Nonlinear Maps Preserving Mixed Jordan Triple Products on von Neumann Algebras

Dongfang ZHANG, Changjing LI*, Yuanyuan ZHAO
School of Mathematics and Statistics, Shandong Normal University, Shandong 250014, P. R. China

Abstract

In this paper, we prove that if a bijective map Φ preserves mixed Jordan triple products between von Neumann algebras with no central abelian projections, then $\Phi(I) \Phi$ is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism, where $\Phi(I)$ is a self-adjoint central element in the range with $\Phi(I)^{2}=I$. Also, we give the structure of this map that preserves mixed Jordan triple products between factor von Neumann algebras.

Keywords mixed Jordan triple product; isomorphism; von Neumann algebras
MR(2020) Subject Classification 46L10; 47B49

1. Introduction

Let \mathcal{A} and \mathcal{B} be two $*$-algebras over the complex field \mathbb{C}. For $A, B \in \mathcal{A}$, define the Jordan product of A and B by $A \circ B=A B+B A$ and the Jordan $*$-product of A and B by $A \bullet$ $B=A B+B A^{*}$. We say that a map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ preserves mixed Jordan triple product if $\Phi(A \bullet B \circ C)=\Phi(A) \bullet \Phi(B) \circ \Phi(C)$ for all $A, B, C \in \mathcal{A}$. This kind of maps are related to maps preserving Jordan product and maps preserving Jordan $*$-product which have been studied by many authors [1-7].

Recently, many authors studied the nonlinear maps preserving some mixed products [8-15]. For example, Li et al. studied the nonlinear maps preserving skew Lie triple products $\left[[A, B]_{*}, C\right]_{*}$ (see $[9,11]$) and Jordan triple $*$-products $A \bullet B \bullet C$ (see [10,15]) on von Neumann algebras. Yang and Zhang in $[12,13]$ studied the nonlinear maps preserving mixed skew Lie triple products $\left[[A, B]_{*}, C\right]$ and $[[A, B], C]_{*}$ on factor von Neumann algebras. In the present paper, we will establish the structure of nonlinear maps preserving mixed Jordan triple products $A \bullet B \circ C$ on von Neumann algebras.

Before stating the main results, we need some notations and preliminaries. A von Neumann algebra \mathcal{A} is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I. The set $\mathcal{Z}(\mathcal{A})=\{S \in \mathcal{A}: S T=T S$ for all $T \in \mathcal{A}\}$ is called the center of \mathcal{A}. A projection P is called a central abelian projection if $P \in \mathcal{Z}(\mathcal{A})$ and $P \mathcal{A} P$ is abelian.

[^0]Recall that the central carrier of A, denoted by \bar{A}, is the smallest central projection P satisfying $P A=A$. It is not difficult to see that the central carrier of A is the projection onto the closed subspace spanned by $\{B A(x): B \in \mathcal{A}, x \in H\}$. If A is self-adjoint, then the core of A, denoted by \underline{A}, is $\sup \left\{S \in \mathcal{Z}(\mathcal{A}): S=S^{*}, S \leq A\right\}$. If P is a projection, it is clear that \underline{P} is the largest central projection Q satisfying $Q \leq P$. A projection P is said to be core-free if $\underline{P}=0$. It is easy to see that $\underline{P}=0$ if and only if $\overline{I-P}=I$.

Lemma 1.1 ([16]) Let \mathcal{A} be a von Neumann algebra with no central abelian projections. Then there exists a projection $P \in \mathcal{A}$ such that $\underline{P}=0$ and $\bar{P}=I$.

Lemma 1.2 ([2]) Let \mathcal{A} be a von Neumann algebra and P be a projection in \mathcal{A} with $\bar{P}=I$. If $A B P=0$ for all $B \in \mathcal{A}$, then $A=0$.

Lemma 1.3 ([5]) Let \mathcal{A} be a von Neumann algebra and A be an element in \mathcal{A}. Then $A B+B A^{*}=$ 0 for all $B \in \mathcal{A}$ implies that $A=-A^{*} \in \mathcal{Z}(\mathcal{A})$.

2. Main results

Our main result in this paper reads as follows.
Theorem 2.1 Let \mathcal{A} and \mathcal{B} be two von Neumann algebras with no central abelian projections. Suppose that a bijective map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ satisfies

$$
\Phi(A \bullet B \circ C)=\Phi(A) \bullet \Phi(B) \circ \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$. Then the map $\Phi(I) \Phi$ is the sum of a linear $*$-isomorphism and a conjugate linear $*$-isomorphism, where $\Phi(I)$ is a self-adjoint central element in \mathcal{B} with $\Phi(I)^{2}=I$.

Proof First we give a key technique. Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ and T are in \mathcal{A} such that $\Phi(T)=\sum_{i=1}^{n} \Phi\left(A_{i}\right)$. Then for all $S_{1}, S_{2} \in \mathcal{A}$, we have

$$
\begin{align*}
& \Phi\left(S_{1} \bullet S_{2} \circ T\right)=\Phi\left(S_{1}\right) \bullet \Phi\left(S_{2}\right) \circ \Phi(T)=\sum_{i=1}^{n} \Phi\left(S_{1} \bullet S_{2} \circ A_{i}\right) \tag{2.1}\\
& \Phi\left(S_{1} \bullet T \circ S_{2}\right)=\Phi\left(S_{1}\right) \bullet \Phi(T) \circ \Phi\left(S_{2}\right)=\sum_{i=1}^{n} \Phi\left(S_{1} \bullet A_{i} \circ S_{2}\right) \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi\left(T \bullet S_{1} \circ S_{2}\right)=\Phi(T) \bullet \Phi\left(S_{1}\right) \circ \Phi\left(S_{2}\right)=\sum_{i=1}^{n} \Phi\left(A_{i} \bullet S_{1} \circ S_{2}\right) \tag{2.3}
\end{equation*}
$$

By Lemma 1.1, there exists a projection P such that $\underline{P}=0$ and $\bar{P}=I$. Let $P_{1}=P$ and $P_{2}=I-P$. Denote $\mathcal{A}_{i j}=P_{i} \mathcal{A} P_{j}$. Then $\mathcal{A}=\sum_{i, j=1}^{2} \mathcal{A}_{i j}$. In all that follows, when we write $A_{i j}$, it indicates that $A_{i j} \in \mathcal{A}_{i j}$. The proof will be organized in some claims. In the following, we will show the additivity of Φ.

Claim 2.2 $\Phi(0)=0$.

Since Φ is surjective, there exists $A \in \mathcal{A}$ such that $\Phi(A)=0$. So

$$
\Phi(0)=\Phi(0 \bullet A \circ A)=\Phi(0) \bullet 0 \circ 0=0
$$

Claim 2.3 For every $A_{12} \in \mathcal{A}_{12}, B_{21} \in \mathcal{A}_{21}$, we have

$$
\Phi\left(A_{12}+B_{21}\right)=\Phi\left(A_{12}\right)+\Phi\left(B_{21}\right) .
$$

Choose $T=\sum_{i, j=1}^{2} T_{i j} \in \mathcal{A}$ such that $\Phi(T)=\Phi\left(A_{12}\right)+\Phi\left(B_{21}\right)$. Since

$$
\left(P_{2}-P_{1}\right) \bullet I \circ A_{12}=\left(P_{2}-P_{1}\right) \bullet I \circ B_{21}=0
$$

it follows from Eq. (2.1) and Claim 2.2 that

$$
\Phi\left(\left(P_{2}-P_{1}\right) \bullet I \circ T\right)=0
$$

From this, we get $\left(P_{2}-P_{1}\right) \bullet I \circ T=0$. So $T_{11}=T_{22}=0$. Since $A_{12} \bullet P_{1} \circ I=0$, it follows from Eq. (2.3) that

$$
\Phi\left(T \bullet P_{1} \circ I\right)=\Phi\left(B_{21} \bullet P_{1} \circ I\right) .
$$

By the injectivity of Φ, we obtain

$$
2\left(P_{1} T^{*}+T P_{1}\right)=T \bullet P_{1} \circ I=B_{21} \bullet P_{1} \circ I=2\left(B_{21}^{*}+B_{21}\right)
$$

Hence $T_{21}=B_{21}$. Similarly, $T_{12}=A_{12}$, proving the claim.
Claim 2.4 For every $A_{11} \in \mathcal{A}_{11}, B_{12} \in \mathcal{A}_{12}, C_{21} \in \mathcal{A}_{21}, D_{22} \in \mathcal{A}_{22}$, we have

$$
\Phi\left(A_{11}+B_{12}+C_{21}\right)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)
$$

and

$$
\Phi\left(B_{12}+C_{21}+D_{22}\right)=\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)+\Phi\left(D_{22}\right)
$$

Choose $T=\sum_{i, j=1}^{2} T_{i j} \in \mathcal{A}$ such that

$$
\Phi(T)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)
$$

It follows from Eq. (2.1) and Claim 2.3 that

$$
\begin{aligned}
\Phi\left(2\left(P_{2} T+T P_{2}\right)\right) & =\Phi\left(P_{2} \bullet I \circ T\right) \\
& =\Phi\left(P_{2} \bullet I \circ A_{11}\right)+\Phi\left(P_{2} \bullet I \circ B_{12}\right)+\Phi\left(P_{2} \bullet I \circ C_{21}\right) \\
& =\Phi\left(2 B_{12}\right)+\Phi\left(2 C_{21}\right)=\Phi\left(2\left(B_{12}+C_{21}\right)\right) .
\end{aligned}
$$

Thus $P_{2} T+T P_{2}=B_{12}+C_{21}$, which implies that $T_{22}=0, T_{12}=B_{12}, T_{21}=C_{21}$. Now we get $T=T_{11}+B_{12}+C_{21}$. Since

$$
\left(P_{2}-P_{1}\right) \bullet I \circ B_{12}=\left(P_{2}-P_{1}\right) \bullet I \circ C_{21}=0,
$$

it follows from Eq. (2.1) that

$$
\Phi\left(\left(P_{2}-P_{1}\right) \bullet I \circ T\right)=\Phi\left(\left(P_{2}-P_{1}\right) \bullet I \circ A_{11}\right),
$$

from which we get $T_{11}=A_{11}$. Consequently, $\Phi\left(A_{11}+B_{12}+C_{21}\right)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)$. Similarly, we can get that $\Phi\left(B_{12}+C_{21}+D_{22}\right)=\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)+\Phi\left(D_{22}\right)$.

Claim 2.5 For every $A_{11} \in \mathcal{A}_{11}, B_{12} \in \mathcal{A}_{12}, C_{21} \in \mathcal{A}_{21}, D_{22} \in \mathcal{A}_{22}$, we have

$$
\Phi\left(A_{11}+B_{12}+C_{21}+D_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)+\Phi\left(D_{22}\right)
$$

Choose $T=\sum_{i, j=1}^{2} T_{i j} \in \mathcal{A}$ such that

$$
\Phi(T)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{21}\right)+\Phi\left(D_{22}\right)
$$

It follows from Eq. (2.1) and Claim 2.4 that

$$
\begin{aligned}
\Phi\left(2\left(P_{1} T+T P_{1}\right)\right) & =\Phi\left(P_{1} \bullet I \circ T\right) \\
& =\Phi\left(P_{1} \bullet I \circ A_{11}\right)+\Phi\left(P_{1} \bullet I \circ B_{12}\right)+\Phi\left(P_{1} \bullet I \circ C_{21}\right)+\Phi\left(P_{1} \bullet I \circ D_{22}\right) \\
& =\Phi\left(4 A_{11}\right)+\Phi\left(2 B_{12}\right)+\Phi\left(2 C_{21}\right) \\
& =\Phi\left(2\left(2 A_{11}+B_{12}+C_{21}\right)\right) .
\end{aligned}
$$

Thus

$$
P_{1} T+T P_{1}=2 A_{11}+B_{12}+C_{21}
$$

and then $T_{11}=A_{11}, T_{12}=B_{12}, T_{21}=C_{21}$. Similarly, we can get

$$
\Phi\left(2\left(P_{2} T+T P_{2}\right)\right)=\Phi\left(2\left(B_{12}+C_{21}+2 D_{22}\right)\right)
$$

From this, we get $T_{22}=D_{22}$, proving the claim.
Claim 2.6 For every $A_{j k}, B_{j k} \in \mathcal{A}_{j k}, 1 \leq j \neq k \leq 2$, we have

$$
\Phi\left(A_{j k}+B_{j k}\right)=\Phi\left(A_{j k}\right)+\Phi\left(B_{j k}\right)
$$

For every $A_{j k}, B_{j k} \in \mathcal{A}_{j k}$, since

$$
\frac{I}{2} \bullet\left(P_{j}+A_{j k}\right) \circ\left(P_{k}+B_{j k}\right)=A_{j k}+B_{j k}
$$

we get from Claim 2.5 that

$$
\begin{aligned}
\Phi(& \left.A_{j k}+B_{j k}\right)=\Phi\left(\frac{I}{2} \bullet\left(P_{j}+A_{j k}\right) \circ\left(P_{k}+B_{j k}\right)\right) \\
= & \Phi\left(\frac{I}{2}\right) \bullet \Phi\left(P_{j}+A_{j k}\right) \circ \Phi\left(P_{k}+B_{j k}\right) \\
= & \Phi\left(\frac{I}{2}\right) \bullet\left(\Phi\left(P_{j}\right)+\Phi\left(A_{j k}\right)\right) \circ\left(\Phi\left(P_{k}\right)+\Phi\left(B_{j k}\right)\right) \\
= & \Phi\left(\frac{I}{2}\right) \bullet \Phi\left(P_{j}\right) \circ \Phi\left(P_{k}\right)+\Phi\left(\frac{I}{2}\right) \bullet \Phi\left(P_{j}\right) \circ \Phi\left(B_{j k}\right)+ \\
& \Phi\left(\frac{I}{2}\right) \bullet \Phi\left(A_{j k}\right) \circ \Phi\left(P_{k}\right)+\Phi\left(\frac{I}{2}\right) \bullet \Phi\left(A_{j k}\right) \circ \Phi\left(B_{j k}\right) \\
= & \Phi\left(B_{j k}\right)+\Phi\left(A_{j k}\right),
\end{aligned}
$$

which implies that $\Phi\left(A_{j k}+B_{j k}\right)=\Phi\left(A_{j k}\right)+\Phi\left(B_{j k}\right)$.
Claim 2.7 For every $A_{j j}, B_{j j} \in \mathcal{A}_{j j}, 1 \leq j \leq 2$, we have

$$
\Phi\left(A_{j j}+B_{j j}\right)=\Phi\left(A_{j j}\right)+\Phi\left(B_{j j}\right)
$$

Let $T=\sum_{i, j=1}^{2} T_{i j} \in \mathcal{A}$ such that

$$
\Phi(T)=\Phi\left(A_{j j}\right)+\Phi\left(B_{j j}\right)
$$

For $1 \leq j \neq k \leq 2$, it follows from Eq. (2.1) that

$$
\Phi\left(P_{k} \bullet I \circ T\right)=\Phi\left(P_{k} \bullet I \circ A_{j j}\right)+\Phi\left(P_{k} \bullet I \circ B_{j j}\right)=0
$$

Hence $P_{k} T+T P_{k}=0$, which implies $T_{j k}=T_{k j}=T_{k k}=0$. Now we get $T=T_{j j}$. For every $C_{j k} \in \mathcal{A}_{j k}, j \neq k$, it follows that

$$
\begin{aligned}
\Phi\left(2 T_{j j} C_{j k}\right) & =\Phi\left(P_{j} \bullet T_{j j} \circ C_{j k}\right) \\
& =\Phi\left(P_{j} \bullet A_{j j} \circ C_{j k}\right)+\Phi\left(P_{j} \bullet B_{j j} \circ C_{j k}\right) \\
& =\Phi\left(2 A_{j j} C_{j k}\right)+\Phi\left(2 B_{j j} C_{j k}\right) \\
& =\Phi\left(2\left(A_{j j} C_{j k}+B_{j j} C_{j k}\right)\right) .
\end{aligned}
$$

Hence

$$
\left(T_{j j}-A_{j j}-B_{j j}\right) C_{j k}=0
$$

for all $C_{j k} \in \mathcal{A}_{j k}$, that is, $\left(T_{j j}-A_{j j}-B_{j j}\right) C P_{k}=0$ for all $C \in \mathcal{A}$. It follows from Lemma 1.2 that $T_{j j}=A_{j j}+B_{j j}$, proving the claim.

Claim 2.8 Φ is additive.
Let $A=\sum_{i, j=1}^{2} A_{i j}, B=\sum_{i, j=1}^{2} B_{i j} \in \mathcal{A}$. By Claims 2.5-2.7, we have

$$
\begin{aligned}
\Phi(A+B) & =\Phi\left(\sum_{i, j=1}^{2} A_{i j}+\sum_{i, j=1}^{2} B_{i j}\right)=\Phi\left(\sum_{i, j=1}^{2}\left(A_{i j}+B_{i j}\right)\right) \\
& =\sum_{i, j=1}^{2} \Phi\left(A_{i j}+B_{i j}\right)=\sum_{i, j=1}^{2} \Phi\left(A_{i j}\right)+\sum_{i, j=1}^{2} \Phi\left(B_{i j}\right) \\
& =\Phi\left(\sum_{i, j=1}^{2} A_{i j}\right)+\Phi\left(\sum_{i, j=1}^{2} B_{i j}\right)=\Phi(A)+\Phi(B)
\end{aligned}
$$

Claim 2.9 For each $A \in \mathcal{A}, A=-A^{*}$ if and only if $\Phi(A)=-\Phi(A)^{*}$.
Let $A \in \mathcal{A}$ be arbitrary. Since Φ is surjective, there exists $B \in \mathcal{A}$ such that $\Phi(B)=I$. Then

$$
\begin{aligned}
0 & =\Phi(i I \bullet A \circ B)=\Phi(i I) \bullet \Phi(A) \circ I \\
& =2\left(\Phi(i I) \Phi(A)+\Phi(A) \Phi(i I)^{*}\right)
\end{aligned}
$$

holds true for all $A \in \mathcal{A}$. So $\Phi(i I) C+C \Phi(i I)^{*}=0$ holds true for all $C \in \mathcal{B}$. It follows from Lemma 1.3 that $\Phi(i I)=-\Phi(i I)^{*} \in \mathcal{Z}(\mathcal{B})$. Similarly, $\Phi^{-1}(i I) \in \mathcal{Z}(\mathcal{A})$.

Let $A=-A^{*} \in \mathcal{A}$ and $\Phi(B)=I$. It follows that

$$
0=\Phi\left(A \bullet \Phi^{-1}(i I) \circ B\right)=\Phi(A) \bullet(i I) \circ I=2 i\left(\Phi(A)+\Phi(A)^{*}\right)
$$

This implies that $\Phi(A)=-\Phi(A)^{*}$. Similarly, if $\Phi(A)=-\Phi(A)^{*}$, then

$$
0=\Phi^{-1}(\Phi(A) \bullet \Phi(i I) \circ \Phi(I))=A \bullet(i I) \circ I=2 i\left(A+A^{*}\right)
$$

and so $A=-A^{*}$.
Claim $2.10 \quad \Phi(\mathcal{Z}(\mathcal{A}))=\mathcal{Z}(\mathcal{B})$.
Let $Z \in \mathcal{Z}(\mathcal{A})$ be arbitrary and $\Phi(B)=I$. For every $A=-A^{*} \in \mathcal{A}$, we have

$$
0=\Phi(A \bullet Z \circ B)=\Phi(A) \bullet \Phi(Z) \circ I=2\left(\Phi(A) \Phi(Z)+\Phi(Z) \Phi(A)^{*}\right) .
$$

That is $\Phi(A) \Phi(Z)=-\Phi(Z) \Phi(A)^{*}$ holds true for all $A=-A^{*} \in \mathcal{A}$. Since Φ preservers conjugate self-adjoint elements, it follows that $C \Phi(Z)=\Phi(Z) C$ holds true for all $C=-C^{*} \in \mathcal{B}$. Since for every $C \in \mathcal{B}$, we have $C=C_{1}+i C_{2}$, where $C_{1}=\frac{C-C^{*}}{2}$ and $C_{2}=\frac{C+C^{*}}{2 i}$ are conjugate self-adjoint elements. Hence $C \Phi(Z)=\Phi(Z) C$ holds true for all $C \in \mathcal{A}$. Then $\Phi(Z) \in \mathcal{Z}(\mathcal{B})$, which implies that $\Phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{B})$. Thus $\Phi(\mathcal{Z}(\mathcal{A}))=\mathcal{Z}(\mathcal{B})$ by considering Φ^{-1}.

Claim 2.11 $\Phi(I)$ is a self-adjoint central element in \mathcal{B} with $\Phi(I)^{2}=I$.
Let $\Phi(B)=I$. Since $\Phi(I) \in \mathcal{Z}(\mathcal{B})$, by Claim 2.8, we have

$$
4 I=4 \Phi(B)=\Phi(I \bullet I \circ B)=\Phi(I) \bullet \Phi(I) \circ I=2 \Phi(I)\left(\Phi(I)+\Phi(I)^{*}\right),
$$

that is $\Phi(I)\left(\Phi(I)+\Phi(I)^{*}\right)=2 I$. Taking the adjoint, we have $\Phi(I)^{*}\left(\Phi(I)+\Phi(I)^{*}\right)=2 I$. Subtracting the above two equations, we get $\left(\Phi(I)-\Phi(I)^{*}\right)\left(\Phi(I)+\Phi(I)^{*}\right)=0$. Note that $\Phi(I)+\Phi(I)^{*}$ is invertible, we get $\Phi(I)=\Phi(I)^{*}$. Also, since $\Phi(I)\left(\Phi(I)+\Phi(I)^{*}\right)=2 I$, we obtain $\Phi(I)^{2}=I$.

Now, defining a map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ by $\phi(A)=\Phi(I) \Phi(A)$ for all $A \in \mathcal{A}$. Then $\phi(I)=I$. For all $A, B \in \mathcal{A}$, by Claim 2.8, we have

$$
2 \phi(A \bullet B)=\phi(A \bullet B \circ I)=\phi(A) \bullet \phi(B) \circ I=2 \phi(A) \bullet \phi(B) .
$$

This implies that

$$
\phi(A \bullet B)=\phi(A) \bullet \phi(B),
$$

for all $A, B \in \mathcal{A}$. Now by the main theorem in [2], we have that ϕ is a sum of a linear $*-$ isomorphism and a conjugate linear $*$-isomorphism. So $\Phi(I) \Phi$ is a sum of a linear *-isomorphism and a conjugate linear $*$-isomorphism.
\mathcal{A} is a factor von Neumann algebra means that its center only contains the scalar operators. It is well known that the factor von Neumann algebra \mathcal{A} is prime, in the sense that $A \mathcal{A} B=0$ for $A, B \in \mathcal{A}$ implies either $A=0$ or $B=0$.

Corollary 2.12 Let \mathcal{A} and \mathcal{B} be two factor von Neumann algebras with $\operatorname{dim} \mathcal{A} \geq 2$. Suppose that a bijective map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ satisfies

$$
\Phi(A \bullet B \circ C)=\Phi(A) \bullet \Phi(B) \circ \Phi(C),
$$

for all $A, B, C \in \mathcal{A}$. Then Φ is a linear $*$-isomorphism, or a conjugate linear $*$-isomorphism, or the negative of a linear $*$-isomorphism, or the negative of a conjugate linear $*$-isomorphism.

Proof Let P be a nontrivial projection in \mathcal{A}. Since A is prime, $A B P=0$ for all $B \in \mathcal{A}$ implies $A=0$. So Lemma 1.2 holds true for factor von Neumann algebras. It is easy to check that all
claims of Theorem 2.1 hold true for factor von Neumann algebras. Since $\Phi(I)$ is a self-adjoint central element and $\Phi(I)^{2}=I$, we get $\Phi(I)=I$ or $\Phi(I)=-I$. So Φ or $-\Phi$ is a map preserving the product $A \bullet B$ on factor von Neumann algebras. Now, by the main result of [5], we have that Φ or $-\Phi$ is a $*$-ring isomorphism. It is easy to show that Φ or $-\Phi$ is a map preserving the absolute value. By [17, Theorem 2.5], Φ or $-\Phi$ is a linear $*$-isomorphism or a conjugate linear $*$-isomorphism. Now, we have proved the corollary.

Acknowledgements We thank the referees for their time and comments.

References

[1] M. BREŠAR. Jodran mappings of semiprime rings. J. Algebra, 1989, 127: 218-228.
[2] Liqing DAI, Fangyan LU. Nonlinear maps preserving Jordan *-products. J. Math. Anal. Appl., 2014, 409(1): 180-188.
[3] I. N. HERSTEIN. Jordan homomorphisms. Trans. Amer. Math. Soc., 1956, 81: 331-341.
[4] Peisheng JI, Zhongyan LIU. Additivity of Jordan maps on standard Jordan operator algebras. Linear Algebra Appl., 2009, 430(1): 335-343.
[5] Changjing LI, Fangyan LU. Mappings preserving new product $X Y+Y X^{*}$ on factor von Neumann algebras. Linear Algebra Appl., 2013, 438: 2339-2345.
[6] Fangyan LU. Additivity of Jordan maps on standard operator algebras. Linear Algebra Appl., 2002, 357: 123-131.
[7] Fangyan LU. Jordan maps on associative algebras. Comm. Algebra, 2003, 31(5): 2273-2286.
[8] Donghua HUO, Baodong ZHENG, Hongyu LIU. Nonlinear maps preserving Jordan triple η-*-products. J. Math. Anal. Appl., 2015, 430(2): 830-844.
[9] Changjing LI, Quanyuan CHEN, Ting WANG. Nonlinear maps preserving the Jordan triple *-product on factors. Chin. Ann. Math. Ser. B, 2018, 39(4): 633-642.
[10] Changjing LI, Fangyan LU. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras. Complex Anal. Oper. Theory, 2017, 11(1): 109-117.
[11] Changjing LI, Fangyan LU. Nonlinear maps preserving the Jordan triple *-product on von Neumann algebras. Ann. Funct. Anal., 2016, 7(3): 496-507.
[12] Zhujun YANG, Jinhua ZHANG. Nonlinear maps preserving the mixed skew Lie triple product on factor von Neumann algebras. Ann. Funct. Anal., 2019, 10: 325-336.
[13] Zhujun YANG, Jinhua ZHANG. Nonlinear maps preserving the second mixed skew Lie triple product on factor von Neumann algebras. Linear Multilinear Algebra, 2020, 68(2): 377-390.
[14] Yuanyuan ZHAO, Changjing LI, Quanyuan CHEN. Nonlinear maps preserving the mixed product on factors. Bull. Iran. Math. Soc., 2021, 47: 1325-1335.
[15] Fangfang ZHAO, Changjing LI. Nonlinear maps preserving the Jordan triple *-product between factors. Indag. Math. (N.S.), 2018, 29(2): 619-627.
[16] C. R. MIERS. Lie homomorphisms of operator algebras. Pacific J. Math., 1971, 38: 717-735.
[17] A. TAGHAVI. Additive mappings on C^{*}-algebras preseving absolute value. Linear Multilinear Algebra, 2012, 60: 33-38.

[^0]: Received September 24, 2021; Accepted February 19, 2022
 Supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2018BA003) and the National Natural Science Foundation of China (Grant No. 11801333).

 * Corresponding author

 E-mail address: 1776767307@qq.com (Dongfang ZHANG); lcjbxh@163.com (Changjing LI); 2934377003@qq.com
 (Yuanyuan ZHAO)

