Journal of Mathematical Research with Applications Jul., 2022, Vol. 42, No. 4, pp. 374–380 DOI:10.3770/j.issn:2095-2651.2022.04.004 Http://jmre.dlut.edu.cn

Nonlinear Maps Preserving Mixed Jordan Triple Products on von Neumann Algebras

Dongfang ZHANG, Changjing LI*, Yuanyuan ZHAO

School of Mathematics and Statistics, Shandong Normal University, Shandong 250014, P. R. China

Abstract In this paper, we prove that if a bijective map Φ preserves mixed Jordan triple products between von Neumann algebras with no central abelian projections, then $\Phi(I)\Phi$ is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism, where $\Phi(I)$ is a self-adjoint central element in the range with $\Phi(I)^2 = I$. Also, we give the structure of this map that preserves mixed Jordan triple products between factor von Neumann algebras.

 ${\bf Keywords} \quad {\rm mixed \ Jordan \ triple \ product; \ isomorphism; \ von \ Neumann \ algebras}$

MR(2020) Subject Classification 46L10; 47B49

1. Introduction

Let \mathcal{A} and \mathcal{B} be two *-algebras over the complex field \mathbb{C} . For $A, B \in \mathcal{A}$, define the Jordan product of A and B by $A \circ B = AB + BA$ and the Jordan *-product of A and B by $A \bullet$ $B = AB + BA^*$. We say that a map $\Phi : \mathcal{A} \to \mathcal{B}$ preserves mixed Jordan triple product if $\Phi(A \bullet B \circ C) = \Phi(A) \bullet \Phi(B) \circ \Phi(C)$ for all $A, B, C \in \mathcal{A}$. This kind of maps are related to maps preserving Jordan product and maps preserving Jordan *-product which have been studied by many authors [1–7].

Recently, many authors studied the nonlinear maps preserving some mixed products [8–15]. For example, Li et al. studied the nonlinear maps preserving skew Lie triple products $[[A, B]_*, C]_*$ (see [9,11]) and Jordan triple *-products $A \bullet B \bullet C$ (see [10,15]) on von Neumann algebras. Yang and Zhang in [12, 13] studied the nonlinear maps preserving mixed skew Lie triple products $[[A, B]_*, C]$ and $[[A, B], C]_*$ on factor von Neumann algebras. In the present paper, we will establish the structure of nonlinear maps preserving mixed Jordan triple products $A \bullet B \circ C$ on von Neumann algebras.

Before stating the main results, we need some notations and preliminaries. A von Neumann algebra \mathcal{A} is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I. The set $\mathcal{Z}(\mathcal{A}) = \{S \in \mathcal{A} : ST = TS \text{ for all } T \in \mathcal{A}\}$ is called the center of \mathcal{A} . A projection P is called a central abelian projection if $P \in \mathcal{Z}(\mathcal{A})$ and $P\mathcal{A}P$ is abelian.

Received September 24, 2021; Accepted February 19, 2022

Supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2018BA003) and the National Natural Science Foundation of China (Grant No. 11801333).

^{*} Corresponding author

E-mail address: 1776767307@qq.com (Dongfang ZHANG); lcjbxh@163.com (Changjing LI); 2934377003@qq.com (Yuanyuan ZHAO)

Recall that the central carrier of A, denoted by \overline{A} , is the smallest central projection P satisfying PA = A. It is not difficult to see that the central carrier of A is the projection onto the closed subspace spanned by $\{BA(x) : B \in \mathcal{A}, x \in H\}$. If A is self-adjoint, then the core of A, denoted by \underline{A} , is $\sup\{S \in \mathcal{Z}(\mathcal{A}) : S = S^*, S \leq A\}$. If P is a projection, it is clear that \underline{P} is the largest central projection Q satisfying $Q \leq P$. A projection P is said to be core-free if $\underline{P} = 0$. It is easy to see that $\underline{P} = 0$ if and only if $\overline{I - P} = I$.

Lemma 1.1 ([16]) Let \mathcal{A} be a von Neumann algebra with no central abelian projections. Then there exists a projection $P \in \mathcal{A}$ such that $\underline{P} = 0$ and $\overline{P} = I$.

Lemma 1.2 ([2]) Let \mathcal{A} be a von Neumann algebra and P be a projection in \mathcal{A} with $\overline{P} = I$. If ABP = 0 for all $B \in \mathcal{A}$, then A = 0.

Lemma 1.3 ([5]) Let \mathcal{A} be a von Neumann algebra and A be an element in \mathcal{A} . Then $AB + BA^* = 0$ for all $B \in \mathcal{A}$ implies that $A = -A^* \in \mathcal{Z}(\mathcal{A})$.

2. Main results

Our main result in this paper reads as follows.

Theorem 2.1 Let \mathcal{A} and \mathcal{B} be two von Neumann algebras with no central abelian projections. Suppose that a bijective map $\Phi : \mathcal{A} \to \mathcal{B}$ satisfies

$$\Phi(A \bullet B \circ C) = \Phi(A) \bullet \Phi(B) \circ \Phi(C),$$

for all $A, B, C \in \mathcal{A}$. Then the map $\Phi(I)\Phi$ is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism, where $\Phi(I)$ is a self-adjoint central element in \mathcal{B} with $\Phi(I)^2 = I$.

Proof First we give a key technique. Suppose that A_1, A_2, \ldots, A_n and T are in \mathcal{A} such that $\Phi(T) = \sum_{i=1}^n \Phi(A_i)$. Then for all $S_1, S_2 \in \mathcal{A}$, we have

$$\Phi(S_1 \bullet S_2 \circ T) = \Phi(S_1) \bullet \Phi(S_2) \circ \Phi(T) = \sum_{i=1}^n \Phi(S_1 \bullet S_2 \circ A_i),$$
(2.1)

$$\Phi(S_1 \bullet T \circ S_2) = \Phi(S_1) \bullet \Phi(T) \circ \Phi(S_2) = \sum_{i=1}^n \Phi(S_1 \bullet A_i \circ S_2)$$
(2.2)

and

$$\Phi(T \bullet S_1 \circ S_2) = \Phi(T) \bullet \Phi(S_1) \circ \Phi(S_2) = \sum_{i=1}^n \Phi(A_i \bullet S_1 \circ S_2).$$
(2.3)

By Lemma 1.1, there exists a projection P such that $\underline{P} = 0$ and $\overline{P} = I$. Let $P_1 = P$ and $P_2 = I - P$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$. Then $\mathcal{A} = \sum_{i,j=1}^2 \mathcal{A}_{ij}$. In all that follows, when we write A_{ij} , it indicates that $A_{ij} \in \mathcal{A}_{ij}$. The proof will be organized in some claims. In the following, we will show the additivity of Φ .

Claim 2.2 $\Phi(0) = 0.$

Dongfang ZHANG, Changjing LI and Yuanyuan ZHAO

Since Φ is surjective, there exists $A \in \mathcal{A}$ such that $\Phi(A) = 0$. So

$$\Phi(0) = \Phi(0 \bullet A \circ A) = \Phi(0) \bullet 0 \circ 0 = 0.$$

Claim 2.3 For every $A_{12} \in \mathcal{A}_{12}, B_{21} \in \mathcal{A}_{21}$, we have

$$\Phi(A_{12} + B_{21}) = \Phi(A_{12}) + \Phi(B_{21}).$$

Choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that $\Phi(T) = \Phi(A_{12}) + \Phi(B_{21})$. Since

$$(P_2 - P_1) \bullet I \circ A_{12} = (P_2 - P_1) \bullet I \circ B_{21} = 0,$$

it follows from Eq. (2.1) and Claim 2.2 that

$$\Phi((P_2 - P_1) \bullet I \circ T) = 0.$$

From this, we get $(P_2 - P_1) \bullet I \circ T = 0$. So $T_{11} = T_{22} = 0$. Since $A_{12} \bullet P_1 \circ I = 0$, it follows from Eq. (2.3) that

$$\Phi(T \bullet P_1 \circ I) = \Phi(B_{21} \bullet P_1 \circ I).$$

By the injectivity of Φ , we obtain

$$2(P_1T^* + TP_1) = T \bullet P_1 \circ I = B_{21} \bullet P_1 \circ I = 2(B_{21}^* + B_{21})$$

Hence $T_{21} = B_{21}$. Similarly, $T_{12} = A_{12}$, proving the claim.

Claim 2.4 For every $A_{11} \in A_{11}$, $B_{12} \in A_{12}$, $C_{21} \in A_{21}$, $D_{22} \in A_{22}$, we have

$$\Phi(A_{11} + B_{12} + C_{21}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21})$$

and

$$\Phi(B_{12} + C_{21} + D_{22}) = \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})$$

Choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that

$$\Phi(T) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}).$$

It follows from Eq. (2.1) and Claim 2.3 that

$$\begin{split} \Phi(2(P_2T + TP_2)) &= \Phi(P_2 \bullet I \circ T) \\ &= \Phi(P_2 \bullet I \circ A_{11}) + \Phi(P_2 \bullet I \circ B_{12}) + \Phi(P_2 \bullet I \circ C_{21}) \\ &= \Phi(2B_{12}) + \Phi(2C_{21}) = \Phi(2(B_{12} + C_{21})). \end{split}$$

Thus $P_2T + TP_2 = B_{12} + C_{21}$, which implies that $T_{22} = 0$, $T_{12} = B_{12}$, $T_{21} = C_{21}$. Now we get $T = T_{11} + B_{12} + C_{21}$. Since

$$(P_2 - P_1) \bullet I \circ B_{12} = (P_2 - P_1) \bullet I \circ C_{21} = 0,$$

it follows from Eq. (2.1) that

$$\Phi((P_2 - P_1) \bullet I \circ T) = \Phi((P_2 - P_1) \bullet I \circ A_{11}),$$

from which we get $T_{11} = A_{11}$. Consequently, $\Phi(A_{11} + B_{12} + C_{21}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21})$. Similarly, we can get that $\Phi(B_{12} + C_{21} + D_{22}) = \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})$.

376

Nonlinear maps preserving mixed Jordan triple products on von Neumann algebras

Claim 2.5 For every $A_{11} \in A_{11}, B_{12} \in A_{12}, C_{21} \in A_{21}, D_{22} \in A_{22}$, we have

$$\Phi(A_{11} + B_{12} + C_{21} + D_{22}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})$$

Choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that

$$\Phi(T) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})$$

It follows from Eq. (2.1) and Claim 2.4 that

$$\begin{split} \Phi(2(P_1T + TP_1)) &= \Phi(P_1 \bullet I \circ T) \\ &= \Phi(P_1 \bullet I \circ A_{11}) + \Phi(P_1 \bullet I \circ B_{12}) + \Phi(P_1 \bullet I \circ C_{21}) + \Phi(P_1 \bullet I \circ D_{22}) \\ &= \Phi(4A_{11}) + \Phi(2B_{12}) + \Phi(2C_{21}) \\ &= \Phi(2(2A_{11} + B_{12} + C_{21})). \end{split}$$

Thus

$$P_1T + TP_1 = 2A_{11} + B_{12} + C_{21}$$

and then $T_{11} = A_{11}, T_{12} = B_{12}, T_{21} = C_{21}$. Similarly, we can get

$$\Phi(2(P_2T + TP_2)) = \Phi(2(B_{12} + C_{21} + 2D_{22}))$$

From this, we get $T_{22} = D_{22}$, proving the claim.

Claim 2.6 For every $A_{jk}, B_{jk} \in \mathcal{A}_{jk}, 1 \leq j \neq k \leq 2$, we have

$$\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk}).$$

For every $A_{jk}, B_{jk} \in \mathcal{A}_{jk}$, since

$$\frac{I}{2} \bullet (P_j + A_{jk}) \circ (P_k + B_{jk}) = A_{jk} + B_{jk},$$

we get from Claim 2.5 that

$$\begin{split} \Phi(A_{jk} + B_{jk}) &= \Phi(\frac{I}{2} \bullet (P_j + A_{jk}) \circ (P_k + B_{jk})) \\ &= \Phi(\frac{I}{2}) \bullet \Phi(P_j + A_{jk}) \circ \Phi(P_k + B_{jk}) \\ &= \Phi(\frac{I}{2}) \bullet (\Phi(P_j) + \Phi(A_{jk})) \circ (\Phi(P_k) + \Phi(B_{jk})) \\ &= \Phi(\frac{I}{2}) \bullet \Phi(P_j) \circ \Phi(P_k) + \Phi(\frac{I}{2}) \bullet \Phi(P_j) \circ \Phi(B_{jk}) + \\ &\Phi(\frac{I}{2}) \bullet \Phi(A_{jk}) \circ \Phi(P_k) + \Phi(\frac{I}{2}) \bullet \Phi(A_{jk}) \circ \Phi(B_{jk}) \\ &= \Phi(B_{jk}) + \Phi(A_{jk}), \end{split}$$

which implies that $\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk}).$

Claim 2.7 For every $A_{jj}, B_{jj} \in \mathcal{A}_{jj}, 1 \leq j \leq 2$, we have

$$\Phi(A_{jj} + B_{jj}) = \Phi(A_{jj}) + \Phi(B_{jj}).$$

Let $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that

$$\Phi(T) = \Phi(A_{jj}) + \Phi(B_{jj}).$$

For $1 \leq j \neq k \leq 2$, it follows from Eq. (2.1) that

$$\Phi(P_k \bullet I \circ T) = \Phi(P_k \bullet I \circ A_{jj}) + \Phi(P_k \bullet I \circ B_{jj}) = 0.$$

Hence $P_kT + TP_k = 0$, which implies $T_{jk} = T_{kj} = T_{kk} = 0$. Now we get $T = T_{jj}$. For every $C_{jk} \in \mathcal{A}_{jk}, j \neq k$, it follows that

$$\Phi(2T_{jj}C_{jk}) = \Phi(P_j \bullet T_{jj} \circ C_{jk})$$

= $\Phi(P_j \bullet A_{jj} \circ C_{jk}) + \Phi(P_j \bullet B_{jj} \circ C_{jk})$
= $\Phi(2A_{jj}C_{jk}) + \Phi(2B_{jj}C_{jk})$
= $\Phi(2(A_{jj}C_{jk} + B_{jj}C_{jk})).$

Hence

$$(T_{jj} - A_{jj} - B_{jj})C_{jk} = 0,$$

for all $C_{jk} \in A_{jk}$, that is, $(T_{jj} - A_{jj} - B_{jj})CP_k = 0$ for all $C \in A$. It follows from Lemma 1.2 that $T_{jj} = A_{jj} + B_{jj}$, proving the claim.

Claim 2.8 Φ is additive.

Let $A = \sum_{i,j=1}^{2} A_{ij}, B = \sum_{i,j=1}^{2} B_{ij} \in \mathcal{A}$. By Claims 2.5–2.7, we have $\Phi(A+B) = \Phi\left(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}\right) = \Phi\left(\sum_{i,j=1}^{2} (A_{ij} + B_{ij})\right)$ $= \sum_{i,j=1}^{2} \Phi(A_{ij} + B_{ij}) = \sum_{i,j=1}^{2} \Phi(A_{ij}) + \sum_{i,j=1}^{2} \Phi(B_{ij})$ $= \Phi\left(\sum_{i,j=1}^{2} A_{ij}\right) + \Phi\left(\sum_{i,j=1}^{2} B_{ij}\right) = \Phi(A) + \Phi(B).$

Claim 2.9 For each $A \in \mathcal{A}$, $A = -A^*$ if and only if $\Phi(A) = -\Phi(A)^*$.

Let $A \in \mathcal{A}$ be arbitrary. Since Φ is surjective, there exists $B \in \mathcal{A}$ such that $\Phi(B) = I$. Then

$$0 = \Phi(iI \bullet A \circ B) = \Phi(iI) \bullet \Phi(A) \circ I$$
$$= 2(\Phi(iI)\Phi(A) + \Phi(A)\Phi(iI)^*)$$

holds true for all $A \in \mathcal{A}$. So $\Phi(iI)C + C\Phi(iI)^* = 0$ holds true for all $C \in \mathcal{B}$. It follows from Lemma 1.3 that $\Phi(iI) = -\Phi(iI)^* \in \mathcal{Z}(\mathcal{B})$. Similarly, $\Phi^{-1}(iI) \in \mathcal{Z}(\mathcal{A})$.

Let $A = -A^* \in \mathcal{A}$ and $\Phi(B) = I$. It follows that

$$0 = \Phi(A \bullet \Phi^{-1}(iI) \circ B) = \Phi(A) \bullet (iI) \circ I = 2i(\Phi(A) + \Phi(A)^*).$$

This implies that $\Phi(A) = -\Phi(A)^*$. Similarly, if $\Phi(A) = -\Phi(A)^*$, then

$$0 = \Phi^{-1}(\Phi(A) \bullet \Phi(iI) \circ \Phi(I)) = A \bullet (iI) \circ I = 2i(A + A^*),$$

378

Nonlinear maps preserving mixed Jordan triple products on von Neumann algebras

and so $A = -A^*$.

Claim 2.10 $\Phi(\mathcal{Z}(\mathcal{A})) = \mathcal{Z}(\mathcal{B}).$

Let $Z \in \mathcal{Z}(\mathcal{A})$ be arbitrary and $\Phi(B) = I$. For every $A = -A^* \in \mathcal{A}$, we have

$$0 = \Phi(A \bullet Z \circ B) = \Phi(A) \bullet \Phi(Z) \circ I = 2(\Phi(A)\Phi(Z) + \Phi(Z)\Phi(A)^*).$$

That is $\Phi(A)\Phi(Z) = -\Phi(Z)\Phi(A)^*$ holds true for all $A = -A^* \in \mathcal{A}$. Since Φ preservers conjugate self-adjoint elements, it follows that $C\Phi(Z) = \Phi(Z)C$ holds true for all $C = -C^* \in \mathcal{B}$. Since for every $C \in \mathcal{B}$, we have $C = C_1 + iC_2$, where $C_1 = \frac{C-C^*}{2}$ and $C_2 = \frac{C+C^*}{2i}$ are conjugate self-adjoint elements. Hence $C\Phi(Z) = \Phi(Z)C$ holds true for all $C \in \mathcal{A}$. Then $\Phi(Z) \in \mathcal{Z}(\mathcal{B})$, which implies that $\Phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{B})$. Thus $\Phi(\mathcal{Z}(\mathcal{A})) = \mathcal{Z}(\mathcal{B})$ by considering Φ^{-1} .

Claim 2.11 $\Phi(I)$ is a self-adjoint central element in \mathcal{B} with $\Phi(I)^2 = I$.

Let $\Phi(B) = I$. Since $\Phi(I) \in \mathcal{Z}(\mathcal{B})$, by Claim 2.8, we have

$$4I = 4\Phi(B) = \Phi(I \bullet I \circ B) = \Phi(I) \bullet \Phi(I) \circ I = 2\Phi(I)(\Phi(I) + \Phi(I)^*),$$

that is $\Phi(I)(\Phi(I) + \Phi(I)^*) = 2I$. Taking the adjoint, we have $\Phi(I)^*(\Phi(I) + \Phi(I)^*) = 2I$. Subtracting the above two equations, we get $(\Phi(I) - \Phi(I)^*)(\Phi(I) + \Phi(I)^*) = 0$. Note that $\Phi(I) + \Phi(I)^*$ is invertible, we get $\Phi(I) = \Phi(I)^*$. Also, since $\Phi(I)(\Phi(I) + \Phi(I)^*) = 2I$, we obtain $\Phi(I)^2 = I$.

Now, defining a map $\phi : \mathcal{A} \to \mathcal{B}$ by $\phi(A) = \Phi(I)\Phi(A)$ for all $A \in \mathcal{A}$. Then $\phi(I) = I$. For all $A, B \in \mathcal{A}$, by Claim 2.8, we have

$$2\phi(A \bullet B) = \phi(A \bullet B \circ I) = \phi(A) \bullet \phi(B) \circ I = 2\phi(A) \bullet \phi(B).$$

This implies that

$$\phi(A \bullet B) = \phi(A) \bullet \phi(B),$$

for all $A, B \in \mathcal{A}$. Now by the main theorem in [2], we have that ϕ is a sum of a linear *isomorphism and a conjugate linear *-isomorphism. So $\Phi(I)\Phi$ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism. \Box

 \mathcal{A} is a factor von Neumann algebra means that its center only contains the scalar operators. It is well known that the factor von Neumann algebra \mathcal{A} is prime, in the sense that $A\mathcal{A}B = 0$ for $A, B \in \mathcal{A}$ implies either A = 0 or B = 0.

Corollary 2.12 Let \mathcal{A} and \mathcal{B} be two factor von Neumann algebras with dim $\mathcal{A} \geq 2$. Suppose that a bijective map $\Phi : \mathcal{A} \to \mathcal{B}$ satisfies

$$\Phi(A \bullet B \circ C) = \Phi(A) \bullet \Phi(B) \circ \Phi(C),$$

for all $A, B, C \in \mathcal{A}$. Then Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.

Proof Let *P* be a nontrivial projection in \mathcal{A} . Since *A* is prime, ABP = 0 for all $B \in \mathcal{A}$ implies A = 0. So Lemma 1.2 holds true for factor von Neumann algebras. It is easy to check that all

claims of Theorem 2.1 hold true for factor von Neumann algebras. Since $\Phi(I)$ is a self-adjoint central element and $\Phi(I)^2 = I$, we get $\Phi(I) = I$ or $\Phi(I) = -I$. So Φ or $-\Phi$ is a map preserving the product $A \bullet B$ on factor von Neumann algebras. Now, by the main result of [5], we have that Φ or $-\Phi$ is a *-ring isomorphism. It is easy to show that Φ or $-\Phi$ is a map preserving the absolute value. By [17, Theorem 2.5], Φ or $-\Phi$ is a linear *-isomorphism or a conjugate linear *-isomorphism. Now, we have proved the corollary. \Box

Acknowledgements We thank the referees for their time and comments.

References

- [1] M. BREŠAR. Jodran mappings of semiprime rings. J. Algebra, 1989, 127: 218-228.
- [2] Liqing DAI, Fangyan LU. Nonlinear maps preserving Jordan *-products. J. Math. Anal. Appl., 2014, 409(1): 180–188.
- [3] I. N. HERSTEIN. Jordan homomorphisms. Trans. Amer. Math. Soc., 1956, 81: 331-341.
- [4] Peisheng JI, Zhongyan LIU. Additivity of Jordan maps on standard Jordan operator algebras. Linear Algebra Appl., 2009, 430(1): 335–343.
- [5] Changjing LI, Fangyan LU. Mappings preserving new product XY + YX* on factor von Neumann algebras. Linear Algebra Appl., 2013, 438: 2339–2345.
- [6] Fangyan LU. Additivity of Jordan maps on standard operator algebras. Linear Algebra Appl., 2002, 357: 123–131.
- [7] Fangyan LU. Jordan maps on associative algebras. Comm. Algebra, 2003, 31(5): 2273–2286.
- [8] Donghua HUO, Baodong ZHENG, Hongyu LIU. Nonlinear maps preserving Jordan triple η-*-products. J. Math. Anal. Appl., 2015, 430(2): 830–844.
- [9] Changjing LI, Quanyuan CHEN, Ting WANG. Nonlinear maps preserving the Jordan triple *-product on factors. Chin. Ann. Math. Ser. B, 2018, 39(4): 633–642.
- [10] Changjing LI, Fangyan LU. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras. Complex Anal. Oper. Theory, 2017, 11(1): 109–117.
- Changjing LI, Fangyan LU. Nonlinear maps preserving the Jordan triple *-product on von Neumann algebras. Ann. Funct. Anal., 2016, 7(3): 496–507.
- [12] Zhujun YANG, Jinhua ZHANG. Nonlinear maps preserving the mixed skew Lie triple product on factor von Neumann algebras. Ann. Funct. Anal., 2019, 10: 325–336.
- [13] Zhujun YANG, Jinhua ZHANG. Nonlinear maps preserving the second mixed skew Lie triple product on factor von Neumann algebras. Linear Multilinear Algebra, 2020, 68(2): 377–390.
- [14] Yuanyuan ZHAO, Changjing LI, Quanyuan CHEN. Nonlinear maps preserving the mixed product on factors. Bull. Iran. Math. Soc., 2021, 47: 1325–1335.
- [15] Fangfang ZHAO, Changjing LI. Nonlinear maps preserving the Jordan triple *-product between factors. Indag. Math. (N.S.), 2018, 29(2): 619–627.
- [16] C. R. MIERS. Lie homomorphisms of operator algebras. Pacific J. Math., 1971, 38: 717–735.
- [17] A. TAGHAVI. Additive mappings on C*-algebras preseving absolute value. Linear Multilinear Algebra, 2012, 60: 33–38.