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Abstract In this paper, we prove that if a bijective map Φ preserves mixed Jordan triple

products between von Neumann algebras with no central abelian projections, then Φ(I)Φ is the

sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism, where Φ(I) is a self-adjoint

central element in the range with Φ(I)2 = I. Also, we give the structure of this map that

preserves mixed Jordan triple products between factor von Neumann algebras.
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1. Introduction

Let A and B be two ∗-algebras over the complex field C. For A,B ∈ A, define the Jordan

product of A and B by A ◦ B = AB + BA and the Jordan ∗-product of A and B by A •
B = AB + BA∗. We say that a map Φ : A → B preserves mixed Jordan triple product if

Φ(A •B ◦ C) = Φ(A) • Φ(B) ◦ Φ(C) for all A,B,C ∈ A. This kind of maps are related to maps

preserving Jordan product and maps preserving Jordan ∗-product which have been studied by

many authors [1–7].

Recently, many authors studied the nonlinear maps preserving some mixed products [8–15].

For example, Li et al. studied the nonlinear maps preserving skew Lie triple products [[A,B]∗, C]∗

(see [9,11]) and Jordan triple ∗-products A•B •C (see [10,15]) on von Neumann algebras. Yang

and Zhang in [12, 13] studied the nonlinear maps preserving mixed skew Lie triple products

[[A,B]∗, C] and [[A,B], C]∗ on factor von Neumann algebras. In the present paper, we will

establish the structure of nonlinear maps preserving mixed Jordan triple products A •B ◦ C on

von Neumann algebras.

Before stating the main results, we need some notations and preliminaries. A von Neumann

algebra A is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing

the identity operator I. The set Z(A) = {S ∈ A : ST = TS for all T ∈ A} is called the center

of A. A projection P is called a central abelian projection if P ∈ Z(A) and PAP is abelian.
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Recall that the central carrier of A, denoted by A, is the smallest central projection P satisfying

PA = A. It is not difficult to see that the central carrier of A is the projection onto the closed

subspace spanned by {BA(x) : B ∈ A, x ∈ H}. If A is self-adjoint, then the core of A, denoted

by A, is sup{S ∈ Z(A) : S = S∗, S ≤ A}. If P is a projection, it is clear that P is the largest

central projection Q satisfying Q ≤ P. A projection P is said to be core-free if P = 0. It is easy

to see that P = 0 if and only if I − P = I.

Lemma 1.1 ([16]) Let A be a von Neumann algebra with no central abelian projections. Then

there exists a projection P ∈ A such that P = 0 and P = I.

Lemma 1.2 ([2]) Let A be a von Neumann algebra and P be a projection in A with P = I. If

ABP = 0 for all B ∈ A, then A = 0.

Lemma 1.3 ([5]) LetA be a von Neumann algebra and A be an element inA. Then AB+BA∗ =

0 for all B ∈ A implies that A = −A∗ ∈ Z(A).

2. Main results

Our main result in this paper reads as follows.

Theorem 2.1 Let A and B be two von Neumann algebras with no central abelian projections.

Suppose that a bijective map Φ : A → B satisfies

Φ(A •B ◦ C) = Φ(A) • Φ(B) ◦ Φ(C),

for all A,B,C ∈ A. Then the map Φ(I)Φ is the sum of a linear ∗-isomorphism and a conjugate

linear ∗-isomorphism, where Φ(I) is a self-adjoint central element in B with Φ(I)2 = I.

Proof First we give a key technique. Suppose that A1, A2, . . . , An and T are in A such that

Φ(T ) =
∑n

i=1 Φ(Ai). Then for all S1, S2 ∈ A, we have

Φ(S1 • S2 ◦ T ) = Φ(S1) • Φ(S2) ◦ Φ(T ) =
n∑

i=1

Φ(S1 • S2 ◦Ai), (2.1)

Φ(S1 • T ◦ S2) = Φ(S1) • Φ(T ) ◦ Φ(S2) =
n∑

i=1

Φ(S1 •Ai ◦ S2) (2.2)

and

Φ(T • S1 ◦ S2) = Φ(T ) • Φ(S1) ◦ Φ(S2) =
n∑

i=1

Φ(Ai • S1 ◦ S2). (2.3)

By Lemma 1.1, there exists a projection P such that P = 0 and P = I. Let P1 = P and

P2 = I − P . Denote Aij = PiAPj . Then A =
∑2

i,j=1 Aij . In all that follows, when we write

Aij , it indicates that Aij ∈ Aij . The proof will be organized in some claims. In the following,

we will show the additivity of Φ.

Claim 2.2 Φ(0) = 0.
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Since Φ is surjective, there exists A ∈ A such that Φ(A) = 0. So

Φ(0) = Φ(0 •A ◦A) = Φ(0) • 0 ◦ 0 = 0.

Claim 2.3 For every A12 ∈ A12, B21 ∈ A21, we have

Φ(A12 +B21) = Φ(A12) + Φ(B21).

Choose T =
∑2

i,j=1 Tij ∈ A such that Φ(T ) = Φ(A12) + Φ(B21). Since

(P2 − P1) • I ◦A12 = (P2 − P1) • I ◦B21 = 0,

it follows from Eq. (2.1) and Claim 2.2 that

Φ((P2 − P1) • I ◦ T ) = 0.

From this, we get (P2 −P1) • I ◦ T = 0. So T11 = T22 = 0. Since A12 •P1 ◦ I = 0, it follows from

Eq. (2.3) that

Φ(T • P1 ◦ I) = Φ(B21 • P1 ◦ I).

By the injectivity of Φ, we obtain

2(P1T
∗ + TP1) = T • P1 ◦ I = B21 • P1 ◦ I = 2(B∗

21 +B21).

Hence T21 = B21. Similarly, T12 = A12, proving the claim.

Claim 2.4 For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, D22 ∈ A22, we have

Φ(A11 +B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21)

and

Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Choose T =
∑2

i,j=1 Tij ∈ A such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21).

It follows from Eq. (2.1) and Claim 2.3 that

Φ(2(P2T + TP2)) = Φ(P2 • I ◦ T )

= Φ(P2 • I ◦A11) + Φ(P2 • I ◦B12) + Φ(P2 • I ◦ C21)

= Φ(2B12) + Φ(2C21) = Φ(2(B12 + C21)).

Thus P2T + TP2 = B12 + C21, which implies that T22 = 0, T12 = B12, T21 = C21. Now we get

T = T11 +B12 + C21. Since

(P2 − P1) • I ◦B12 = (P2 − P1) • I ◦ C21 = 0,

it follows from Eq. (2.1) that

Φ((P2 − P1) • I ◦ T ) = Φ((P2 − P1) • I ◦A11),

from which we get T11 = A11. Consequently, Φ(A11 +B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21).

Similarly, we can get that Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).
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Claim 2.5 For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, D22 ∈ A22, we have

Φ(A11 +B12 + C21 +D22) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

Choose T =
∑2

i,j=1 Tij ∈ A such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

It follows from Eq. (2.1) and Claim 2.4 that

Φ(2(P1T + TP1)) = Φ(P1 • I ◦ T )

= Φ(P1 • I ◦A11) + Φ(P1 • I ◦B12) + Φ(P1 • I ◦ C21) + Φ(P1 • I ◦D22)

= Φ(4A11) + Φ(2B12) + Φ(2C21)

= Φ(2(2A11 +B12 + C21)).

Thus

P1T + TP1 = 2A11 +B12 + C21

and then T11 = A11, T12 = B12, T21 = C21. Similarly, we can get

Φ(2(P2T + TP2)) = Φ(2(B12 + C21 + 2D22)).

From this, we get T22 = D22, proving the claim.

Claim 2.6 For every Ajk, Bjk ∈ Ajk, 1 ≤ j ̸= k ≤ 2, we have

Φ(Ajk +Bjk) = Φ(Ajk) + Φ(Bjk).

For every Ajk, Bjk ∈ Ajk, since

I

2
• (Pj +Ajk) ◦ (Pk +Bjk) = Ajk +Bjk,

we get from Claim 2.5 that

Φ(Ajk +Bjk) = Φ(
I

2
• (Pj +Ajk) ◦ (Pk +Bjk))

= Φ(
I

2
) • Φ(Pj +Ajk) ◦ Φ(Pk +Bjk)

= Φ(
I

2
) • (Φ(Pj) + Φ(Ajk)) ◦ (Φ(Pk) + Φ(Bjk))

= Φ(
I

2
) • Φ(Pj) ◦ Φ(Pk) + Φ(

I

2
) • Φ(Pj) ◦ Φ(Bjk)+

Φ(
I

2
) • Φ(Ajk) ◦ Φ(Pk) + Φ(

I

2
) • Φ(Ajk) ◦ Φ(Bjk)

= Φ(Bjk) + Φ(Ajk),

which implies that Φ(Ajk +Bjk) = Φ(Ajk) + Φ(Bjk).

Claim 2.7 For every Ajj , Bjj ∈ Ajj , 1 ≤ j ≤ 2, we have

Φ(Ajj +Bjj) = Φ(Ajj) + Φ(Bjj).
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Let T =
∑2

i,j=1 Tij ∈ A such that

Φ(T ) = Φ(Ajj) + Φ(Bjj).

For 1 ≤ j ̸= k ≤ 2, it follows from Eq. (2.1) that

Φ(Pk • I ◦ T ) = Φ(Pk • I ◦Ajj) + Φ(Pk • I ◦Bjj) = 0.

Hence PkT + TPk = 0, which implies Tjk = Tkj = Tkk = 0. Now we get T = Tjj . For every

Cjk ∈ Ajk, j ̸= k, it follows that

Φ(2TjjCjk) = Φ(Pj • Tjj ◦ Cjk)

= Φ(Pj •Ajj ◦ Cjk) + Φ(Pj •Bjj ◦ Cjk)

= Φ(2AjjCjk) + Φ(2BjjCjk)

= Φ(2(AjjCjk +BjjCjk)).

Hence

(Tjj −Ajj −Bjj)Cjk = 0,

for all Cjk ∈ Ajk, that is, (Tjj − Ajj − Bjj)CPk = 0 for all C ∈ A. It follows from Lemma 1.2

that Tjj = Ajj +Bjj , proving the claim.

Claim 2.8 Φ is additive.

Let A =
∑2

i,j=1 Aij , B =
∑2

i,j=1 Bij ∈ A. By Claims 2.5–2.7, we have

Φ(A+B) = Φ
( 2∑

i,j=1

Aij +
2∑

i,j=1

Bij

)
= Φ

( 2∑
i,j=1

(Aij +Bij)
)

=
2∑

i,j=1

Φ(Aij +Bij) =
2∑

i,j=1

Φ(Aij) +
2∑

i,j=1

Φ(Bij)

= Φ
( 2∑

i,j=1

Aij

)
+Φ

( 2∑
i,j=1

Bij

)
= Φ(A) + Φ(B).

Claim 2.9 For each A ∈ A, A = −A∗ if and only if Φ(A) = −Φ(A)∗.

Let A ∈ A be arbitrary. Since Φ is surjective, there exists B ∈ A such that Φ(B) = I. Then

0 = Φ(iI •A ◦B) = Φ(iI) • Φ(A) ◦ I

= 2(Φ(iI)Φ(A) + Φ(A)Φ(iI)∗)

holds true for all A ∈ A. So Φ(iI)C + CΦ(iI)∗ = 0 holds true for all C ∈ B. It follows from

Lemma 1.3 that Φ(iI) = −Φ(iI)∗ ∈ Z(B). Similarly, Φ−1(iI) ∈ Z(A).

Let A = −A∗ ∈ A and Φ(B) = I. It follows that

0 = Φ(A • Φ−1(iI) ◦B) = Φ(A) • (iI) ◦ I = 2i(Φ(A) + Φ(A)∗).

This implies that Φ(A) = −Φ(A)∗. Similarly, if Φ(A) = −Φ(A)∗, then

0 = Φ−1(Φ(A) • Φ(iI) ◦ Φ(I)) = A • (iI) ◦ I = 2i(A+A∗),



Nonlinear maps preserving mixed Jordan triple products on von Neumann algebras 379

and so A = −A∗.

Claim 2.10 Φ(Z(A)) = Z(B).
Let Z ∈ Z(A) be arbitrary and Φ(B) = I. For every A = −A∗ ∈ A, we have

0 = Φ(A • Z ◦B) = Φ(A) • Φ(Z) ◦ I = 2(Φ(A)Φ(Z) + Φ(Z)Φ(A)∗).

That is Φ(A)Φ(Z) = −Φ(Z)Φ(A)∗ holds true for all A = −A∗ ∈ A. Since Φ preservers conjugate

self-adjoint elements, it follows that CΦ(Z) = Φ(Z)C holds true for all C = −C∗ ∈ B. Since

for every C ∈ B, we have C = C1 + iC2, where C1 = C−C∗

2 and C2 = C+C∗

2i are conjugate

self-adjoint elements. Hence CΦ(Z) = Φ(Z)C holds true for all C ∈ A. Then Φ(Z) ∈ Z(B),
which implies that Φ(Z(A)) ⊆ Z(B). Thus Φ(Z(A)) = Z(B) by considering Φ−1.

Claim 2.11 Φ(I) is a self-adjoint central element in B with Φ(I)2 = I.

Let Φ(B) = I. Since Φ(I) ∈ Z(B), by Claim 2.8, we have

4I = 4Φ(B) = Φ(I • I ◦B) = Φ(I) • Φ(I) ◦ I = 2Φ(I)(Φ(I) + Φ(I)∗),

that is Φ(I)(Φ(I) + Φ(I)∗) = 2I. Taking the adjoint, we have Φ(I)∗(Φ(I) + Φ(I)∗) = 2I.

Subtracting the above two equations, we get (Φ(I) − Φ(I)∗)(Φ(I) + Φ(I)∗) = 0. Note that

Φ(I) +Φ(I)∗ is invertible, we get Φ(I) = Φ(I)∗. Also, since Φ(I)(Φ(I) +Φ(I)∗) = 2I, we obtain

Φ(I)2 = I.

Now, defining a map ϕ : A → B by ϕ(A) = Φ(I)Φ(A) for all A ∈ A. Then ϕ(I) = I. For all

A,B ∈ A, by Claim 2.8, we have

2ϕ(A •B) = ϕ(A •B ◦ I) = ϕ(A) • ϕ(B) ◦ I = 2ϕ(A) • ϕ(B).

This implies that

ϕ(A •B) = ϕ(A) • ϕ(B),

for all A,B ∈ A. Now by the main theorem in [2], we have that ϕ is a sum of a linear ∗-
isomorphism and a conjugate linear ∗-isomorphism. So Φ(I)Φ is a sum of a linear ∗-isomorphism

and a conjugate linear ∗-isomorphism. 2
A is a factor von Neumann algebra means that its center only contains the scalar operators.

It is well known that the factor von Neumann algebra A is prime, in the sense that AAB = 0

for A,B ∈ A implies either A = 0 or B = 0.

Corollary 2.12 Let A and B be two factor von Neumann algebras with dimA ≥ 2. Suppose

that a bijective map Φ : A → B satisfies

Φ(A •B ◦ C) = Φ(A) • Φ(B) ◦ Φ(C),

for all A,B,C ∈ A. Then Φ is a linear ∗-isomorphism, or a conjugate linear ∗-isomorphism, or

the negative of a linear ∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism.

Proof Let P be a nontrivial projection in A. Since A is prime, ABP = 0 for all B ∈ A implies

A = 0. So Lemma 1.2 holds true for factor von Neumann algebras. It is easy to check that all
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claims of Theorem 2.1 hold true for factor von Neumann algebras. Since Φ(I) is a self-adjoint

central element and Φ(I)2 = I, we get Φ(I) = I or Φ(I) = −I. So Φ or −Φ is a map preserving

the product A • B on factor von Neumann algebras. Now, by the main result of [5], we have

that Φ or −Φ is a ∗-ring isomorphism. It is easy to show that Φ or −Φ is a map preserving the

absolute value. By [17, Theorem 2.5], Φ or −Φ is a linear ∗-isomorphism or a conjugate linear

∗-isomorphism. Now, we have proved the corollary. 2
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