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Abstract A novel approach to the exponential stability in mean square of neutral stochastic

functional differential equations is presented. Consequently, some new criteria for the exponential

stability in mean square of the considered equations are obtained and some known results are

improved. Lastly, some examples are investigated to illustrate the theory.
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1. Introduction

A traditional approach to analyze the stability for stochastic functional differential equations

is the Lyapunov’s function method. Lyapunov functions and functionals have been successful-

ly used to obtain the stability of stochastic differential equations [1–5]. Another widely-used

approach to stability of stochastic functional differential equations is the Razumikhin-type theo-

rems. Razumikhin-type theorems for the exponential stability of stochastic functional differential

equations have been presented in [6–9]. A Razumikhin-type theorem for the asymptotic stability

of stochastic functional differential equations has been given in [10–12].

In fact, it is not easy to find a Lyapunov function (functional) for stochastic differential and

the stability conditions obtained by the Lyapunov’s function method are often given in terms

of differential inequalities, matrix inequalities and so on. The given conditions by Lyapunov

function (functional) and Razumikhin-type theorems are not only a little bit strong but also

general implicit and not easy to examine.

On the other hand, neutral stochastic delay differential equations are often used to describe

the dynamical systems which not only involve derivatives but also depend on present and past

states. Neutral stochastic delay differential equations have attracted the increasing attention due

to the wide applications in the distributed networks containing lossless transmission lines [13],

processes including steam or water pipes, heat exchanges, and other engineering systems [14]

and population ecology [15]. For neutral stochastic functional differential equations, we refer

to [16–19].
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By Lyapunov’s function method and Razumikhin-type theorems, in [18, 20–23] some efforts

have been devoted to the investigation of exponential stability in mean square of neutral s-

tochastic functional differential equations. However, the results derived there are either difficult

to demonstrate in a straightforward way for practical situations or somewhat too restricted to

be applied to general neutral stochastic functional differential equations. In this paper, we will

present a novel approach to the exponential stability in mean square of neutral stochastic func-

tional differential equations. Our approach does not involve Lyapunov functions and complex

calculations. Our approach is based on a comparison principle and a proof by contradiction and

our conditions are also feasible. Our results improve some known results.

The rest of this paper is organized as follows. In Section 2, we introduce some necessary

notations and preliminaries. In Section 3, we present some criteria for the exponential stability

in mean square of neutral stochastic functional differential equations. In Section 4, we state some

comparisons with existing results and present some examples to illustrate the advantage of our

results.

2. Preliminaries

Let (Ω,F ,P) be a complete probability space equipped with some filtration {Ft}t≥0 satisfying

the usual conditions, i.e., the filtration is right continuous and F0 contains all P-null sets. Let

τ > 0 and C([−τ, 0];Rn) denote the family of all continuous functions from [−τ, 0] to Rn with

the norm ∥φ∥C = sup−τ≤θ≤0 |φ(θ)|, where | · | is Euclidean norm in Rn. If A is a vector or

matrix, its transpose is denoted by AT . If A is a matrix, its norm ∥A∥ is defined by ∥A∥ =

sup{|Ax| : |x| = 1, x ∈ Rn}. Moreover, let w(t) = (w1(t), . . . , wm(t))T be an m-dimensional

Brownian motion defined over (Ω,F ,P). We also denote by Cb
F0

([−τ, 0];Rn) the family of all

almost surely bounded, F0-measurable, C([−τ, 0];Rn)-valued random variables.

Consider the following neutral stochastic functional differential equation

d[x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dw(t) (2.1)

on t ≥ 0 with initial data x0 = ξ, where

G : C([−τ, 0];Rn) → Rn, f : R+ × C([−τ, 0];Rn) → Rn, g : R+ × C([−τ, 0];Rn) → Rn×m.

Moreover, xt = {x(t + s) : −τ ≤ s ≤ 0} which is regarded as a C([−τ, 0];Rn)-valued stochastic

process and ξ = {ξ(s) : −τ ≤ s ≤ 0} ∈ Cb
F0

([−τ, 0];Rn). An Ft-adapted process x(t), −τ ≤ t <

∞ is said to be the solution of the equation (2.1) if it satisfies the initial condition above and

moreover for each t ≥ 0,

x(t)−G(xt) = ξ(0)−G(x0) +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)dw(s), (2.2)

where the stochastic integral is defined in the Itô’s sense. For the details on the existence

and uniqueness of the solution to (2.1), we can refer to [24]. For example, when f, g,G are

uniformly Lipschitz continuous, or they are locally Lipschitz continuous and satisfy the linear

growth condition, Kolmanovskii and Nosov [24] proved that there is unique continuous solution
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to (2.1), and any moment of the solution is finite. For stability purpose, throughout the paper

we always suppose that Eq. (2.1) has a unique solution for arbitrarily given initial data ξ ∈
Cb

F0
([−τ, 0];Rn) and the solution is denoted by x(t, ξ), or simply x(t), when no confusion is

possible. For the purposes of stability, we shall assume that

G(0) ≡ 0, f(t, 0) ≡ 0, g(t, 0) ≡ 0 for any t ≥ 0.

It is well-known that for a given ξ ∈ Cb
F0

([−τ, 0];H), Eq. (2.1) has a trivial solution when ξ ≡ 0.

Definition 2.1 The trivial solution x(t, ξ) of (2.1) is said to be exponentially stable in mean

square, if for any initial value ξ, there exists a pair of positive constants λ > 0 and C such that

for all t ≥ 0

E|x(t, ξ)|2 ≤ CE∥ξ∥Ce−λt,

or, equivalently,

lim sup
t→∞

1

t
log E|x(t, ξ)|2 ≤ −λ.

Definition 2.2 The trivial solution x(t, ξ) of (2.1) is said to be almost surely exponentially

stable if there exists a constant λ > 0 such that there is a finite random variable β such that for

all t ≥ 0

|x(t, ξ)| ≤ βe−λt a.s.

3. Exponential stability for neutral stochastic functional equations

To state the main result of this section, let us define some functions. Let ηi(t, θ) : R+ ×
[−τ, 0] → R (i = 1, 2) be non-decreasing in θ for each t ∈ R+. Furthermore, ηi(t, θ) is continuous

in θ on [−τ, 0]. Assume that

Li(t, ϕ) :=

∫ 0

−τ

ϕ(θ)d[ηi(t, θ)], t ∈ R+, i = 1, 2, (3.1)

is a locally bounded Borel-measurable function in t for each ϕ ∈ C([−τ, 0];Rn). Here, the integral

in (3.1) is the Riemann-Stieltjes integral. Furthermore, we assume that there is a constant

k ∈ (0, 1) such that for all φ ∈ L2
F ([−τ, 0];Rn)

|G(φ)|2 ≤ k sup
−τ≤θ≤0

|φ(θ)|2. (3.2)

Lemma 3.1 Let (3.2) hold with 0 < k < 1 and ρ ≥ 0, δ > 0, K > 1. If

eδtE|x(t)−G(xt)|2 ≤ K sup
−τ≤θ≤0

E|x(θ)|2 (3.3)

for all 0 ≤ t ≤ ρ, then

eδtE|x(t)|2 ≤ K

(1−
√
k)2

sup
−τ≤θ≤0

E|x(θ)|2.

Proof Let k < ε < 1. For 0 ≤ t ≤ ρ, we have

E|x(t)−G(xt)|2 ≥E|x(t)|2 − 2E(|x(t)||G(xt)|) + E|G(xt)|2
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≥(1− ε)E|x(t)|2 − (ε−1 − 1)E|G(xt)|2.

Then, by (3.2) we have

E|x(t)|2 ≤ 1

1− ε
E|x(t)−G(xt)|2 +

k

ε
sup

−τ≤θ≤0
E|x(t+ θ)|2.

Using the condition (3.3), we derive that for all 0 ≤ t ≤ ρ

eδtE|x(t)|2 ≤ K

1− ε
sup

−τ≤θ≤0
E|x(θ)|2 + k

ε
sup

−τ≤θ≤0
[eδtE|x(t+ θ)|2]

≤ K

1− ε
sup

−τ≤θ≤0
E|x(θ)|2 + k

ε
sup

−τ≤t≤ρ
[eδtE|x(t)|2].

Moreover, this holds for −τ ≤ t ≤ 0. Thus,

sup
−τ≤t≤ρ

[eδtE|x(t)|2] ≤ K

1− ε
sup

−τ≤θ≤0
E|x(θ)|2 + k

ε
sup

−τ≤t≤ρ
[eδtE|x(t)|2].

Since 1 > k
ε , we can obtain

sup
−τ≤t≤ρ

[eδtE|x(t)|2] ≤ Kε

(1− ε)(ε− k)
sup

−τ≤θ≤0
E|x(θ)|2.

Lastly, letting ε =
√
k, we can obtain our desired result. The proof is completed. 2

Theorem 3.2 Assume that (3.2) holds with 0 < k < 1. Let γ(·) : R+ → R be a locally bounded

Borel-measurable function such that for any t ∈ R+, φ ∈ C([−τ, 0];Rn),

E(2(φ(0)−G(φ))T f(t, φ)) ≤ γ(t)E|φ(0)|2 +
∫ 0

−τ

E|φ(θ)|2d[η1(t, θ)] (3.4)

and

E(trac[gT (t, φ)g(t, φ)]) ≤
∫ 0

−τ

E|φ(θ)|2d[η2(t, θ)]. (3.5)

If there exists β > 0 such that for any t ∈ R+,

γ(t) +

∫ 0

−τ

e−βθd[η1(t, θ)] +

∫ 0

−τ

e−βθd[η2(t, θ)] ≤ −(1−
√
k)2β, (3.6)

then the trivial solution of (2.1) is exponentially stable in mean square. In particular, E|x(t, ξ)|2

exponentially decays with the rate β for any ξ ∈ Cb
F0

([−τ, 0];Rn).

Proof Fix K > 1 sufficient large and let ξ ∈ Cb
F0

([−τ, 0];Rn) such that E∥ξ∥2C > 0. For the

sake of simplicity, we denote x(t) := x(t, ξ), t ≥ −τ , where x(t, ξ) is the solution to (2.1). Let

Z(t) := Ke−βtE∥ξ∥2C , t ≥ 0. Then, we deduce from K > 1 sufficiently large and E∥ξ∥2C > 0 that

X(t) := E|x(t)−G(t, xt)|2 ≤ Z(t), t ∈ [−τ, 0]. We will show

E|x(t)−G(t, xt)|2 ≤ Z(t), ∀t ≥ 0. (3.7)

Assume on the contrary that there exists t1 > 0 such that X(t1) > Z(t1). Let t∗ := inf{t > 0 :

X(t) > Z(t)}. By continuity of X(t) and Z(t),

X(t) ≤ Z(t), t ∈ [0, t∗], X(t∗) = Z(t∗) (3.8)
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and

E|x(tm)−G(xtm)|2 > Ke−βtmE∥ξ∥2C ,

for some tm ∈ (t∗, t∗ +
1
m ), m ∈ N.

Applying the Itô’s formula to the function V (t, x) = eαt|x(t) − G(xt)|2, (3.4), (3.5) and the

Fubini’s theorem, we have

E(eαt|x(t)−G(xt)|2) = E|ξ(0)−G(ξ)|2 + E
∫ t

0

αeαs|x(s)−G(xs)|2ds+

2E
∫ t

0

eαs(x(s)−G(xs))
T f(s, xs)ds+ E

∫ t

0

eαstrac[gT (s, xs)g(s, xs)]ds

≤ E|ξ(0)−G(ξ)|2 + E
∫ t

0

αeαs|x(s)−G(xs)|2ds+
∫ t

0

γ(s)eαsE|x(s)|2ds+∫ t

0

eαs
(∫ 0

−τ

E|x(s+ θ)|2d[η1(s, θ)]
)
ds+

∫ t

0

eαs
(∫ 0

−τ

E|x(s+ θ)|2d[η2(s, θ)]
)
ds.

Let K1 := KE∥ξ∥2C and K2 = K1

(1−
√
k)2

. Since η1(s, θ) and η2(s, θ) are increasing in θ on [−τ, 0],

we derive that from (3.8) and the Lemma 3.1∫ 0

−τ

E|x(s+ θ)|2d[η1(s, θ)] ≤ K2e
−βs

∫ 0

−τ

e−βθd[η1(s, θ)]

and ∫ 0

−τ

E|x(s+ θ)|2d[η2(s, θ)] ≤ K2e
−βs

∫ 0

−τ

e−βθd[η2(s, θ)],

for any s ≤ t∗. Then, it follows that

eαt∗E|x(t∗)−G(xt∗)|2 ≤ E|ξ(0)−G(ξ)|2 +
∫ t∗

0

eαse−βs(K1α+K2γ(s))ds+∫ t∗

0

eαsK2e
−βs

∫ 0

−τ

e−βθd[η1(s, θ)]ds+

∫ t∗

0

eαsK2e
−βs

∫ 0

−τ

e−βθd[η2(s, θ)]ds

= E|ξ(0)−G(ξ)|2 +
∫ t∗

0

K1e
αse−βs·[

α+
1

(1−
√
k)2

(
γ(s) +

∫ 0

−τ

e−βθd[η1(s, θ)] +

∫ 0

−τ

e−βθd[η2(s, θ)
)]

ds.

Taking (3.6) into account, we get for sufficient large K,

eαt∗E|x(t∗)−G(xt∗)|2 ≤E|ξ(0)−G(ξ)|2 +
∫ t∗

0

eαsK1e
−βs(α− β)ds

=E|ξ(0)−G(ξ)|2 +K1(e
αt∗e−βt∗ − 1)

=E|ξ(0)−G(ξ)|2 −K1 +K1e
αt∗e−βt∗

=E|ξ(0)−G(ξ)|2 −KE∥ξ∥2C +Keαt∗e−βt∗E∥ξ∥2C
<Keαt∗e−βt∗E∥ξ∥2C ,

which conflicts with (3.8). Therefore,

E|x(t)−G(xt)|2 ≤ Ke−βtE∥ξ∥2C , t ≥ 0
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and

E|x(t)|2 ≤ K

(1−
√
k)2

e−βtE∥ξ∥2C , t ≥ 0.

Now, we are intended to show the boundness of the segment process xt(ξ). 2
Remark 3.3 We remark that the conditions (3.4) and (3.5) are generalization of some existing

conditions. We cannot find these conditions for ensuring the exponential stability in mean square

of (2.1) in the reported literature. Our results are new and very advantageous in the applications

of “mixed” delay stochastic differential equations, which include the point delay, varying delay

and distributed delay.

Corollary 3.4 Assume that (3.2) holds with 0 < k < 1. Let Υ1(·, ·),Υ2(·, ·) : R+ × [−τ, 0] →
R+, γi(·), ζi(·), hi(·) : R+ → R, i = 0, 1, 2, . . . , n with 0 := h0(t) ≤ h1(t) ≤ h2(t) ≤ · · · ≤
hn(t) ≤ τ , t ∈ R+, be locally bounded Borel measurable functions such that for any t ∈ R+,

φ ∈ C([−τ, 0];Rn),

E
(
2(φ(0)−G(φ))T f(t, φ)

)
≤

n∑
i=0

γi(t)E|φ(−hi(t))|2 +
∫ 0

−τ

Υ1(t, s)E|φ(s)|2ds, (3.9)

E
(
trac[gT (t, φ)g(t, φ)]

)
≤

n∑
i=0

ζi(t)E|φ(−hi(t))|2 +
∫ 0

−τ

Υ2(t, s)E|φ(s)|2ds. (3.10)

If there exists β > 0 such that for any t ∈ R+,

n∑
i=0

eβhi(t)γi(t) +

∫ 0

−τ

e−βsΥ1(t, s)ds+
n∑

i=0

eβhi(t)ζi(t) +

∫ 0

−τ

e−βsΥ2(t, s)ds

≤ −(1−
√
k)2β, (3.11)

then the trivial solution of (2.1) is exponentially stable in mean square. In particular, E|x(t, ξ)|2

exponentially decays with the rate β for any ξ ∈ Cb
F0

([−τ, 0];Rn).

Proof Define the following functions for t ≥ 0, s ∈ [−τ, 0]

ui(t, s) :=

{
0, if s ∈ [−τ,−hi(t)],

γi(t), if s ∈ (−hi(t), 0],

η1(t, s) :=
n∑

i=1

ui(t, s) +

∫ s

−τ

Υ1(t, r)dr

and

vi(t, s) :=

{
0, if s ∈ [−τ,−hi(t)],

ζi(t), if s ∈ (−hi(t), 0],

η2(t, s) :=

n∑
i=1

vi(t, s) +

∫ s

−τ

Υ2(t, r)dr.

By the properties of the Riemann-Stieltjes integrals, one has for each i = 1, 2 that∫ 0

−τ

ϕ(s)d
[ ∫ s

−τ

Υi(t, r)dr
]
=

∫ 0

−τ

ϕ(s)Υi(t, s)ds, t ∈ R+,
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for any ϕ(·) ∈ C([−τ, 0];Rn). Then for any t ∈ R+, ϕ(·) ∈ C([−τ, 0];Rn),∫ 0

−τ

ϕ(s)d[η1(t, s)] =
n∑

i=1

γi(t)ϕ(−hi(t)) +

∫ 0

−τ

ϕ(s)Υ1(t, s)ds,

∫ 0

−τ

ϕ(s)d[η2(t, s)] =

n∑
i=1

ζi(t)ϕ(−hi(t)) +

∫ 0

−τ

ϕ(s)Υ2(t, s)ds.

Therefore, (3.9), (3.10) imply that (3.4), (3.5) hold and (3.11) ensures that (3.6) holds. By the

Theorem 3.1 we can obtain our desired results. The proof is completed. 2
Corollary 3.5 Assume that (3.2) holds with 0 < k < 1. Let γ be a constant and non-decreasing

functions ηi(·) : [−τ, 0] → R+, i = 1, 2 such that

E(2(φ(0)−G(φ))T f(t, φ)) ≤ γ|φ(0)|2 +
∫ 0

−τ

E|φ(θ)|2d[η1(θ)] (3.12)

and

E(trac[gT (t, φ)g(t, φ)]) ≤
∫ 0

−τ

E|φ(θ)|2d[η2(θ)], (3.13)

for any t ∈ R+, φ ∈ C([−τ, 0];Rn). If

γ + η1(0)− η1(−τ) + η2(0)− η2(−τ) < 0, (3.14)

then the trivial solution of (2.1) is exponentially stable in mean square.

Proof By continuity and (3.14) we have

γ + eβτ [η1(0)− η1(−τ)] + eβτ [η2(0)− η2(−τ)] < −(1−
√
k)2β,

for some β > 0, sufficiently small. Since ηi(·), i = 1, 2 is non-decreasing, it follows that

γ +

∫ 0

−τ

e−βθd[η1(−θ)] +

∫ 0

−τ

e−βθd[η2(−θ)]

≤ γ + eβτ [η1(0)− η1(−τ)] + eβτ [η2(0)− η2(−τ)] < −(1−
√
k)2β,

which means that (3.6) holds. The proof is completed. 2
From the Corollaries 3.4 and 3.5, we immediate obtain the following Corollary 3.6.

Corollary 3.6 Assume that (3.2) holds with 0 < k < 1. Let hi(·) : R+ → R, i = 0, 1, 2, . . . , n

with 0 := h0(t) ≤ h1(t) ≤ h2(t) ≤ · · · ≤ hn(t) ≤ τ , t ∈ R+, be locally bounded Borel measurable

functions. Suppose that there exist constants γi, ζi, i = 0, 1, 2, . . . , n and two Borel measurable

functions θi : [−τ, 0] → R+, i = 1, 2 such that for any t ∈ R+, φ ∈ C([−τ, 0];Rn),

E(2(φ(0)−G(φ))T f(t, φ)) ≤
n∑

i=0

γiE|φ(−hi(t))|2 +
∫ 0

−τ

θ1(s)E|φ(s)|2ds, (3.15)

E(trac[gT (t, φ)g(t, φ)]) ≤
n∑

i=0

ζiE|φ(−hi(t))|2 +
∫ 0

−τ

θ2(s)E|φ(s)|2ds. (3.16)
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If

n∑
i=0

γi +

∫ 0

−τ

θ1(s)ds+

n∑
i=0

ζi +

∫ 0

−τ

θ2(s)ds ≤ 0, (3.17)

then the trivial solution of (2.1) is exponentially stable in mean square.

Corollary 3.7 Assume that (3.2) holds with 0 < k < 1. Let hi(·) : R+ → R, i = 0, 1, 2, . . . , n

with 0 := h0(t) ≤ h1(t) ≤ h2(t) ≤ · · · ≤ hn(t) ≤ τ , t ∈ R+, be locally bounded Borel measurable

functions. Suppose that there exist constants γi, ζi, i = 0, 1, 2, . . . , n and two Borel measurable

functions θi : [−τ, 0] → R+, i = 1, 2 such that for any t ∈ R+, φ ∈ C([−τ, 0];Rn),

E(2φT (0)f(t, φ)) ≤
n∑

i=0

γiE|φ(−hi(t))|2 +
∫ 0

−τ

θ1(s)E|φ(s)|2ds, (3.18)

E|f(t, φ)|2 ≤
n∑

i=0

ρiE|φ(−hi(t))|2 +
∫ 0

−τ

θ2(s)E|φ(s)|2ds, (3.19)

E(trac[gT (t, φ)g(t, φ)]) ≤
n∑

i=0

ζiE|φ(−hi(t))|2 +
∫ 0

−τ

θ3(s)E|φ(s)|2ds. (3.20)

If

n∑
i=0

γi +

∫ 0

−τ

θ1(s)ds+
√
k

n∑
i=0

ρi +
√
k

∫ 0

−τ

θ2(s)ds+
n∑

i=0

ζi +

∫ 0

−τ

θ3(s)ds+
√
k ≤ 0, (3.21)

then the trivial solution of (2.1) is exponentially stable in mean square.

Proof For any φ ∈ C([−τ, 0];Rn), by the (3.2), (3.18) and (3.19) we have

E(2(φ(0)−G(φ))T f(t, φ)) ≤ 2E(φT (0)f(t, φ) + 2|G(φ)||f(t, φ)|)

≤
n∑

i=0

γiE|φ(−hi(t))|2 +
∫ 0

−τ

θ1(s)E|φ(s)|2ds+
√
k

n∑
i=0

ρiE|φ(−hi(t))|2+

√
k

∫ 0

−τ

θ2(s)E|φ(s)|2ds+
√
k sup

−τ≤θ≤0
E|φ(θ)|2.

So, by the Corollary 3.6 we can obtain our desired results. 2
4. Comparison with existing results and some examples

Now, we state some comparisons with existing results to illustrate the advantage of our

results.

To compare the results of the Corollary 3.6 with one in [25], let us introduce another new

notation W ([−τ, 0];R+), which is the family of all Borel-measurable bounded nonnegative func-

tions η(θ) defined on [−τ, 0] such that
∫ 0

−τ
η(θ)dθ = 1. In [25], conditions (3.2), (3.15) and (3.16)

are strengthened as follows: There is a constant k ∈ (0, 1) and a function η ∈ W ([−τ, 0];R+)
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such that

|G(φ)|2 ≤ k

∫ 0

−τ

η(θ)|φ(θ)|2dθ for all φ ∈ C([−τ, 0];Rn). (4.1)

Moreover, there exists a function θ1 ∈ W ([−τ, 0];R+) and two positive constants λ1 and λ2 such

that

2(φ(0)−G(φ))T f(t, φ) + trac[gT (t, φ)g(t, φ)] ≤ −λ1|φ(0)|2 + λ2

∫ 0

−τ

θ1(s)|φ(s)|2ds, (4.2)

for all t ≥ 0 and φ ∈ C([−τ, 0];Rn). These two conditions are indeed stronger than (3.2) and

(3.15) and (3.16). For example, if (4.1) holds, then for any ϕ ∈ C([−τ, 0];Rn),

E|G(ϕ)|2 ≤ k

∫ 0

−τ

η(θ)|φ(θ)|2dθ ≤ k sup
−τ≤θ≤0

E|φ(θ)|2
∫ 0

−τ

η(θ)dθ = k sup
−τ≤θ≤0

E|φ(θ)|2,

that is, (3.2) holds. On the other hand, if (4.2) holds, we easily show that (3.15) and (3.16) hold

with
n∑

i=0

γi +
n∑

i=0

ζi = −λ1, hi ≡ 0,

∫ 0

−τ

θ1(s)ds+

∫ 0

−τ

θ2(s)ds = λ2.

In [25], Mao proved that the trivial solution to (2.1) is exponentially stable in mean square if

(4.1) and (4.2) hold and λ1 > λ2. So, the Corollary 3.6 improves the Theorem 3.1 of [25].

Besides, Mao [7] considered the exponential stability in mean square of the trivial solution

to (2.1) under the conditions (3.2) and the following assumption:

2(φ(0)−G(φ))T f(t, φ) + trac[gT (t, φ)g(t, φ)] ≤ −λ1|φ(0)|2 + λ2 sup
−τ≤θ≤0

φ(θ)|2ds, (4.3)

for all t ≥ 0 and φ ∈ C([−τ, 0];Rn). The author deduced that if

0 < k <
1

4
and λ1 >

λ2

(1− 2
√
k)2

, (4.4)

then the trivial solution to (2.1) is exponentially stable in mean square.

Note that if (3.15) and (3.16) hold, then (4.3) holds with λ1 = −
∑n

i=0 γi −
∑n

i=0 ζi and

λ2 =
∫ 0

−τ
θ1(s)ds+

∫ 0

−τ
θ2(s)ds. Although the conditions (3.15) and (3.16) are little bit stronger

than (4.3), our assumption 0 < k < 1 and λ1 > λ2 are much sharper than (4.4). On the other

hand, our Corollary 3.6 can be applied to deal with the “mixed” delay case easily.

Consider the following neutral stochastic delay differential equations of the form

d[x(t)− Ḡ(x(t− τ))] = f̄(t, x(t), x(t− τ))dt+ ḡ(t, x(t), x(t− τ))dw(t), (4.5)

on t ≥ 0 with initial data x0 = ξ. Mao [7] also studied the exponential stability of the trivial

solution to (4.5) under the following assumptions:

|Ḡ(x)|2 ≤ k|x|2, for some k ∈ (0, 1) and all x ∈ Rn, (4.6)

and there are two positive constants λ1 and λ2 such that

2(x− Ḡ(y))T f̄(t, x, y) + trace[ḡT (t, x, y)ḡ(t, x, y)] ≤ −λ1|x|2 + λ2|y|2, (4.7)
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for all t ≥ 0 and x, y ∈ Rn. Mao [7] (see the Corollary 6.1) proved that the trivial solution to

(4.5) is exponentially stable in mean square if (4.4) holds.

Note that (4.7) implies that (3.15) and (3.16) hold with
∑n

i=0 γi +
∑n

i=0 ζi = −λ1 and∫ 0

−τ
θ1(s)ds +

∫ 0

−τ
θ2(s)ds = λ2. So we deduce that the trivial solution to (4.5) is exponentially

stable in mean square if λ1 > λ2 by our Corollary 3.6. Obviously, our assumption λ1 > λ2 is

much sharper than (4.4).

Now, we present some examples to illustrate the advantage of our results.

Example 4.1 Consider the neutral stochastic differential equation

d[x(t)−G(xt)] = (f0(t, x(t)) + f1(t, xt))dt+ g(t, xt)dw(t), t ≥ 0 (4.8)

with initial data x0 = ξ ∈ C([−τ, 0];Rn), k ∈ [0, 1), where f0 : R+ × Rn −→ Rn, f1 : R+ ×
C([−τ, 0];Rn) −→ Rn and g : R+ ×C([−τ, 0];Rn) −→ Rm×n, w(t) is an m-dimension Brownian

motion. Assume that f0, f1, g satisfy the local Lipschitz condition and linear growth condition

and (3.2) holds with 0 ≤ k < 1. We also assume that

E(φT (0)f0(t, φ(0))) ≤ αE|φ(0)|2, t ∈ R+, φ ∈ C([−τ, 0];Rn), (4.9)

E|f1(t, φ)| ≤
∫ 0

−τ

η1(s)E|φ(s)|ds, t ∈ R+, φ ∈ C([−τ, 0];Rn) (4.10)

and

E(trac[gT (t, φ)g(t, φ)]) ≤
∫ 0

−τ

η2(s)E|φ(s)|2ds, t ∈ R+, φ ∈ C([−τ, 0];Rn). (4.11)

Let f(t, x) = f0(t, x(0)) + f1(t, x), t ∈ R+, φ ∈ C([−τ, 0];Rn). Note that (4.9) and (4.10) imply

that

E(2Tφ(0)f(t, φ)) ≤ (2α+

∫ 0

−τ

η1(s)ds)E|φ(0)|2 +
∫ 0

−τ

η1(s)E|φ(s)|2ds.

Furthermore, we assume

E∥f0(t, φ(0))∥2 ≤ ρE|φ(0)|2, t ∈ R+, φ ∈ C([−τ, 0];Rn).

So, by the Corollary 3.7 we deduce that the trivial solution to (4.8) is exponentially stable in

mean square if

α+
√
kρ+

√
kτ

∫ 0

−τ

η21(s)ds+

∫ 0

−τ

η1(s)ds+
1

2

∫ 0

−τ

η2(s)ds+
1

2

√
k < 0. (4.12)

If G ≡ 0, then Eq. (4.8) reduces to the following stochastic functional differential equation:

dx(t) = (f0(t, x(t)) + f1(t, xt))dt+ g(t, xt)dw(t), t ≥ 0. (4.13)

Using the Razumikhin-type theorem, Mao [10] has shown that the trivial solution to (4.13) is

exponentially stable in mean square if

α+
√
τ
(∫ 0

−τ

(η1(s))
2ds

)1/2

+
1

2
τ max

−τ≤s≤0
η2(s) < 0. (4.14)
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By the Corollary 3.7 we deduce that the trivial solution to (4.13) is exponentially stable in mean

square if

α+

∫ 0

−τ

η1(s)ds+
1

2

∫ 0

−τ

η2(s)ds < 0. (4.15)

Using the Hölder’s inequality, we have∫ 0

−τ

η1(s)ds ≤
(∫ 0

−τ

1ds
)1/2(∫ 0

−τ

(η1(s))
2ds

)1/2

=
√
τ
(∫ 0

−τ

(η1(s))
2ds

)1/2

.

On the other hand, we have ∫ 0

−τ

η2(s)ds ≤ τ max
−τ≤s≤0

η2(s).

So, (4.14) is more conservative than (4.15).

Example 4.2 Consider the scalar linear time-varying stochastic differential equation with delay

d[x(t)−G(xt)] = (−a(t)x(t) + b(t)x(t− h1(t)))dt+ c(t)x(t− h2(t))dw(t), (4.16)

where a(t), b(t), c(t), h1(t), h2(t) : R+ → R are continuous functions and h1(t), h2(t) ∈ [0, τ ] for

some τ > 0, and w(t) is scalar Brownian motion.

We assume (3.2) holds with k ∈ (0, 1). Let

f(t, φ) := −a(t)φ(0) + b(t)φ(−h1(t)), g(t, φ) := c(t)φ(−h2(t)),

for t ∈ R+, φ ∈ C([−τ, 0];R). Then, for all t ∈ R+, φ ∈ C([−τ, 0];R) we have

2φ(0)f(t, φ) =− 2a(t)|φ(0)|2 + 2b(t)φ(0)φ(−h1(t)))

≤− 2a(t)|φ(0)|2 + |b(t)|(φ2(0) + φ2(−h1(t))), (4.17)

2G(φ)f(t, φ) ≤
√
k[−a(t)|φ(0)|+ b(t)φ(0)φ(−h1(t))]

2 +
√
k sup

−τ≤s≤0
|φ(s)|2

≤2
√
k[a2(t)|φ(0)|2 + b2(t)φ2(−h1(t))] +

√
k sup

−τ≤s≤0
|φ(s)|2 (4.18)

and

g2(t, φ) = c2(t)φ2(−h2(t)). (4.19)

Then, by the Corollary 3.4 we deduce that if there exists β > 0 such that for any t ∈ R+,

− 2a(t) + |b(t)|+ eβh1(t)(|b(t)|+ 2
√
kb2(t)) +

√
k + 2

√
ka2(t) + eβh2(t)c2(t)

≤ −(1−
√
k)2β, (4.20)

then the trivial solution of (4.16) is exponentially stable in mean square. In particular, E|x(t, ξ)|2

exponentially decays with the rate β for any ξ ∈ Cb
F0

([−τ, 0];R).
Note that by the continuity,

−2a(t) + 2|b(t)|+ 2
√
kb2(t) +

√
k + 2

√
ka2(t) + c2(t) ≤ 0, (4.21)

ensures that (4.20) holds for some sufficiently small β > 0. Therefore, we can declare that the

trivial solution of (4.16) is exponentially stable in mean square if (4.21) holds.
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If G ≡ 0, the equation (4.16) reduces to the following stochastic differential equation

dx(t) = (−a(t)x(t) + b(t)x(t− h1(t)))dt+ c(t)x(t− h2(t))dw(t). (4.22)

By the above discussion, we know that if

−a(t) + |b(t)|+ 1

2
c2(t) ≤ 0, (4.23)

then the trivial solution of (4.22) is exponentially stable in mean square.

Using the spectral property of Metzler matrices, Ngoc [26] and Ngoc and Hieu [27] proved

that the trivial solution of (4.22) is exponentially stable in mean square provided

a(t) ≥ a > 0, t ≥ 0; |b(t)|+ 1

2
c2(t) ≤ ka, t ≥ 0, (4.24)

for some 0 < k < 1. Obviously, (4.23) has more advantages than (4.24).

Example 4.3 For simplicity, we consider the following stochastic scalar equation

dx(t) =
(
− a(t)x(t) +

∫ 0

−τ

x(t+ s)d[η(s)]
)
dt+ b(t)x(t)dw(t), (4.25)

for t ≥ 0, where η(t) is a function of bounded variation on [−τ, 0] and a(t), b(t) are continuous

functions and w(t) the one-dimensional Brownian motion.

Define γ(t) := a(t)−Var[−τ,0]η(·)− 1
2 |b(t)|, t ≥ 0. Using the Laypunov functional method, it

has been shown in [28] that the trivial solution of (4.25) is asymptotically mean-square stable if

γ := inf
t≥0

γ(t) > 0. (4.26)

Actually we can deduce (4.26) ensures that the trivial solution of (4.25) is exponentially stable

in mean square. Let

f(t, φ) := −a(t)φ(0) +

∫ 0

−τ

φ(s)d[η(s)], g(t, φ) := b(t)φ(0),

for t ≥ 0, φ ∈ C([−τ, 0];R). Define V (s) := Var[−τ,s]η(·), s ∈ [−τ, 0]. Then V (s) is non-

decreasing on [−τ, 0]. By the properties of the Riemann-Stieltjes integral, we have∣∣∣ ∫ 0

−τ

φ(0)φ(s)d[η(s)]
∣∣∣ ≤ ∫ 0

−τ

|φ(0)φ(s)|d[V (s)].

Thus,

φ(0)f(t, φ) ≤− a(t)φ2(0) +

∫ 0

−τ

|φ(0)φ(s)|d[V (s)]

≤
(
− a(t) +

1

2

∫ 0

−τ

d[V (s)]
)
φ2(0) +

1

2

∫ 0

−τ

φ2(s)d[V (s)].

By the Theorem 3.2, the trivial solution of (4.25) is exponentially mean-square stable if there

exists β > 0 such that

−a(t) +
1

2

∫ 0

−τ

d[V (s)] +
1

2

∫ 0

−τ

e−βsd[V (s)] +
1

2
b2(t) ≤ −β, (4.27)
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for all t ≥ 0. It follows from (4.27)

−a(t) + V (0) +
1

2
b2(t) ≤ −γ,

for all t ≥ 0. Setting β ∈ (0, γ
2 ) sufficiently small, we know that 1

2 (e
βτ − 1)V (0) < γ

2 , which

implies for any t ≥ 0

−a(t) +
1

2
V (0) +

1

2
eβτV (0) +

1

2
b2(t) ≤ −γ

2
≤ −β.

Since V (·) is non-decreasing, it follows that
∫ 0

−τ
e−βsd[V (s)] ≤ eβτV (0). Therefore, we obtain

for any t ≥ 0

− a(t) +
1

2

∫ 0

−τ

d[V (s)] +
1

2

∫ 0

−τ

e−βsd[V (s)] +
1

2
b2(t)

≤ −a(t) +
1

2
V (0) +

1

2
eβτV (0) +

1

2
b2(t) ≤ −β.

5. Conclusion

By a novel approach, we presented some new criteria for the mean square exponential stability

of neutral stochastic functional differential equations. Some known results are improved and

generalized. It is important to note that the approach utilized in the present paper can be

applied to study exponential stability of various stochastic dynamical systems. Some of which

will be studied in the near future.

Acknowledgements We thank the referees for their time and comments.

References
[1] L. ARNOLDA, B. SCHMALFUSS. Lyapunov’s second method for random dynamical systems. J. Differential

Equations, 2001, 177(1): 235–265.

[2] Xiaodi LI, Shiji SONG, Jianhong WU. Exponential stability of nonlinear systems with delayed impulses and

applications. IEEE Trans. Automat. Control, 2019, 64(10): 4024–4034.

[3] Ruifeng LIU, V. MANDREKAR. Stochastic semilinear evolution equations: Lyapunov function, stability

and ultimate boundedness. J. Math. Anal. Appl., 1997, 212(2): 537–553.

[4] Xuerong MAO. Stability of stochastic differential equations with Markovian switching. Stochastic Process.

Appl., 1999, 79(1): 45–67.

[5] J. C. TRIGEASSOUA, N. MAAMRIB, J. SABATIERA, et al. A Lyapunov approach to the stability of

fractional differential equations. Signal Processing, 2011, 91: 437–445.

[6] Bin LIU, H. J. MARQUEZ. Razumikhin-type stability theorems for discrete delay systems. Automatica J.

IFAC, 2007, 43(7): 1219–1225.

[7] Xuerong MAO. Razumikhin-type theorems on exponential stability of neutral stochastic differential equa-

tions. SIAM J. Math. Anal., 1997, 28(2): 389–401.

[8] Shiguo PENG, Yun ZHANG. Razumikhin-type theorems on p-th moment exponential stability of impulsive

stochastic delay differential equations. IEEE Trans. Automat. Control, 2010, 55(8): 1917–1922.

[9] Quanqin ZHU. Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and
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[22] J. RANDJELOVIĆ, S. JANKOVIĆ. On the pth moment exponential stability criteria of neutral stochastic

functional differential equations. J. Math. Anal. Appl., 2007, 326(1): 266–280.

[23] Yinfang SONG, Yi SHEN. New criteria on asymptotic behavior of neutral stochastic functional differential

equations. Automatica J. IFAC, 2013, 49(2): 626-632.

[24] V. B. KOLMANOVSKII, V. R. NOSOV. Stability of Functional Differential Equations. Academic Press,

New York, 1986.

[25] Xuerong MAO. Exponential stability in mean square of neutral stochastic differential-functional equations.

Systems Control Lett., 1995, 26(4): 245–251.

[26] P. H. A. NGOC. Novel criteria for exponential stability in mean square of stochastic functional differential

equations. Proc. Amer. Math. Soc., 2020, 148(8): 3427–3436.

[27] P. H. A. NGOC, L. T. HIEU. A novel approach to mean square exponential stability of stochastic delay

differential equations. IEEE Trans. Automat. Control, 2021, 66(5): 2351–2356.

[28] V. KOLMANOVSKII, A. MYSHKIS. Introduction to the Theory and Applications of Functional Differential

Equations. Kluwer Academic Publishers, Dordrecht, 1999.


