
Journal of Mathematical Research with Applications

Jul., 2022, Vol. 42, No. 4, pp. 349–362

DOI:10.3770/j.issn:2095-2651.2022.04.002

Http://jmre.dlut.edu.cn

Uniqueness and Iterative Schemes of Positive Solutions for
Conformable Fractional Differential Equations via

Sum-Type Operator Method

Bibo ZHOU1,2, Lingling ZHANG1,∗

1. College of Mathematics, Taiyuan University of Technology, Shanxi 030024, P. R. China;

2. Department of Mathematics, Lyuliang University, Shanxi 033000, P. R. China

Abstract We are concerned with two points boundary value problems for a kind of conformable

fractional differential equations in this paper. By employing the fixed point theorems for a class of

sum-type operator defined on a cone, the existence-uniqueness and iterative schemes converging

to unique positive solution are established. As applications, two examples are presented to

illustrate our main results.
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1. Introduction

In recent decades, fractional calculus has become one of the most powerful mathematical tools

to model various complex problems in many science fields, including economy, chemistry, biology

and engineering [1–6], the study on all kinds of boundary value problems of fractional differential

equations received a great attention. Furthermore, based on the nonlinear operator theory in

abstract Banach space, a large number of results concerning the existence and uniqueness of

solutions had arisen in many literatures [7–11].

Zhai [12] investigated the existence and uniqueness of positive solutions for the following

fractional boundary value problems given by{
−Dα

0+u(t) = f(t, u(t)) + g(t, u(t));

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. Existence and uniqueness

of positive solution were obtained by employing the fixed point theorem for a class of sum-type

operator. Liu and Zhang [13] studied the existence and uniqueness of the positive solutions for
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the following singular fractional differential equations:
Dα

0+x(t) + p(t)f(t, x(t), x(t)) + q(t)g(t, x(t)) = 0;

x(0) = x′(0) = · · · = x(n−1)(0) = 0;

x(1) =
∫ 1

0
k(s)x(s)dA(s),

where n−1 < α ≤ n, Dα
0+ is the standard Riemann-Liouville fractional derivative. By employing

a kind of mixed monotone operator fixed point theorem, existence and uniqueness of positive

solutions were obtained for above integral boundary value problems. In [14], Qiao investigated the

positive solutions of fractional differential equations with infinite-point boundary value condition

as follows: 
Dα

0+x(t) + q(t)f(t, x(t)) = 0;

x(0) = x′(0) = · · · = x(n−2)(0) = 0;

Dβ
0+x(1) =

∑∞
i=1 αix(ξi),

where n − 1 < α ≤ n, β ∈ [1, α − 1] is a fixed number, Dα
0+ is the standard Riemann-Liouville

fractional derivative. Existence of positive solutions was obtained by using upper and lower

solution method.

In recent years, Khalil [15] defined a new fractional derivative called conformable fractional

derivative, compared with Riemann-Liouville and Caputo fractional derivative definitions, the

conformable fractional derivative is well-behaved and it just depends on the basic limit definition

as follows

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,

where 0 < α < 1 and ε is a small enough variable. The new definition seems to be a natural

extension of the usual integer derivative, and it satisfies the major properties of the integer

derivative. Based on the definition of conformable fractional calculus, Bayour [16] investigated

the initial value problems of conformable fractional differential equation as follows:{
x(α)(t) = f(t, x(t));

x(a) = x0,

where f : [a, b] × R → R is a continuous function, x(α)(t) = Tαx(t) denotes the conformable

fractional derivative of x at t of order α. In [17], He et al. studied a class of nonlinear Zoomeron

equation with conformable time-fractional derivative, by employing the exp(−φ(ε))-expansion

method and the first integral method, various exact analytical traveling wave solutions to the

Zoomeron equation were obtained, such as solitary wave, breaking wave and periodic wave.

In this paper, we investigate the existence and uniqueness of positive solution for high-order

conformable fractional differential equations with sum-type nonlinear terms as follows:
−T 0+

α u(t) = f(t, u(t), u(t)) + g(t, u(t)), 0 ≤ t ≤ 1;

u(i)(0) = 0, i = 0, 1, 2, 3, ..., n− 2;

[T 0+

β u(t)]t=1 = 0, m− 1 ≤ β ≤ m,

(1.1)

where n− 1 < α ≤ n, m = 1, 2, . . . , n− 1, T 0+

α is conformable fractional derivative.
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The remainder of this article is organized as follows. In Section 2, we recall some concepts

relative to the conformable fractional calculus and give some lemmas with respect to sum-type

operators. In Section 3, we prove the main results about the existence and uniqueness of positive

solution for BVP (1.1). In Section 4, we give some examples to verify our main results.

2. Preliminaries

For the convenience, in this section, we give some definitions and lemmas on conformable

fractional derivative and integral.

Definition 2.1 ([15]) The conformable fractional derivative staring from a of a function f :

[a,∞) → R of order 0 < α < 1 is defined by

(T a
αf)(t) = lim

ε→0

f(t+ ϵ(t− a)1−α)− f(t)

ε
,

when a = 0, we write Tα. If (T
a
αf)(t) exists on [a, b], then

(T a
αf)(a) = lim

t→a+
(T a

αf)(t).

The conformable fractional integral staring from a of a function f : [a,∞) → R is defined by

(Iaαf)(t) = Ia1 ((t− a)α−1f(t)) =

∫ t

a

f(x)

(x− a)1−α
dx,

where α ∈ (0, 1).

Definition 2.2 ([15]) Let α ∈ (n, n+ 1). The conformable fractional derivative staring from a

of a function f : [a,+∞) → R of order α, where f (n)(t) exists, is defined by

(T a
αf)(t) = (T a

α−nf
(n)(t)).

Let α ∈ (n, n+ 1). The conformable fractional integral of order α staring at a is defined by

(Iaαf)(t) = Ian+1((t− a)α−n−1f(t))

=
1

n!

∫ t

a

(t− x)n(x− a)α−n−1f(x)dx.

Lemma 2.3 ([15]) Let α ∈ (n, n+ 1] and f : [a,+∞) be (n+ 1) times differentiable. For t > a

we have

IaαT
a
αf(t) = f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
.

Lemma 2.4 Let g ∈ C[0, 1] be given and T 0+
α denote the conformable fractional derivative.

Then the following boundary value problem for fractional differential equation
−T 0+

α u(t) = g(t), n− 1 < α ≤ n;

u(i)(0) = 0, 0 ≤ i ≤ n− 2;

[T 0+
β u(t)]t=1 = 0, m− 1 < β ≤ m, 1 ≤ m ≤ n− 1

(2.1)

has a unique positive solution

u(t) =

∫ 1

0

G(t, s)g(s)ds, (2.2)
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where

G(t, s) =
1

Γ(n)

{
sα−n[(1− s)n−m−1tn−1 − (t− s)n−1], 0 ≤ s ≤ t ≤ 1;

(1− s)n−m−1sα−ntn−1, 0 ≤ t ≤ s ≤ 1
(2.3)

is the Green function.

Proof In view of Lemma 2.3 and Definition 2.2, we can deduce that

I0+α T 0+
α u(t) = u(t)− u(0)− u′(0)t− u′′(0)

2!
t2 − · · · − u(n−2)(0)

(n− 2)!
tn−2 − u(n−1)(0)

(n− 1)!
tn−1

= u(t)− u(n−1)(0)

(n− 1)!
tn−1

and

I0+α g(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds.

From u(i)(0) = 0, it is easy to know that

u(t) =
u(n−1)(0)

(n− 1)!
tn−1 − 1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds. (2.4)

If 1 < β ≤ 2, taking β order conformable fractional derivative on both sides of equation (2.4),

we have

T 0+
β u(t) = T 0+

β−1

[ d

dt

u(n−1)(0)

(n− 1)!
tn−1 − d

dt

1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds
]

= T 0+
β−1

[u(n−1)(0)

(n− 2)!
tn−2 − 1

(n− 2)!

∫ t

0

(t− s)n−2sα−ng(s)ds
]

= t2−β u
(n−1)(0)

(n− 3)!
tn−3 − t2−β

(n− 3)!

∫ t

0

(t− s)n−3sα−ng(s)ds

=
u(n−1)(0)

(n− 3)!
tn−β−1 − t2−β

(n− 3)!

∫ t

0

(t− s)n−3sα−ng(s)ds.

(2.5)

Setting t = 1, from [T 0+
β u(t)]t=1 = 0, it is evident that

u(n−1)(0) =

∫ 1

0

(1− s)n−3sα−ng(s)ds. (2.6)

Now, combining (2.6) with (2.4), we obtain that

u(t) =
1

(n− 1)!

∫ 1

0

(1− s)n−3sα−ntn−1g(s)ds− 1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds.

If 2 < β ≤ 3, we can deduce that

u(t) =
1

(n− 1)!

∫ 1

0

(1− s)n−4sα−ntn−1g(s)ds− 1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds.
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Evidently, if m− 1 < β ≤ m, we have

u(t) =
1

(n− 1)!

∫ 1

0

(1− s)n−m−1sα−ntn−1g(s)ds− 1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds

=
1

(n− 1)!

∫ t

0

(1− s)n−m−1sα−ntn−1g(s)ds+
1

(n− 1)!

∫ 1

t

(1− s)n−m−1sα−ntn−1g(s)ds−

1

(n− 1)!

∫ t

0

(t− s)n−1sα−ng(s)ds

=

∫ 1

0

G(t, s)g(s)ds,

where

G(t, s) =
1

Γ(n)

{
sα−n[(1− s)n−m−1tn−1 − (t− s)n−1], 0 ≤ s ≤ t ≤ 1;

(1− s)n−m−1sα−ntn−1, 0 ≤ t ≤ s ≤ 1

is Green function. 2
Lemma 2.5 For ∀(t, s) ∈ (0, 1)× (0, 1), the Green function (2.3) has the following properties:

(i) (1−s)n−m−1[1−(1−s)m]sα−ntn−1

Γ(n) ≤ G(t, s) ≤ (1−s)n−m−1sα−ntn−1

Γ(n) , where n = [α] + 1;

(ii) G(t, s) is a continuous function and G(t, s) ≥ 0.

Proof It is evident that the right inequality of (i) holds. So, we only need to prove the left

inequality holds. For convenience, set

G1(t, s) =
1

Γ(n)
[sα−n(1− s)n−m−1tn−1 − sα−n(t− s)n−1]

and

G2(t, s) =
1

Γ(n)
sα−n(1− s)n−m−1tn−1, 0 ≤ t ≤ s ≤ 1.

If 0 ≤ s ≤ t ≤ 1, we have

0 ≤ t− s ≤ t− ts = (1− s)t,

and thus

(t− s)n−1 ≤ (1− s)n−1tn−1.

Then we get

Γ(n)G1(t, s) = sα−n[(1− s)n−m−1tn−1 − (t− s)n−1]

≥ sα−n[(1− s)n−m−1tn−1 − (1− s)n−1tn−1]

= (1− s)n−m−1[1− (1− s)m]sα−ntn−1.

If 0 ≤ t ≤ s ≤ 1, we can deduce that

Γ(n)G2(t, s) = sα−n(1− s)n−m−1tn−1

≥ sα−n[(1− s)n−m−1 − (1− s)n−1]tn−1

= (1− s)n−m−1[1− (1− s)m]sα−ntn−1.
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It is obvious that G1(t, s) and G2(t, s) are continuous on their domains and G1(s, s) = G2(s, s).

In addition, for ∀s, t ∈ [0, 1], from (i), we know that

G(t, s) ≥ 1

Γ(n)
(1− s)n−m−1[1− (1− s)m]sα−ntn−1 ≥ 0. 2

Lemma 2.6 ([18]) Let α ∈ (0, 1), A : P × P → P be a mixed monotone operator satisfying

A(tx, t−1y) ≥ tαA(x, y), t ∈ (0, 1), x, y ∈ P.

B : P → P is an increasing sub-homogeneous operator. Assume that

(I) There is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) There exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx for ∀x, y ∈ P .

Then,

(1) A : Ph × Ph → Ph, B : Ph → Ph;

(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +B(v0) ≤ v0;

(3) The operator equation A(x, x) +Bx = x has a unique solution x∗ in Ph;

(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Lemma 2.7 ([18]) Let α ∈ (0, 1), A : P × P → P be a mixed monotone operator satisfying

A(tx, t−1y) ≥ tA(x, y), t ∈ (0, 1), x, y ∈ P.

B : P → P is an increasing α-concave operator. Assume that

(I) There is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) There exists a constant δ0 > 0 such that A(x, y) ≤ δ0Bx for ∀x, y ∈ P .

Then,

(1) A : Ph × Ph → Ph, B : Ph → Ph;

(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +B(v0) ≤ v0;

(3) The sum-type operator T = A+B has a unique fixed point x∗ ∈ Ph;

(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3. Main results

In our considerations, we work in the Banach space C[0, 1] = {u : [0, 1] → R is continuous}
with the standard norm ∥u∥ = sup{|u(t)| : t ∈ [0, 1]}. Notice that this paper can be equipped
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with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Let P = {u ∈ C[0, 1]|u(t) ≥ 0, t ∈ [0, 1]}. It is clear that P is a normal cone in C[0, 1] and the

normality constant is 1. In addition, for given h > θ, set Ph = {x ∈ E|x ∼ h}, in which ∼ is an

equivalence relation, i.e., for all x, y ∈ E, x ∼ y means that there exist λ > 0 and µ > 0 such

that λx ≥ y ≥ µx.

By Lemma 2.4, we know that the boundary value problems (1.1) for conformable fractional

differential equations has an integral solution:

u(t) =

∫ 1

0

G(t, s)f(s, u(s), u(s)ds+

∫ 1

0

G(t, s)g(s, x(s))ds,

where G(t, s) is given by (2.3). Now, we define two operators,

A(u, v)(t) =

∫ 1

0

G(t, s)f(s, u(s), v(s))ds (3.1)

and

B(u)(t) =

∫ 1

0

G(t, s)g(s, u(s))ds, t ∈ [0, 1]. (3.2)

It is evident that u is a solution of boundary value problems (1.1) if and only if u = A(u, u)+B(u).

Theorem 3.1 Assume that

(H1) f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) is continuous and g : [0, 1]× [0,+∞) → [0,+∞)

is continuous;

(H2) For fixed t ∈ [0, 1], f(t, u, v) is increasing in u ∈ [0,+∞), and decreasing in v ∈ [0,+∞);

g(t, u) is increasing in u ∈ [0,+∞) for fixed t ∈ [0, 1];

(H3) For ∀t ∈ [0, 1], λ ∈ (0, 1), there exists a constant γ ∈ (0, 1) such that f(t, λu, λ−1v) ≥
λγf(t, u, v);

(H4) For ∀t ∈ [0, 1] and λ ∈ (0, 1), g(t, λu) ≥ λg(t, u), and there exists a constant δ0 > 0

such that f(t, u, v) ≥ δ0g(t, u).

Then:

(1) The boundary value problems (1.1) has a unique positive solution x∗ ∈ Ph, where

h(t) = tn−1 and n = [α] + 1;

(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 and

u0 ≤
∫ 1

0

G(t, s)(f(s, u0(s), v0(s)) + g(s, u0(s)))ds,

v0 ≥
∫ 1

0

G(t, s)(f(s, v0(s), u0(s)) + g(s, v0(s)))ds,

where G(t, s) is defined by (2.3).

(3) For any initial value u0, v0 ∈ Ph, there are two iterative sequences {un}, {vn} for approx-

imating u∗, that is, un → x∗, vn → x∗, as n → ∞, where

un+1 =

∫ 1

0

G(t, s)(f(s, un(s), vn(s)) + g(s, un(s)))ds,
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vn+1 =

∫ 1

0

G(t, s)(f
(
s, vn(s), un(s)) + g(s, vn(s)))ds,

we have ∥un − u∗∥ → 0 and ∥vn − u∗∥ → 0 as n → 0.

Proof Step 1. We prove that A is a mixed monotone operator and B is an increasing operator.

From (H1) and Lemma 2.5, it is easy to know that A : P × P → P and B : P × P → P . From

(H2), for ∀ui, vi ∈ P , i = 1, 2 with u1 ≥ u2, v1 ≤ v2, we get

A(u1, v1)(t) =

∫ 1

0

G(t, s)f(s, u1(s), v1(s))ds

≥
∫ 1

0

G(t, s)f(s, u2(s), v2(s))ds = A(u2, v2)(t).

That is, A is a mixed monotone operator. Moreover, we can conclude that the operator B is

increasing from (H2) and Lemma 2.5.

Step 2. For ∀u, v ∈ P , we show that A(λu, λ−1v) ≥ λγA(u, v)(t) and B is a sub-homogeneous

operator. For any λ ∈ (0, 1) and u, v ∈ P , from (H3), we have

A(λu, λ−1v) =

∫ 1

0

G(t, s)f(s, λu(s), λ−1v(s))ds

≥ λγ

∫ 1

0

G(t, s)f(s, u(s), v(s))ds = λγA(u, v)(t),

that is A(λu, λ−1v) ≥ λγA(u, v)(t) for λ ∈ (0, 1) and u, v ∈ P . In addition, from (H3), for any

λ ∈ (0, 1), u ∈ P , we obtain that

B(λu)(t) =

∫ 1

0

G(t, s)g(s, λu(s))ds ≥ λ

∫ 1

0

G(t, s)g(s, u(s))ds = λBu(t).

Step 3. Let h0(t) =
1
2 t

n−1. It is easy to know 1
3h(t) ≤ h0(t) ≤ 2h(t), evidently, h0 ∈ Ph, we

show that A(h0, h0) ∈ Ph and Bh0 ∈ Ph. On the one hand, from (H1), (H2) and Lemma 2.5, we

know that

A(h0, h0)(t) =

∫ 1

0

G(t, s)f(s, h0(s), h0(s))ds =

∫ 1

0

G(t, s)f(s,
1

2
sn−1,

1

2
sn−1)ds

≤ 1

Γ(n)
h(t)

∫ 1

0

(1− s)n−m−1sα−nf(s, 1, 0)ds.

On the other hand, we have

A(h0, h0)(t) =

∫ 1

0

G(t, s)f(s, h0(s), h0(s))ds =

∫ 1

0

G(t, s)f(s,
1

2
sn−1,

1

2
sn−1)ds

≥ 1

Γ(n)
h(t)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−nf(s, 0, 1)ds.

Furthermore, from (H2) and (H4), we get

f(s, 1, 0) ≥ f(s, 0, 1) ≥ δ0g(s, 0) ≥ 0.

Since g(t, 0) ̸≡ 0, it is easy to know∫ 1

0

f(s, 1, 0)ds ≥
∫ 1

0

f(s, 0, 1)ds ≥ δ0

∫ 1

0

g(s, 0)ds > 0.
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Set

l1 :=
1

Γ(n)

∫ 1

0

(1− s)n−m−1sα−nf(s, 1, 0)ds

and

l2 :=
1

Γ(n)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−nf(s, 0, 1)ds.

Evidently, l1 ≥ l2 ≥ 0, and l2h ≤ A(h0, h0) ≤ l1h for ∀ t ∈ [0, 1], that is A(h0, h0) ∈ Ph. Similarly,

(Bh0)(t) =

∫ 1

0

G(t, s)g(s, h0(s))ds =

∫ 1

0

G(t, s)g(s,
1

2
sn−1)ds

≤ h(t)

Γ(n)

∫ 1

0

(1− s)n−m−1sα−ng(s, 1)ds

and

(Bh0)(t) =

∫ 1

0

G(t, s)g(s, h0(s))ds =

∫ 1

0

G(t, s)g(s,
1

2
sn−1)ds

≥ h(t)

Γ(n)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−ng(s, 0)ds.

Set

l3 :=
1

Γ(n)

∫ 1

0

(1− s)n−m−1sα−ng(s, 1)ds

and

l4 :=
1

Γ(n)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−ng(s, 0)ds.

It is obvious that l3 ≥ l4 ≥ 0 and l4h ≤ Bh0 ≤ l3h, that is Bh0 ∈ Ph. In addition, from (H4),

for ∀u, v ∈ P and t ∈ (0, 1), we obtain

A(u, v)(t) =

∫ 1

0

G(t, s)f(s, u(s), v(s))ds ≥ δ0

∫ 1

0

G(t, s)g(s, u(s))ds

= δ0Bu(t).

Now, all conditions of Lemma 2.6 are satisfied and an application implies that there exist

u0, v0 ∈ Ph and γ ∈ (0, 1) such that γv0 ≤ u0 < v0 and

u0 ≤
∫ 1

0

G(t, s)
(
f
(
s, u0(s), v0(s)

)
+ g

(
s, u0(s)

))
ds,

v0 ≥
∫ 1

0

G(t, s)
(
f
(
s, v0(s), u0(s)

)
+ g

(
s, v0(s)

))
ds.

In addition, the boundary value problems (1.1) for conformable fractional differential equations

has a unique positive solution u∗ ∈ Ph. Furthermore, for any initial value u0, v0 ∈ Ph, construct-

ing successively the sequences

un+1 =

∫ 1

0

G(t, s)(f(s, un(s), vn(s)) + g(s, un(s)))ds,

vn+1 =

∫ 1

0

G(t, s)(f(s, vn(s), un(s)) + g(s, vn(s)))ds,

we have ∥un − u∗∥ → 0 and ∥vn − u∗∥ → 0 as n → 0. 2
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Corollary 3.2 Let g(t, u) ≡ 0. Assume that (H1)–(H3) hold and f(t, 0, 1) ̸≡ 0. Then, the

following boundary value problem for conformable fractional differential equation
−T 0+

α u(t) = f(t, u(t), u(t)), 0 ≤ t ≤ 1, n− 1 ≤ α ≤ n;

u(i)(0) = 0, i = 0, 1, 2, 3, . . . , n− 2;

[T 0+

β u(t)]t=1 = 0, m− 1 ≤ β ≤ m, m = 1, 2, . . . , n− 1

(3.3)

has a unique positive solution u∗ in Ph. Moreover, constructing successively the sequences

un =

∫ 1

0

G(t, s)f(s, un−1(s), vn−1(s))ds,

vn =

∫ 1

0

G(t, s)f(s, vn−1(s), un−1(s))ds,

we have un → u∗ and vn → u∗ as n → ∞.

Theorem 3.3 Assume (H1), (H2) hold, and suppose that

(H5) For ∀λ ∈ (0, 1), t ∈ [0, 1], u, v ∈ [0,+∞), there exists a constant µ ∈ (0, 1) such that

g(t, λu) ≥ λµg(t, u), and f(t, λu, λ−1v) ≥ λf(t, u, v).

(H6) There exists a constant δ0 > 0 such that f(t, u, v) ≤ δ0g(t, u) for ∀t ∈ [0, 1] and u, v ≥ 0.

Then:

(1) The boundary value problems (1.1) has a unique positive solution x∗ ∈ Ph, where

h(t) = tn−1 and n = [α] + 1;

(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 and

u0 ≤
∫ 1

0

G(t, s)(f(s, u0(s), v0(s)) + g(s, u0(s)))ds,

v0 ≥
∫ 1

0

G(t, s)(f(s, v0(s), u0(s)) + g
(
s, v0(s)))ds,

where G(t, s) is defined by (2.3).

(3) For any initial value u0, v0 ∈ Ph, constructing successively sequences

un+1 =

∫ 1

0

G(t, s)(f(s, un(s), vn(s)) + g(s, un(s)))ds,

vn+1 =

∫ 1

0

G(t, s)(f(s, vn(s), un(s)) + g(s, vn(s)))ds,

we have un → u∗ and vn → u∗ as n → 0.

Proof Firstly, from (H1) and (H2), we obtain that A : P×P → P is a mixed monotone operator

and B : P → P is increasing. For ∀λ ∈ (0, 1), u, v ∈ P , from (H5), we can know that

A(λu, λ−1v) =

∫ 1

0

G(t, s)f(s, λu(s), λ−1v(s))ds

≥ λ

∫ 1

0

G(t, s)f(s, u(s), v(s))ds = λA(u, v)(t)
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and

B(λu)(t) =

∫ 1

0

G(t, s)g(s, λu(s))ds ≥ λµ

∫ 1

0

G(t, s)g(s, u(s))ds

= λµBu(t).

From (H2) and (H6), we can deduce that

g(s, 0) ≥ 1

δ0
f(s, 0, 1), f(s, 1, 0) ≥ f(s, 0, 1), ∀s ∈ (0, 1).

Since f(t, 0, 1) ̸≡ 0, it is obvious that∫ 1

0

f(s, 1, 0)ds ≥
∫ 1

0

f(s, 0, 1)ds > 0 (3.4)

and ∫ 1

0

g(s, 1)ds ≥
∫ 1

0

g(s, 0)ds ≥ 1

δ0

∫ 1

0

f(s, 0, 1)ds > 0. (3.5)

Secondly, by employing Lemma 2.5, we get

1

Γ(n)

∫ 1

0

(1− s)n−m−1sα−nf(s, 1, 0)ds

≥ 1

Γ(n)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−nf(s, 0, 1)ds > 0

and

1

Γ(n)

∫ 1

0

(1− s)n−m−1sα−ng(s, 1)ds

≥ 1

Γ(n)

∫ 1

0

[1− (1− s)m](1− s)n−m−1sα−ng(s, 0)ds > 0.

From the proof of Theorem 3.1, we obtain that A(h0, h0) ∈ Ph and B(h0) ∈ Ph. Furthermore,

from (H6), for ∀u, v ∈ P and t ∈ [0, 1], we have

A(u, v)(t) =

∫ 1

0

G(t, s)f(s, u(s), v(s))ds ≤ δ0

∫ 1

0

G(t, s)g(s, u(s))ds = δ0Bu(t). (3.6)

Finally, an application of Lemma 2.7 implies that there exist u0, v0 ∈ Ph and r ∈ (0, 1) such

that rv0 ≤ u0 < v0, and

u0 ≤
∫ 1

0

G(t, s)(f(s, u0(s), v0(s)) + g(s, u0(s)))ds,

v0 ≥
∫ 1

0

G(t, s)(f(s, v0(s), u0(s)) + g(s, v0(s)))ds.

Moreover, the boundary value problem (1.1) for conformable fractional differential equations has

a unique solution u∗ ∈ Ph. For any initial values x0, y0 ∈ Ph, constructing successively the

sequences

un+1 =

∫ 1

0

G(t, s)(f(s, un(s), vn(s)) + g(s, un(s)))ds,

vn+1 =

∫ 1

0

G(t, s)(f
(
s, vn(s), un(s)) + g(s, vn(s)))ds,
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we have un → u∗ and vn → u∗ as n → ∞. 2
Corollary 3.4 Let f(t, u, v) ≡ 0. Assume that g satisfied all the conditions of Theorem 3.3 and

g(t, 0) ̸≡ 0 for t ∈ (0, 1). Then, the following boundary value problem
−T 0+

α u(t) = g(t, u(t)), 0 ≤ t ≤ 1, n− 1 ≤ α ≤ n;

u(i)(0) = 0, i = 0, 1, 2, 3, . . . , n− 2;

[T 0+

β u(t)]t=1 = 0, m− 1 ≤ β ≤ m, m = 1, 2, . . . , n− 1

(3.7)

has a unique positive solution u∗ ∈ Ph; Moreover, for any initial values u0,∈ Ph, constructing

successively the sequences

un+1 =

∫ 1

0

G(t, s)g(s, un(s))ds, n = 1, 2, . . . ,

one has un → u∗ as n → ∞.

4. Applications

In this section, we conclude this article with the following two examples.

Example 4.1 Let α = 9
2 and β = 5

2 . We consider the following two-point boundary value

problem: 
−T 0+

9
2

x(t) = 2(x(t))
1
4 + t2 + (x(t) + 1)−

1
2 + 1, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = x′′′(0) = 0,

T 0+
5
2

x(1) = 1
1+x(1) .

(4.1)

Conclusion. BVP (4.1) has a unique positive solution x∗ in Ph1 , where h1(t) = t4.

Proof Let g(t, x) = (x(t))
1
4 + t2 and g(t, 0) = t2 ̸≡ 0, f(t, x, y) = (x(t))

1
4 + (y(t) + 1)−

1
2 + 1.

Clearly, g : [0, 1]× [0,+∞) → [0,+∞), f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous.

And it is easy to see that g(t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ (0, 1), f(t, x, y) is

increasing in x ∈ [0,+∞) for fixed t ∈ (0, 1) and y ∈ [0,+∞), decreasing in y ∈ [0,+∞) for fixed

t ∈ (0, 1) and x ∈ [0,+∞). In addition, ∀λ ∈ (0, 1) we get

g(t, λx) = (λx(t))
1
4 + t2 ≥ λ

1
4 (x(t))

1
4 + λt2

≥ λ((x(t))
1
4 + t2)g(t, x) = λg(t, x)

and

f(t, λx, λ−1y) ≥ λ
1
4 (x(t))

1
4 + λ

1
2 (y(t) + 1)−

1
2 + 1

≥ λ
1
2 ((x(t))

1
4 + λ

1

2
(y(t) + 1)−

1
2 + 1) = λ

1
2 f(t, x, y).

Moreover, setting δ0 = 1, we have

f(t, x, y) = (x(t))
1
4 + (y(t) + 1)−

1
2 + 1 ≥ (x(t))

1
4 + t2 = δ0g(t, x).

By employing Theorem 3.1, we know that BVP (4.1) has a unique positive solution x∗ in Ph1 ,

where h1(t) = t4. 2
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Example 4.2 Let α = 9
4 and β = 3

2 . We consider two points boundary value problem for the

conformable fractional differential equation as follows:
−T 0+

9
4

x(t) = 2 + 2(x(t))
1
4 + cos2 t+ 1

x(t)+1 , t ∈ (0, 1),

x(0) = x′(0) = 0,

[T 0+
3
2

x(t)]t=1 = 1

1+x(1)
1
2
.

(4.2)

Conclusion. BVP (4.2) has a unique positive solution x∗ in Ph2 , where h2(t) = t2.

Proof Let g(t, x) = 2+(x(t))
1
4 , f(t, x, y) = cos2 t+(x(t))

1
4+ 1

y+1 . Evidently, g : [0, 1]×[0,+∞) →
[0,+∞) and f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) are continuous. And it is easy to verify

that g(t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ (0, 1), f(t, x, y) is increasing in x ∈ [0,+∞)

for fixed t ∈ (0, 1) and y ∈ [0,+∞) and decreasing in y ∈ [0,+∞) for fixed t ∈ (0, 1) and

x ∈ [0,+∞). Moreover, we get

g(t, λx) = 2 + (λx(t))
1
4 ≥ λ

1
4 2 + λ

1
4 (x(t))

1
4 = λ

1
4 g(t, x)

and

f(t, λx, λ−1y) = cos2 t+ (λx(t))
1
4 +

1

λ−1y + 1

≥ λ cos2 t+ λ(x(t))
1
4 +

λ

y + 1
≥ λf(t, x, y).

Furthermore, f(t, 0, 1) = cos2 t+ 1
2 ̸≡ 0, setting δ0 = 1, we obtain

f(t, x, y) = cos2 t+ (x(t))
1
4 +

1

y + 1
≤ 2 + (x(t))

1
4 = δ0g(t, x).

In consequence, an application of Theorem 3.3 implies that BVP (4.2) has a unique positive

solution x∗ in Ph2 , where h2(t) = t2. 2
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