d+1}_+$, we have

$$(\triangle_W^{\alpha,d,n})^m[\mathscr{M}_n\mathscr{F}_W^{\alpha,d,n}(f)](\lambda) = \mathscr{M}_n\mathscr{F}_W^{\alpha,d,n}(P_mf)(\lambda),$$
(2.16)

where $P_m(\lambda) = (-1)^m \|\lambda\|^{2m}$.

Theorem 2.8 ([9]) (i) Let $f \in L^{1}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$. If $\mathscr{F}^{\alpha,d,n}_{W}(f) \in L^{1}_{\alpha+2n}(\mathbb{R}^{d+1}_{+})$, then we have

$$f(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \mathscr{F}_W^{\alpha,d,n}(f)(y) \Lambda_{\alpha,d,n}(-x,y) \mathrm{d}\mu_{\alpha+2n,d}(y), \text{ a.e., } x \in \mathbb{R}^{d+1}_+,$$
(2.17)

where $C_{\alpha,d}$ is the constant given by the relation (2.12).

(ii) The Weinstein transform $\mathscr{F}_{W}^{\alpha,d,n}$ is a topological isomorphism from $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ onto $\mathscr{S}_{*}(\mathbb{R}^{d+1})$ and from $\mathscr{D}_{n,*}(\mathbb{R}^{d+1})$ onto $\mathscr{H}_{*}(\mathbb{C}^{d+1})$.

The following Theorem is as an immediate consequence of the relation (2.13) and the properties of the transform $\mathscr{F}_{W}^{\alpha,d}$ (see [1–4]).

Theorem 2.9 (i) For all $f, g \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, we have the following Parseval formula

$$\int_{\mathbb{R}^{d+1}_+} f(x)\overline{g(x)} d\mu_{\alpha,d}(x) = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} \mathscr{F}^{\alpha,d,n}_W(f)(\lambda) \overline{\mathscr{F}^{\alpha,d,n}_W(g)(\lambda)} d\mu_{\alpha+2n,d}(\lambda).$$
(2.18)

(ii) (Plancherel formula) For all $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, we have

$$\int_{\mathbb{R}^{d+1}_+} |f(x)|^2 \mathrm{d}\mu_{\alpha,d}(x) = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} |\mathscr{F}^{\alpha,d,n}_W(f)(\lambda)|^2 \mathrm{d}\mu_{\alpha+2n,d}(\lambda).$$
(2.19)

(iii) (Plancherel Theorem) The transform $\mathscr{F}_{W}^{\alpha,d,n}$ extends uniquely to an isometric isomorphism from $L^2(\mathbb{R}^{d+1}_+, \ d\mu_{\alpha,d}(x))$ onto $L^2(\mathbb{R}^{d+1}_+, \ C^2_{\alpha+2n,d}d\mu_{\alpha+2n,d}(x))$.

Definition 2.10 The translation operator $T_x^{\alpha,d,n}$, $x \in \mathbb{R}^{d+1}_+$, associated with the operator $\Delta_W^{\alpha,d,n}$ is defined on $\mathscr{E}_{n,*}(\mathbb{R}^{d+1}_+)$ by

$$\forall y \in \mathbb{R}^{d+1}_+, \ T^{\alpha,d,n}_x f(y) = x^{2n}_{d+1} y^{2n}_{d+1} T^{\alpha+2n,d}_x \mathscr{M}^{-1}_n f(y),$$
(2.20)

where

$$T_x^{\alpha,d} f(y) = \frac{a_\alpha}{2} \int_0^\pi f(x'+y', \sqrt{x_{d+1}^2 + y_{d+1}^2 + 2x_{d+1}y_{d+1}\cos\theta}) (\sin\theta)^{2\alpha} \mathrm{d}\theta,$$
(2.21)

 $x' + y' = (x_1 + y_1, \dots, x_d + y_d)$ and a_{α} is the constant given by (2.10).

We need the following Lemmas.

Example 2.11 Let $\phi_{t,n}$, t > 0, be the function defined by

$$\forall x \in \mathbb{R}^{d+1}_+, \ \phi_{t,n}(x) = \frac{x_{d+1}^{2n}}{(2t)^{\alpha+2n+\frac{d}{2}+1}} e^{-\frac{\|x\|^2}{4t}}.$$

For all $x, y \in \mathbb{R}^{d+1}_+$, we have

$$T_x^{\alpha,d,n}(\phi_{t,n})(y) = \frac{x_{d+1}^{2n}y_{d+1}^{2n}}{(2t)^{\alpha+2n+\frac{d}{2}+.1}}e^{-\frac{\|x\|^2+\|y\|^2}{4t}}\Lambda_{\alpha+2n,d}(x,-i\frac{y}{2t}).$$

The following proposition summarizes some properties of the generalized Weinstein translation operator.

Proposition 2.12 (i) For $f \in \mathscr{E}_{n,*}(\mathbb{R}^{d+1})$, we have

$$\forall x, y \in \mathbb{R}^{d+1}_+, T^{\alpha,d,n}_x f(y) = T^{\alpha,d,n}_y f(x)$$

Hassen BEN MOHAMED and Youssef BETTAIBI

(ii) For all $f \in \mathscr{E}_{n,*}(\mathbb{R}^{d+1})$ and $y \in \mathbb{R}^{d+1}_+$, the function $x \mapsto T^{\alpha,d,n}_x f(y)$ belongs to $\mathscr{E}_{n,*}(\mathbb{R}^{d+1})$. (iii) Let $f \in L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$, $1 \le p \le +\infty$ and $x \in \mathbb{R}^{d+1}_+$. Then $T^{\alpha,d,n}_x f$ belongs to $L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$. and we have

$$\|T_x^{\alpha,d,n}f\|_{\alpha,n,p} \le x_{d+1}^{2n} \|f\|_{\alpha,n,p}.$$
(2.22)

(iv) The function $t \mapsto \Lambda_{\alpha,d,n}(t,\lambda), \lambda \in \mathbb{C}^{d+1}$, satisfies on \mathbb{R}^{d+1}_+ the following product formula

$$\forall x, y \in \mathbb{R}^{d+1}_+, \ \Lambda_{\alpha,d,n}(x,\lambda)\Lambda_{\alpha,d,n}(y,\lambda) = T^{\alpha,d,n}_x[\Lambda_{\alpha,d,n}(.,\lambda)](y).$$
(2.23)

(v) Let $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ and $x \in \mathbb{R}^{d+1}_+$. We have

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(T^{\alpha,d,n}_x f)(\lambda) = \Lambda_{\alpha,d,n}(-x,\lambda)\mathscr{F}^{\alpha,d,n}_W(f)(\lambda).$$
(2.24)

(vi) Let $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$. For all $x, y \in \mathbb{R}^{d+1}_+$, we have

$$T_x^{\alpha,d,n}f(y) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \Lambda_{\alpha,d,n}(-x,\lambda)\Lambda_{\alpha,d,n}(-y,\lambda)\mathscr{F}_W^{\alpha,d,n}(f)(\lambda)\mathrm{d}\mu_{\alpha+2n,d}(\lambda).$$
(2.25)

Proof The results can be obtained by a simple calculation by using the relation (2.20). \Box

Definition 2.13 Let $f, g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$. The generalized Weinstein convolution product of fand g is given by

$$\forall x \in \mathbb{R}^{d+1}_+, \ f *_{\alpha,n} g(x) = \int_{\mathbb{R}^{d+1}_+} T^{\alpha,d,n}_x f(-y) g(y) \mathrm{d}\mu_{\alpha,d}(y).$$
(2.26)

Lemma 2.14 Let $f, g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$. We have

$$f *_{\alpha,n} g = \mathscr{M}_n(\mathscr{M}_n^{-1}f *_\alpha \mathscr{M}_n^{-1}g),$$

where for all $\varphi, \psi \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$, we have

$$\forall x \in \mathbb{R}^{d+1}_+, \ \varphi \ast_{\alpha} \psi(x) := \varphi \ast_{\alpha,0} \psi(x) = \int_{\mathbb{R}^{d+1}_+} T^{\alpha,d}_x \varphi(-y) \psi(y) \mathrm{d}\mu_{\alpha,d}(y).$$

Proposition 2.15 ([9]) (i) Let $p, q, r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} = 1$. Then for all $f \in L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and $g \in L^q_{\alpha,n}(\mathbb{R}^{d+1}_+)$, the function $f *_{\alpha,n} g \in L^r_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$|f *_{\alpha,n} g||_{\alpha,n,r} \le ||f||_{\alpha,n,p} ||g||_{\alpha,n,q}.$$
(2.27)

(ii) For all $f, g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$, $f *_{\alpha,n} g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\mathcal{F}_{W}^{\alpha,d,n}(f*_{\alpha,n}g) = \mathscr{F}_{W}^{\alpha,d,n}(f)\mathscr{F}_{W}^{\alpha,d,n}(g).$$
(2.28)

(iii) Let $f, g \in L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Then, we have

$$\int_{\mathbb{R}^{d+1}_{+}} |f *_{\alpha,n} g(x)|^{2} \mathrm{d}\mu_{\alpha,d}(x)
= C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} |\mathscr{F}^{\alpha,d,n}_{W}(f)(\lambda)|^{2} |\mathscr{F}^{\alpha,d,n}_{W}(g)(\lambda)|^{2} \mathrm{d}\mu_{\alpha+2n,d}(\lambda),$$
(2.29)

where both sides are finite or infinite.

Notation. We denote by \mathscr{S}'_* , (resp., $\mathscr{S}'_{n,*}$) the strong dual of the space $\mathscr{S}_*(\mathbb{R}^{d+1})$, (resp., $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})).$

Definition 2.16 The generalized Fourier-Weinstein transform of a distribution $u \in \mathscr{S}'_{n,*}$ is defined by

$$\forall \phi \in \mathscr{S}_*(\mathbb{R}^{d+1}), \ \langle \mathscr{F}_W^{\alpha,d,n}(u), \ \phi \rangle = \langle u, (\mathscr{F}_W^{\alpha,d,n})^{-1}(\phi) \rangle.$$
(2.30)

The following proposition is as an immediate consequence of Theorem 2.8.

Proposition 2.17 The transform $\mathscr{F}_{W}^{\alpha,d,n}$ is a topological isomorphism from $\mathscr{S}'_{n,*}$ onto \mathscr{S}'_{*} .

Lemma 2.18 ([9]) Let $m \in \mathbb{N}$ and $u \in \mathscr{S}'_{n,*}$. We have

$$(\mathscr{F}_{W}^{\alpha,d,n})[(\Delta_{W}^{\alpha,d,n})^{m}u] = (-1)^{m} \|x\|^{2m} (\mathscr{F}_{W}^{\alpha,d,n})(u),$$
(2.31)

where

$$\forall \phi \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1}), \ \langle \Delta_W^{\alpha,d,n} u, \phi \rangle = \langle u, \Delta_W^{\alpha,d,n} \phi \rangle.$$
(2.32)

3. Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$.

Definition 3.1 Let $s \in \mathbb{R}$ and $p \in [1, +\infty]$. We define the generalized Sobolev-Weinstein space of order s, that will be denoted $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$, as the set of all $u \in \mathscr{S}'_{n,*}$ such that $\mathscr{F}^{\alpha,d,n}_W(u)$ is a function and

$$\int_{\mathbb{R}^{d+1}_+} (1 + \|\xi\|^2)^{\frac{sp}{2}} |\mathscr{F}_W^{\alpha,d,n}(u)(\xi)|^p \mathrm{d}\mu_{\alpha+2n,d}(\xi) < \infty.$$
(3.1)

We provide the space $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ with the norm

$$\|u\|_{\mathscr{W}^{s,p}_{\alpha,d,n}} = \left[C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} (1+\|\xi\|^{2})^{\frac{sp}{2}} |\mathscr{F}^{\alpha,d,n}_{W}(u)(\xi)^{p} \mathrm{d}\mu_{\alpha+2n,d}(\xi)\right]^{\frac{1}{p}}.$$
(3.2)

For p = 2, we provide the $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}) := \mathscr{W}^{s,2}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ with the inner product

$$\langle u, v \rangle_{(1), \mathscr{H}^{s}_{\alpha, d, n}} = C^{2}_{\alpha + 2n, d} \int_{\mathbb{R}^{d+1}_{+}} (1 + \|\xi\|^{2})^{s} \mathscr{F}^{\alpha, d, n}_{W}(u)(\xi) \overline{\mathscr{F}^{\alpha, d, n}_{W}(v)(\xi)} d\mu_{\alpha + 2n, d}(\xi)$$
(3.3)

and the norm

$$\|u\|_{(1),\mathscr{H}^{s}_{\alpha,d,n}} = \left[C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} (1+\|\xi\|^{2})^{s} |\mathscr{F}^{\alpha,d}_{W}(u)(\xi)|^{2} \mathrm{d}\mu_{\alpha+2n,d}(\xi)\right]^{\frac{1}{2}}.$$
(3.4)

We give the following properties of the spaces $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$.

Proposition 3.2 (i) Let $1 \leq p < +\infty$ and $s, t \in \mathbb{R}$ such that t > s. Then the space $\mathscr{W}^{t,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ is continuously contained in $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$.

(ii) Let $s \in \mathbb{R}$ and $1 \leq p < +\infty$. The space $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ provided with the norm $\|.\|_{\mathscr{W}^{s,p}_{\alpha,d,n}}$ is a Banach space.

(iii) For all $s \in \mathbb{R}$ and $1 \le p < +\infty$, the space $\mathscr{D}_*(\mathbb{R}^{d+1})$ is dense in $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$.

Proof (i) The result is immediately from the Definition 3.1.

(ii) Let $(f_m)_{m\in\mathbb{N}}$ be a Cauchy sequence of $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$. From the definition of the norm $\|.\|_{\mathscr{W}^{s,p}_{\alpha,d,n}}$, it is clear that $(\mathscr{F}^{\alpha,d,n}_W(f_m))_{m\in\mathbb{N}}$ is a Cauchy sequence of $L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+) := L^p(\mathbb{R}^{d+1}_+, (1+\|\xi\|^2)^{\frac{sp}{2}}d\mu_{\alpha+2n,d}(x)).$

Since $L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+)$ is complete, there exists a function $g \in L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+)$ such that

$$\lim_{m \to +\infty} \|\mathscr{F}_W^{\alpha,d,n}(f_m) - g\|_{L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+)} = 0.$$
(3.5)

Then $g \in \mathscr{S}'_*$ and $f = (\mathscr{F}^{\alpha,d,n}_W)^{-1}(g) \in \mathscr{S}'_{n,*}$. So, $\mathscr{F}^{\alpha,d,n}_W(f) = g \in L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+)$ which proves that $f \in \mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\|f_m - f\|_{\mathscr{W}^{s,p}_{\alpha,d,n}} = C^{\frac{2}{p}}_{\alpha+2n,d} \|\mathscr{F}^{\alpha,d,n}_W(f_m) - g\|_{L^p_{s,n,\alpha}(\mathbb{R}^{d+1}_+)} \xrightarrow[m \to +\infty]{} 0$$

Hence, $\mathscr{W}^{s,p}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ is complete.

(iii) We proceed as [10] to prove the result. \square

The following theorem gives a relation between the dual of $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ and $\mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$.

Theorem 3.3 The dual of $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ can be identified with $\mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$. The relation of the identification is as follows

$$\langle u, v \rangle_{(0)} = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} \mathscr{F}^{\alpha,d,n}_W(u)(\xi) \overline{\mathscr{F}^{\alpha,d,n}_W(v)(\xi)} d\mu_{\alpha+2n,d}(\xi)$$
(3.6)

with $u \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ and $v \in \mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$.

Proof For all $u \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ and $v \in \mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$, we have

$$|\langle u, v \rangle_{(0)}| \le ||u||_{(1),\mathscr{H}^{s}_{\alpha,d,n}} ||v||_{(1),\mathscr{H}^{-s}_{\alpha,d,n}}.$$
(3.7)

Then, $(u, v) \mapsto \langle u, v \rangle_{(0)}$ is a continuous bilinear form on

$$\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}) \times \mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}).$$

Let $v \in \mathscr{H}_{\alpha,d,n}^{-s}(\mathbb{R}^{d+1}_+)$. We consider the function $\phi_v : u \mapsto \langle u, v \rangle_{(0)}$.

From the relation (3.7), we see that ϕ_v is a continuous linear form on $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\|\phi_v\| \le \|v\|_{(1),\mathscr{H}^{-s}_{\alpha,d,n}}$$

On the other hand for $u_0(\lambda) = [\mathscr{F}_W^{\alpha,d,n}]^{-1}((1+\|\lambda\|^2)^{-s}\mathscr{F}_W^{\alpha,d,n}(v))(\lambda)$, we obtain

$$u_0 \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+) \text{ and } \langle u_0, v \rangle_{(0)} = \|v\|^2_{(1),\mathscr{H}^{-s}_{\alpha,d,n}}$$

Then $\|\phi_v\| = \|v\|_{(1),\mathscr{H}^{-s}_{\alpha,d,n}}.$

Let now $v^* \in (\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+))'$. By the Riesz representation theorem and the relation (3.3), one can see that there exists $w \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$, such that for all $u \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$, we have

$$v^*(u) = \langle u, w \rangle_{(1), \mathscr{H}^s_{\alpha, d, n}}$$

= $\int_{\mathbb{R}^{d+1}_+} (1 + \|\lambda\|^2)^s \mathscr{F}^{\alpha, d, n}_W(w)(\lambda) \overline{\mathscr{F}^{\alpha, d, n}_W(u)(\lambda)} d\mu_{\alpha, d}(\lambda).$

We put

$$v(\lambda) = [\mathscr{F}_W^{\alpha,d,n}]^{-1}((1+\|\lambda\|^2)^s \mathscr{F}_W^{\alpha,d,n}(w)(\lambda))$$

Then, $v \in \mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\forall u \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+), \ v^*(u) = \langle u, \ v \rangle_{(0)}.$$

Hence the map $v \mapsto \langle ., v \rangle_{(0)}$ is an isometry from $\mathscr{H}^{-s}_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ into $(\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_+))'$.

Thus the proof is completed. \square

Proposition 3.4 For $s > \frac{d}{2} + \alpha + 2n + 1$, the Hilbert space $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ admits the reproducing kernel

$$\mathscr{R}_{s}^{\alpha,d,n}(x,y) = C_{\alpha+2n,d}^{2} \int_{\mathbb{R}^{d+1}_{+}} (1 + \|\xi\|^{2})^{-s} \Lambda_{\alpha,d,n}(-x,\xi) \Lambda_{\alpha,d,n}(y,\xi) \mathrm{d}\mu_{\alpha+2n,d}(\xi),$$
(3.8)

where $C_{\alpha,d}$ is the constant given by the relation (2.12). That is

(i) For every $y \in \mathbb{R}^{d+1}_+$, the distribution given by the function

 $x\mapsto \mathscr{R}^{\alpha,d,n}_s(x,y) \text{ belongs to } \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+).$

(ii) For every $f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$, we have

$$\forall y \in \mathbb{R}^{d+1}_+, \ \langle f, \ \mathscr{R}^{\alpha,d,n}_s(.,y) \rangle_{(1),\mathscr{H}^s_{\alpha,d,n}} = f(y).$$

Proof (i) It is easy to see that

$$\int_{\mathbb{R}^{d+1}_+} (1+\|\xi\|^2)^{-s} \mathrm{d}\mu_{\alpha+2n,d}(\xi) < +\infty \text{ if and only if } s > \frac{d}{2} + \alpha + 2n + 1.$$
(3.9)

Then using the relation (2.7), we deduce that the function $(x, y) \mapsto \mathscr{R}^{\alpha, d, n}_{s}(x, y)$ is well-defined.

Moreover for all $y \in \mathbb{R}^{d+1}_+$ and $s > \frac{d}{2} + \alpha + 2n + 1$, the function $\xi \mapsto (1 + \|\xi\|^2)^{-s} \Lambda_{\alpha,d,n}(y,\xi)$ belongs to $L^1_{\alpha,n}(\mathbb{R}^{d+1}_+) \cap L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Then, from the relation (2.17), the function $\mathscr{R}^{\alpha,d,n}_{s,y}: x \mapsto \mathbb{R}^{d+1}_{s,y}$ $\mathscr{R}^{\alpha,d,n}_{s}(x,y)$ belongs to $L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})$ and we have

$$\forall \xi \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W[\mathscr{R}^{\alpha,d,n}_{s,y}](\xi) = (1 + \|\xi\|^2)^{-s} \Lambda_{\alpha,d,n}(y,\xi).$$
(3.10)

Then

$$\|\mathscr{R}^{\alpha,d,n}_{s,y}\|_{(1),\mathscr{R}^{s}_{\alpha,d,n}} \le k_{s} y^{2n}_{d+1},$$
(3.11)

where for all $s > \frac{d}{2} + \alpha + 2n + 1$, we have

$$k_s = k_s(\alpha, d, n) = C_{\alpha+2n, d} \left(\int_{\mathbb{R}^{d+1}_+} (1 + \|\xi\|^2)^{-s} \mathrm{d}\mu_{\alpha+2n, d}(\xi) \right)^{\frac{1}{2}}.$$
 (3.12)

Hence for all $y \in \mathbb{R}^{d+1}_+$ and $s > \frac{d}{2} + \alpha + 2n + 1$, $\mathscr{R}^{\alpha,d,n}_{s,y} \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$. (ii) Let $f \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ and $y \in \mathbb{R}^{d+1}_+$. Using the relations (3.3), (3.10) and (2.17), we obtain

$$\langle f, \mathscr{R}_{s}^{\alpha,d,n}(.,y) \rangle_{(1),\mathscr{H}_{\alpha,d,n}^{s}} = C_{\alpha+2n,d}^{2} \int_{\mathbb{R}^{d+1}_{+}} \mathscr{F}_{W}^{\alpha,d,n}(f)(\xi) \Lambda_{\alpha,d,n}(-y,\xi) \mathrm{d}\mu_{\alpha+2n,d}(\xi)$$
$$= f(y). \quad \Box$$

4. Extremal functions on $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$

The theory of reproducing kernels started with two papers of 1921 (see [11]) and 1922 (see [12]) which dealt with typical reproducing kernels of Szegö and Bergman and since then the theory has been developed into a large and deep theory in complex analysis by many mathematicians. In this section, using the theory of reproducing kernels, we study the extremal functions on the Hilbert space $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$.

Definition 4.1 Let r > 0, \mathcal{H} be a Hilbert space and $\mathscr{L} : \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}) \to \mathcal{H}$ be a bounded linear operator. For all $f, h \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$, we define the inner product in $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ by

$$\langle f,h\rangle_{(2),\mathscr{H}^{s}_{\alpha,d,n}} = r\langle f,h\rangle_{(1),\mathscr{H}^{s}_{\alpha,d,n}} + \langle \mathscr{L}f,\mathscr{L}h\rangle_{\mathcal{H}}.$$
(4.1)

The norm associated with this inner product is given by

$$\|f\|_{(2),\mathscr{H}^{s}_{\alpha,d,n}}^{2} = r\|f\|_{(1),\mathscr{H}^{s}_{\alpha,d,n}}^{2} + \|\mathscr{L}f\|_{\mathcal{H}}^{2}.$$
(4.2)

Lemma 4.2 The norms $\|.\|_{(1),\mathscr{H}^s_{\alpha,d,n}}$ and $\|.\|_{(2),\mathscr{H}^s_{\alpha,d,n}}$ are equivalent.

Proof Let $u \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$. We have

$$\sqrt{r} \|u\|_{(1),\mathscr{H}^s_{\alpha,d,n}} \le \|u\|_{(2),\mathscr{H}^s_{\alpha,d,n}} \le \sqrt{r + \|\mathscr{L}\|^2} \|u\|_{(1),\mathscr{H}^s_{\alpha,d,n}}$$

This clearly yields the result. \square

Proposition 4.3 Let r > 0 and $s > \frac{d}{2} + \alpha + 2n + 1$. The space $(\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}), \langle ., . \rangle_{(2)}, \mathscr{H}^{s}_{\alpha,d,n})$ possesses a reproducing $\mathscr{R}^{s,r}_{\mathscr{L}}$ satisfying the identity

$$\mathscr{R}^{s,r}_{\mathscr{L}}(.,y) = (rI + \mathscr{L}^*\mathscr{L})^{-1}\mathscr{R}^{\alpha,d,n}_s(.,y)$$
(4.3)

where I = Id and $\mathscr{L}^* : \mathcal{H} \to \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ is the adjoint of \mathscr{L} given by

$$\forall f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}), \forall h \in \mathcal{H}, \ \langle \mathscr{L}f,h \rangle_{\mathcal{H}} = \langle f, \mathscr{L}^{*}h \rangle_{(1),\mathscr{H}^{s}_{\alpha,d,n}}.$$

Proof From [13], the space $(\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}), \langle ., . \rangle_{(2),\mathscr{H}^{s}_{\alpha,d,n}})$ has a reproducing kernel denoted by $\mathscr{R}^{s,r}_{\mathscr{L}}$ and we have

$$\begin{split} f(y) &= \langle f, \mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(2),\mathscr{H}^{s}_{\alpha,d,n}} \\ &= r \langle f, \mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(1),\mathscr{H}^{s}_{\alpha,d,n}} + \langle \mathscr{L}f, \mathscr{L}\mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{\mathcal{H}} \\ &= \langle f, (rI + \mathscr{L}^{*}\mathscr{L}) \mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(1),\mathscr{H}^{s}_{\alpha,d,n}}. \end{split}$$

Then for all $y \in \mathbb{R}^{d+1}_+$, we have

$$(rI + \mathscr{L}^*\mathscr{L})\mathscr{R}^{s,r}_{\mathscr{L}}(.,y) = \mathscr{R}^{\alpha,d,n}_s(.,y).$$

$$(4.4)$$

Thus the proof is completed. \square

The following proposition summarizes some properties of the kernel $\mathscr{R}^{s,r}_{\mathscr{L}}$.

Proposition 4.4 The kernel $\mathscr{R}_{\mathscr{L}}^{s,r}$ satisfies the following properties

(i) We have

$$\|\mathscr{R}_{\mathscr{L}}^{s,r}(.,y)\|_{(1),\mathscr{H}^{s}_{\alpha,d,n}} \le \frac{k_{s}}{r} y_{d+1}^{2n}, \tag{4.5}$$

where k_s is the constant given by the relation (3.12).

(ii) We have

$$\|\mathscr{LR}^{s,r}_{\mathscr{L}}(.,y)\|_{\mathcal{H}} \le \frac{k_s}{\sqrt{2r}} y_{d+1}^{2n}.$$
(4.6)

(iii) For all $y \in \mathbb{R}^{d+1}_+$, we have

$$\|\mathscr{L}^*\mathscr{L}\mathscr{R}^{s,r}_{\mathscr{L}}(.,y)\|_{(1),\mathscr{H}^s_{\alpha,d,n}} \le k_s y_{d+1}^{2n}.$$
(4.7)

Proof Using the relation (3.11) and (4.4), for all $y \in \mathbb{R}^{d+1}_+$, we get

$$r^{2} \|\mathscr{R}_{\mathscr{L}}^{s,r}(.,y)\|_{(1),\mathscr{H}_{\alpha,d,n}^{s}}^{2} + 2r \|\mathscr{L}\mathscr{R}_{\mathscr{L}}^{s,r}(.,y)\|_{\mathcal{H}}^{2} + \|\mathscr{L}^{*}\mathscr{L}\mathscr{R}_{\mathscr{L}}^{s,r}(.,y)\|_{(1),\mathscr{H}_{\alpha,d,r}^{s}}^{2}$$
$$= \|\mathscr{R}_{s}^{\alpha,d,n}(.,y)\|_{(1),\mathscr{H}_{\alpha,d,n}^{s}}^{2} \leq k_{s}^{2}y_{d+1}^{4n}.$$

Then the assertions (i)–(iii) are an immediate consequence of the above result. \Box

The main result of this section can be stated as follows.

Theorem 4.5 Let $s > \frac{d}{2} + \alpha + 2n + 1$. For all $h \in \mathcal{H}$ and for all r > 0, the infimum

$$\inf_{f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})} [r \| f \|^{2}_{(1),\mathscr{H}^{s}_{\alpha,d,n}} + \| h - \mathscr{L}f \|^{2}_{\mathcal{H}}]$$
(4.8)

is attained by a unique function $f_{r,h}^*$ given by

$$\forall y \in \mathbb{R}^{d+1}_+, \ f^*_{r,h}(y) = \langle h, \mathscr{LR}^{s,r}_{\mathscr{L}}(.,y) \rangle_{\mathcal{H}}.$$
(4.9)

Moreover, the extremal function $f_{r,h}^*$ satisfies the following inequality

$$\forall y \in \mathbb{R}^{d+1}_+, |f^*_{r,h}(y)| \le \frac{k_s}{\sqrt{2r}} \|h\|_{\mathcal{H}} y^{2n}_{d+1}.$$
(4.10)

Proof The existence and unicity of extremal function $f_{r,h}^*$ represented by the relation (4.8) is given by [13]. On the other hand from the relation (4.6), we get

$$\forall y \in \mathbb{R}^{d+1}_+, | f^*_{r,h}(y)| \le \|\mathscr{LR}^{s,r}_{\mathscr{L}}(.,y)\|_{\mathcal{H}} \|h\|_{\mathcal{H}} \le \frac{k_s}{\sqrt{2r}} \|h\|_{\mathcal{H}} y^{2n}_{d+1}. \quad \Box$$

Corollary 4.6 Let $s > \frac{d}{2} + \alpha + 2n + 1$ and r > 0. If \mathscr{L} is isometry ($\mathscr{L}^*\mathscr{L} = \mathrm{Id}$), then (i) $\langle ., . \rangle_{(2)}, \mathscr{H}^s_{\alpha,d,n} = (r+1) \langle ., . \rangle_{(1)}, \mathscr{H}^s_{\alpha,d,n}$. (ii) For all $x, y \in \mathbb{R}^{d+1}_+$, we have $\mathscr{H}^{s,r}_{x}(x,y) = \frac{1}{r+1} \mathscr{H}^{\alpha,d,n}_{s}(.,y)$.

- (iii) For all $h \in \mathcal{H}$, we have $\forall y \in \mathbb{R}^{d+1}_+$, $f^*_{r,h}(y) = \frac{1}{r+1}\mathscr{L}^*h(y)$. (iv) For all $f \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$, we have $\forall y \in \mathbb{R}^{d+1}_+$, $f^*_{r,\mathscr{L}f}(y) = \frac{1}{r+1}f(y)$.

Corollary 4.7 Let $s > \frac{d}{2} + \alpha + 2n + 1$ and r > 0. Let $f \in \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ and $h = \mathscr{L}f$.

- (i) For all $y \in \mathbb{R}^{d+1}_+$, we have $f(y) = \lim_{r \to 0^+} f^*_{r,h}(y)$. (ii) We have $\forall y \in \mathbb{R}^{d+1}_+, |f(y) f^*_{r,h}(y)| \le k_s ||f||_{(1),\mathscr{H}^s_{\alpha,d,n}} y^{2n}_{d+1}$. (iii) We have $\forall y \in \mathbb{R}^{d+1}_+, |f^*_{r,h}(y)| \le k_s ||f||_{(1),\mathscr{H}^s_{\alpha,d,n}} y^{2n}_{d+1}$.

Proof Let $f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ and $h = \mathscr{L}f$.

(i) From the relations (4.4) and (4.9), we get

$$\forall y \in \mathbb{R}^{d+1}_+, \ f^*_{r,h}(y) = \langle f, \mathscr{L}^* \mathscr{LR}^{s,r}_{\mathscr{L}}(.,y) \rangle_{(1),\mathscr{H}^s_{\alpha,d,n}}.$$
(4.11)

Then, for all $y \in \mathbb{R}^{d+1}_+$, we obtain

$$f_{r,h}^*(y) = \langle f, \mathscr{R}_s^{\alpha,d,n}(.,y) - r\mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(1),\mathscr{H}_{\alpha,d,n}^s}.$$

Hence

$$\forall y \in \mathbb{R}^{d+1}_+, \ f^*_{r,h}(y) = f(y) - r \langle f, \mathscr{R}^{s,r}_{\mathscr{L}}(.,y) \rangle_{(1), \mathscr{K}^s_{\alpha, d, n}}$$
(4.12)

and we have

$$\lim_{r \to 0^+} f_{r,h}^*(y) = \lim_{r \to 0^+} [f(y) - r \langle f, \mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(1), \mathscr{H}_{\alpha,d,n}^s}] = f(y).$$

(ii) By invoking (4.5) and (4.12), for all $y \in \mathbb{R}^{d+1}_+$, we can write

$$\begin{split} |f(y) - f_{r,h}^*(y)| &= r |\langle f, \mathscr{R}_{\mathscr{L}}^{s,r}(.,y) \rangle_{(1),\mathscr{H}_{\alpha,d,n}^s}| \leq r \|f\|_{(1),\mathscr{H}_{\alpha,d,n}^s} \mathscr{R}_{\mathscr{L}}^{s,r}(.,y)\|_{(1),\mathscr{H}_{\alpha,d,n}^s}\\ &\leq k_s \|f\|_{(1),\mathscr{H}_{\alpha,d,n}^s} y_{d+1}^{2n}. \end{split}$$

(iii) Using the relations (4.7) and (4.11), for all $y \in \mathbb{R}^{d+1}_+$, we obtain

$$\begin{aligned} |f_{r,h}^*(y)| &\leq \|f\|_{(1),\mathscr{H}^s_{\alpha,d,n}} \|\mathscr{L}^*\mathscr{L}\mathscr{R}^{s,r}_{\mathscr{L}}(.,y)\|_{(1),\mathscr{H}^s_{\alpha,d,n}} \\ &\leq k_s \|f\|_{(1),\mathscr{H}^s_{\alpha,d,n}} y_{d+1}^{2n}. \quad \Box \end{aligned}$$

Example 4.8 For all $s \ge 0$, the identity operator $\mathrm{id} : \mathscr{H}^s_{\alpha,d,n} \to L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$ is bounded and we have

$$\forall u \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}), \ \|\mathrm{id}(u)\|_{\alpha,n,2} \le \|u\|_{(1),\mathscr{H}^{s}_{\alpha,d,n}}.$$

Its adjoint operator $\mathrm{id}^*: L^2_{\alpha,n}(\mathbb{R}^{d+1}_+) \to \mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ is given by

$$\forall v \in L^2_{\alpha,n}(\mathbb{R}^{d+1}_+), \ \mathrm{id}^*(v) = (\mathscr{F}^{\alpha,d,n}_W)^{-1}[(1+\|\xi\|^2)^{-s}\mathscr{F}^{\alpha,d,n}_W(v)].$$

On the other hand, the inner product associated with the operator id can be written

$$\langle u, v \rangle_{(2), \mathscr{H}^{s}_{\alpha, d, n}} = C^{2}_{\alpha + 2n, d} \int_{\mathbb{R}^{d+1}_{+}} [1 + r(1 + \|\xi\|^{2})^{s}] \mathscr{F}^{\alpha, d, n}_{W}(u)(\xi) \overline{\mathscr{F}^{\alpha, d, n}_{W}(v)}(\xi) \mathrm{d}\mu_{\alpha + 2n, d}(\xi).$$

In this case, the Hilbert space $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ admits the following reproducing kernel

$$\mathscr{R}_{id}^{s,r}(x,y) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \frac{\Lambda_{\alpha,d,n}(-x,\xi)\Lambda_{\alpha,d,n}(y,\xi)}{1 + r(1 + \|\xi\|^2)^s} \mathrm{d}\mu_{\alpha+2n,d}(\xi).$$

For all $h \in L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and for all r > 0, the infimum

$$\inf_{f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})} [r \| f \|^{2}_{(1),\mathscr{H}^{s}_{\alpha,d,n}} + \| h - f \|^{2}_{\alpha,n,2}]$$

exists and it is attained by a unique function $f_{r,h}^\ast$ given by

$$\begin{split} f_{r,h}^{*}(y) &= \langle h, \mathscr{R}_{\mathrm{id}}^{s,r}(.,y) \rangle_{L^{2}_{\alpha,n}(\mathbb{R}^{d+1}_{+})} \\ &= C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} \mathscr{F}_{W}^{\alpha,d,n}(h)(\xi) \overline{\mathscr{F}_{W}^{\alpha,d,n}(\mathscr{R}_{id}^{s,r}(.,y))(\xi)} \mathrm{d}\mu_{\alpha+2n,d}(\xi) \\ &= C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} \frac{\Lambda_{\alpha,d,n}(-y,\xi) \mathscr{F}_{W}^{\alpha,d,n}(h)(\xi)}{1 + r(1 + \|\xi\|^{2})^{s}} \mathrm{d}\mu_{\alpha+2n,d}(\xi). \end{split}$$

Moreover, the extremal function $f_{r,h}^*$ satisfies the following inequality

$$\forall y \in \mathbb{R}^{d+1}_+, |f^*_{r,h}(y)| \le \frac{k_s}{\sqrt{2r}} \|h\|_{\alpha,n,2} y^{2n}_{d+1}$$

where k_s is the constant given by the relation (3.12).

Example 4.9 For $m \in L^{\infty}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, we define the multiplier operator \mathscr{L}_m by:

$$\forall u \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+}), \ \mathscr{L}_{m}u := (\mathscr{F}^{\alpha,d,n}_{W})^{-1}[m\mathscr{F}^{\alpha,d,n}_{W}(u)].$$

For all $s \geq 0$, the operator \mathscr{L}_m is bounded from $\mathscr{H}^s_{\alpha,d,n}(\mathbb{R}^{d+1}_+)$ into $L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$. The inner product associated with the operator \mathscr{L}_m is given by

$$\langle u, v \rangle_{(2), \mathscr{H}^{s}_{\alpha, d, n}} = C^{2}_{\alpha+2n, d} \int_{\mathbb{R}^{d+1}_{+}} [|m(\xi)|^{2} + r(1+\|\xi\|^{2})^{s}] \mathscr{F}^{\alpha, d, n}_{W}(u)(\xi) \overline{\mathscr{F}^{\alpha, d, n}_{W}(v)}(\xi) \mathrm{d}\mu_{\alpha+2n, d}(\xi).$$

The Hilbert space $\mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})$ admits the following reproducing kernel

$$\mathscr{R}^{s,r}_{\mathscr{L}_m}(x,y) = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} \frac{\Lambda_{\alpha,d,n}(-x,\xi)\Lambda_{\alpha,d,n}(y,\xi)}{r(1+\|\xi\|^2)^s + |m(\xi)|^2} \mathrm{d}\mu_{\alpha+2n,d}(\xi).$$

For all $h \in L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and for all r > 0, the infimum

$$\inf_{f \in \mathscr{H}^{s}_{\alpha,d,n}(\mathbb{R}^{d+1}_{+})} [r \|f\|^{2}_{(1),\mathscr{H}^{s}_{\alpha,d,n}} + \|h - \mathscr{L}_{m}f\|^{2}_{\alpha,n,2}$$

exists and it is attained by a unique function $f_{r,h}^*$ given by

$$f_{r,h}^{*}(y) = \langle h, \mathscr{L}_{m}\mathscr{R}_{\mathscr{L}_{m}}^{s,r}(.,y) \rangle_{L^{2}_{\alpha,n}(\mathbb{R}^{d+1}_{+})}$$

= $C^{2}_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_{+}} \frac{\overline{m(\xi)}\Lambda_{\alpha,d,n}(-y,\xi)\mathscr{F}_{W}^{\alpha,d,n}(h)(\xi)}{r(1+\|\xi\|^{2})^{s} + |m(\xi)|^{2}} d\mu_{\alpha+2n,d}(\xi).$

Moreover, the extremal function $f_{r,h}^*$ satisfies the following inequality

$$\forall y \in \mathbb{R}^{d+1}_+, |f^*_{r,h}(y)| \le \frac{k_s}{\sqrt{2r}} \|h\|_{\alpha,n,2} y^{2n}_{d+1},$$

where k_s is the constant given by the relation (3.12).

Acknowledgements We thank the referees for their time and comments.

References

- H. BEN MOHAMED, N. BETTAIBI, S. H. JAH. Sobolev type spaces associated with the Weinstein operator. Int. J. Math. Anal. (Ruse), 2011, 5(25-28): 1353–1373.
- H. BEN MOHAMED, B. GHRIBI. Weinstein-Sobolev spaces of exponential type and applications. Acta Math. Sin. (Engl. Ser.), 2013, 29(3): 591–608.
- [3] H. BEN MOHAMED, A. GASMI, N. BETTAIBI. Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets. An. St. Univ. Ovidius Constanta. Nr1, 2016, 1: 1–19.
- [4] H. BEN MOHAMED. On the Weinstein equations in spaces $\mathscr{D}^p_{\alpha,d}$ type. International Journal of Open Problems in Complex Analysis, Vol.9, Nr 1, 2017.
- [5] A. SAOUDI, N. BOCHRA. Boudeness and compactness of localization operators for Weinstein-Winer transform. J. Pseudo-Differ. Oper. Apll., 2020, 11: 675–702.
- [6] A. SAOUDI. A variation of L^p uncertainty principles in Weinstein setting. Indian J. Pure Appl. Math., 2020, **51**(4): 1697–1712.

- [7] A. SAOUDI. On the Weinstein-Wigner transform and Weinstein-Weyl transform. J. Pseudo-Differ. Oper. Appl., 2020, 11(1): 1–14.
- [8] A. ABOULEZ, A. ACHAK, R. DAHER, et al. Harmonic analysis associated with the generalized Weinstein operator. International. J. Anal. Appl., 2015, 9(1): 19–28.
- [9] H. BEN MOHAMED, M. M. CHAFFAR. Generalized Weinstein and Sobolev Spaces. International Journal of Mathematics Trends and Technology, 2021, 67(2): 28–44.
- [10] H. TRIEBEL. Spaces of distributions of Besov type on Euclidean n-space. Duality interpolation. Ark. Mat., 1973, 11: 13–64.
- S. SZEGÖ. Über orthogonale Polynome, die zu einer gegebenen Kurve der Komplexen Ebene gehören. Math. Z., 1921, 9: 218–270.
- [12] S. BERGMAN. Über die Entwicklung der harmischen Funktionen der Ebene und des Rümes nach Orthogonal Functionen. Math. Ann., 1922, 86: 238–271.
- [13] S. SAITOH. Integral Transform, Reproducing Kernels and Their Applications. Longman, Harlow, 1997.
- [14] L. HÖRMANDER. The Analysis of Linear Partiel Differentiel Operator. Springer-Verlag, Berlin-Newyork, 1983.
- [15] D. H. PAHK, B. H. KANG. Sobolev spaces in the generlized distribution spaces of Beurling type. Tsukuba J. Math., 1991, 15: 325–334.
- [16] S. SAITOH. Theory of Reproducing Kernels and Its Applications. Longman Scientific Technical, Harlow, 1988.