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Abstract In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an

algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular

Hom-Leibniz-Rinehart algebra L is of the form L = U +
∑

γ Iγ with U a subspace of a maximal

abelian subalgebra H and any Iγ , a well described ideal of L, satisfying [Iγ , Iδ] = 0 if [γ] ̸= [δ].

In the sequel, we develop techniques of connections of roots and weights for split Hom-Leibniz-

Rinehart algebras, respectively. Finally, we study the structures of tight split regular Hom-

Leibniz-Rinehart algebras.
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1. Introduction

The notion of the Lie-Rinehart algebra plays an important role in many branches of mathe-

matics. The idea of this notion goes back to the work of Jacobson to study certain field extensions.

It also appears in some different names in several areas which includes differential geometry and

differential Galois theory. In [1], Mackenzie provided a list of 14 different terms mentioned for

this notion. Huebschmann viewed Lie-Rinehart algebras as an algebraic counterpart of Lie al-

gebroids defined over smooth manifolds. His work on several aspects of this algebra has been

developed systematically through a series of articles namely [2–5].

The notion of Hom-Lie algebras was first introduced by Hartwig, Larsson and Silvestrov

in [6], who developed an approach to deformations of the Witt and Virasoro algebras based

on σ-deformations [7]. In fact, Hom-Lie algebras include Lie algebras as a subclass, but the

deformation of Lie algebras is twisted by a homomorphism.

Mandal and Mishra defined modules over a Hom-Lie-Rinehart algebra and studied a coho-

mology with coefficients in a left module. They presented the notion of extensions of Hom-

Lie-Rinehart algebras and deduced a characterisation of low dimensional cohomology spaces in
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terms of the group of automorphisms of certain abelian extensions and the equivalence classes

of those abelian extensions in the category of Hom-Lie-Rinehart algebras in [8]. The concept

of a Hom-Lie-Rinehart algebra has a geometric analogue which is nowadays called a Hom-Lie

algebroid in [9, 10]. See also [11–15] for other works on Hom-Lie-Rinehart algebras.

The class of the split algebras is specially related to addition quantum numbers, graded con-

tractions and deformations. For instance, for a physical system which displays a symmetry, it

is interesting to know the detailed structure of the split decomposition, since its roots can be

seen as certain eigenvalues which are the additive quantum numbers characterizing the state of

such system. Determining the structure of split algebras will become more and more meaningful

in the area of research in mathematical physics, the structure of different classes of split alge-

bras have been determined by the techniques of connections of roots. These techniques were

introduced in [16] and have shown powerful to study the inner structure of different split and

graded algebraic objects in [17–21]. Recently, the techniques of connections in a Rinehart setup

are firstly developed in [22]. Later, we studied the structures of split regular Hom-Lie Rinehart

algebras in [23] as a generalization of split Lie Rinehart algebras. The purpose of this paper

is to consider the structure of split regular Hom-Leibniz-Rinehart algebras by the techniques of

connections of roots based on some work in [21,22].

This paper is organized as follows. In Section 3, we introduce the notion of the Hom-Leibniz-

Rinehart algebra and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebras

L is of the form L = U +
∑
γ Iγ with U a subspace of a maximal abelian subalgebra H and

any Iγ , a well described ideal of L, satisfying [Iγ , Iδ] = 0 if [γ] ̸= [δ]. In Sections 4 and 5, we

develop techniques of connections of roots and weights for split Hom-Leibniz-Rinehart algebras,

respectively. In the last section, we study the structures of tight split regular Hom-Leibniz-

Rinehart algebras.

2. Preliminaries

Let R denote a commutative ring with unity, Z the set of all integers and N the set of all

nonnegative integers, all algebraic systems are considered of arbitrary dimension and over an

arbitrary base field K. And we recall some basic definitions and results related to our paper

from [24,25] and [8].

Definition 2.1 Given an associative commutative algebra A, an A-module M and an algebra

endomorphism ϕ : A → A, we call an R-linear map δ : A → M a ϕ-derivation of A into M if it

satisfies the required identity:

δ(ab) = ϕ(a)δ(b) + ϕ(b)δ(a), for any a, b ∈ A.

Let us denote by Derϕ(A) the set of ϕ-derivations of A into itself.

Definition 2.2 A Hom-Leibniz algebra L is a vector L, endowed with a bilinear product

[·, ·] : L× L→ L,



On split regular Hom-Leibniz-Rinehart algebras 483

and a homomorphism ψ : L→ L

[ψ(x), [y, z]] = [[x, y], ψ(z)] + [ψ(y), [x, z]] (Hom-Leibniz identity)

holds for any x, y, z ∈ L.

If ψ is furthermore an algebra automorphism, that is, a linear bijective such that ψ([x, y]) =

[ψ(x), ψ(y)] for any x, y ∈ L, then L is called a regular Hom-Leibniz algebra.

Definition 2.3 A representation of a Hom-Leibniz algebra (L, [·, ·], ψ) is a quadruple (V, ψV , ρL, ρR),
where V is a vector space, ψV ∈ gl(V ), ρL, ρR : L→ gl(V ) are linear maps such that the following

equalities hold for all x, y ∈ L:

(1) ρL(ψ(x)) ◦ ψV = ψV ◦ ρL(x), ρR(ψ(x)) ◦ ψV = ψV ◦ ρR(x);
(2) ρL([x, y]) ◦ ψV = ρL(ψ(x)) ◦ ρL(y)− ρL(ψ(y)) ◦ ρL(x);
(3) ρR([x, y]) ◦ ψV = ρL(ψ(x)) ◦ ρR(y)− ρR(ψ(y)) ◦ ρL(x);
(4) ρR([x, y]) ◦ ψV = ρL(ψ(x)) ◦ ρR(y) + ρR(ψ(y)) ◦ ρR(x).

Definition 2.4 A Hom-Lie-Rinehart algebra over (A,ϕ) is a six tuple (A,L, [·, ·], ϕ, ψ, ρ), where
A is an associative commutative algebra, L is an A-module, [·, ·] : L×L→ L is a skew symmetric

bilinear map, ϕ : A → A is an algebra homomorphism, ψ : L → L is a linear map satisfying

ψ([x, y]) = [ψ(x), ψ(y)], and the R-map ρ : L→ Derϕ(A) such that following conditions hold.

(1) The triple (L, [·, ·], ψ) is a Hom-Lie algebra.

(2) ψ(a · x) = ϕ(a) · ψ(x) for all a ∈ A, x ∈ L;

(3) (ρ, ϕ) is a representation of (L, [·, ·], ψ) on A;
(4) ρ(a · x) = ϕ(a) · ρ(x) for all a ∈ A, x ∈ L;

(5) [x, a · y] = ϕ(a) · [x, y] + ρ(x)(a)ψ(y) for all a ∈ A, x, y ∈ L.

A Hom-Lie-Rinehart algebra (A,L, [·, ·], ϕ, ψ, ρ) is said to be regular if the map ϕ : A→ A is

an algebra automorphism and ψ : L→ L is a bijective map.

3. Decomposition

In this section, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic

analogue of Hom-Leibniz algebroid. In a sequel, we introduce the class of split algebras in the

framework of Hom-Leibniz-Rinehart algebras.

Definition 3.1 A Hom-Leibniz-Rinehart algebra over (A, ϕ) is a seven tuple (A,L, [·, ·], ϕ, ψ, ρL,
ρR), where A is an associative commutative algebra, L is an A-module, [·, ·] : L×L→ L is a linear

map, ϕ : A → A is an algebra homomorphism, ψ : L → L is a linear map satisfying ψ([x, y]) =

[ψ(x), ψ(y)], and the R-maps ρL, ρR : L→ Derϕ(A) satisfying the following conditions.

(1) The triple (L, [·, ·], ψ) is a Hom-Leibniz algebra.

(2) ψ(a · x) = ϕ(a) · ψ(x) for all a ∈ A, x ∈ L;

(3) (ρL, ρR, ϕ) is a representation of (L, [·, ·], ψ) on A;
(4) ρL(a · x) = ϕ(a) · ρL(x) for all a ∈ A, x ∈ L;

(5) ρR(a · x) = ϕ(a) · ρR(x) for all a ∈ A, x ∈ L;
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(6) [x, a · y] = ϕ(a) · [x, y] + ρL(x)(a)ψ(y) for all a ∈ A, x, y ∈ L;

(7) [a · x, y] = ϕ(a) · [x, y]− ρR(x)(a)ψ(y) for all a ∈ A, x, y ∈ L.

We denote it by (L,A) or just by L if there is not any possible confusion. A Hom-Leibniz-

Rinehart algebra (A,L, [·, ·], ϕ, ψ, ρL, ρR) is said to be regular if the map ϕ : A→ A is an algebra

automorphism and ψ : L→ L is a bijective map.

Example 3.2 A Leibniz-Rinehart algebra L over A with the linear map [·, ·] : L× L → L and

the R-maps ρL, ρR : L → Der(A) is a Hom-Leibniz-Rinehart algebra (A,L, [·, ·], ϕ, ψ, ρL, ρR),
where ψ = IdL, ϕ = IdA and ρ : L× L→ Derϕ(A) = Der(A).

Example 3.3 A Hom-Leibniz algebra (L, [·, ·], ψ) structure over an R-module L gives the Hom-

Leibniz-Rinehart algebra (A,L, [·, ·], ϕ, ψ, ρL, ρR) with A = R, the algebra morphism ϕ = idR

and the trivial action of L on R.

If we consider a Leibniz-Rinehart algebra L over A along with an endomorphism

(ϕ, ψ) : (A,L) → (A,L)

in the category of Leibniz-Rinehart algebras, then we get a Hom-Leibniz-Rinehart algebra

(A,L, [·, ·]ψ, ϕ, ψ, ρLϕ , ρRϕ ) as follows:
(1) [x, y]ψ = ψ([x, y]) for any x, y ∈ L;

(2) ρLϕ (x)(a) = ϕ(ρL(x)(a)) for all a ∈ A, x ∈ L;

(3) ρRϕ (x)(a) = ϕ(ρR(x)(a)) for all a ∈ A, x ∈ L.

Definition 3.4 A Hom-Leibniz algebroid is a tuple (ξ, [·, ·], ϕ, ψ, ρL, ρR), where ξ : A→M is a

vector bundle over a smooth manifold M , ϕ :M →M is a smooth map, [−,−] : Γ(A)×Γ(A) →
Γ(A) is a bilinear map, the maps ρL, ρR : ϕ!A→ ϕ!TM is called the anchor and ψ : Γ(A) → Γ(A)

is a linear map such that following conditions are satisfied.

(1) The triplet (Γ(A), [−,−], ψ) is a Hom-Lie algebra;

(2) ψ(fX) = ϕ∗(F )ψ(X) for all X ∈ Γ(A), f ∈ C∞(M);

(3) (ρL, ρR, ϕ∗) is a representation of (Γ(A), [−,−], ψ) on C∞(M);

(4) [X, fY ] = ϕ∗(f)[X,Y ] + ρL(X)[f ]ψ(Y ) for all X,Y ∈ Γ(A), f ∈ C∞(M);

(5) [fX, Y ] = ϕ∗(f)[X,Y ]− ρR(X)[f ]ψ(Y ) for all X,Y ∈ Γ(A), f ∈ C∞(M).

Example 3.5 AHom-Leibniz algebroid provides a Hom-Leibniz-Rinehart algebra (C∞(M),Γ(A),

[·, ·], ϕ∗, ψ, ρL, ρR, ), where Γ(A) is the space a section of the underline vector bundle A → M

and ϕ∗ : C∞(M) → C∞(M) is canonically defined by the smooth map ϕ :M →M .

Example 3.6 Let (A,L, [·, ·]L, ϕ, ψL, ρL, ρR) and (A,M, [·, ·]M , ϕ, ψM , ρLM , ρRM ) be two Hom-

Leibniz-Rinehart algebras over (A,ϕ). We consider

L×DerϕAM = {(l,m) ∈ L×M : ρLL(l) = ρLM (m), ρRL(l) = ρRM (m)}.

Then (A,L×DerϕAM, [·, ·], ϕ, ψ, ρ̃L, ρ̃R) is a Hom-Leibniz-Rinehart algebra, where
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(1) The linear bracket [·, ·] is given by

[(l1,m1), (l2,m2)] := ([l1, l2], [m1,m2]),

for any l1, l2 ∈ L and m1,m2 ∈M .

(2) The map ψ : L×DerϕAM → L×DerϕAM is given by

ψ(l,m) := (ψL(l), ψM (m)),

for any l ∈ L and m ∈M .

(3) The action of L×DerϕAM on A is given by

ρ̃L(l,m)(a) := ρLL(l)(a) = ρLM (m)(a),

ρ̃R(l,m)(a) := ρRL(l)(a) = ρRM (m)(a),

for any l ∈ L,m ∈M and a ∈ A.

Next we define homomorphisms of Hom-Leibniz-Rinehart algebras.

Definition 3.7 Let (A,L, [·, ·]L, ϕ, ψL, ρLL, ρRL) and (B,L′, [·, ·]L′ , ψ, ψL′ , ρLL′ , ρRL′) be two Hom-

Leibniz-Rinehart algebras, then a Hom-Leibniz-Rinehart algebra homomorphism is defined as a

pair of maps (g, f), where the map g : A→ B is an R-algebra homomorphism and f : L→ L′ is

an R-linear map such that following identities hold:

(1) f(a · x) = g(a) · f(x), for all x ∈ L and a ∈ A;

(2) f([x, y]L) = [f(x), f(y)]L′ , for all x, y ∈ L;

(3) f(ψL(x)) = ψL′(f(x)), for all x ∈ L;

(4) g(ϕ(a)) = ψ(g(a)), for all a ∈ A;

(5) g(ρLL(x)(a)) = ρLL′(f(x))(g(a));

(6) g(ρRL(x)(a)) = ρRL′(f(x))(g(a)), for all x ∈ L and a ∈ A.

Definition 3.8 A subalgebra (S,A) of (L,A) is called a Hom-Leibniz subalgebra, if (S,A)

satisfies AS ⊂ S such that S acts on A via the composition S ↪→ L → Derϕ(A). A Hom-

Leibniz subalgebra (I,A) of (L,A) is called an ideal, if I is a Hom-Leibniz ideal of L such that

ρL(I)(A)L ⊆ I and ρR(I)(A)L ⊆ I.

The ideal J generated by

{[x, y] + [y, x] : x, y ∈ L}

plays an important role in mathematics since it determines the non-super Lie character of L.

From Hom-Leibniz identity, it is straightforward to check that this ideal satisfies

[L, J ] = 0. (3.1)

Let us introduce the class of split algebras in the framework of Hom-Leibniz algebras from [21].

Denote by H a maximal abelian subalgebra of a Hom-Leibniz algebra L. For a linear functional

γ : H → K,

we define the root space of L associated to γ as the subspace

Lγ := {vα ∈ L : [h, ψ(vγ)] = α(h)ψ(vγ), for any h ∈ H}.
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The elements γ : H → K satisfying Lγ ̸= 0 are called roots of L with respect to H and we denote

Γ := {γ ∈ H∗ \{0} : Lγ ̸= 0}. We call that L is a split regular Hom-Leibniz algebra with respect

to H if

L = H ⊕
⊕
γ∈Γ

Lγ .

We also say that Γ is the root system of L.

Definition 3.9 A split regular Hom-Leibniz-Rinehart algebra (with respect to an MASA H of

the regular Hom-Leibniz algebra L, here MASA means maximal abelian subalgebra) is a regular

Hom-Leibniz-Rinehart algebra (L,A) in which the Hom-Leibniz algebra L contains a splitting

Cartan subalgebra H and the algebra A is a weight module (with respect to H) in the sense that

A can be written as the direct sum A = A0 ⊕ (
⊕

α∈ΛAα) with ϕ(Aα) ⊂ Aα, where

Aα := {aα ∈ A|ρL(h)(aα) = α(h)ϕ(aα), ∀h ∈ H},

for a linear functional α ∈ H∗ and Λ := {α ∈ H∗\{0} : Aα ̸= 0} denotes the weights system of

A. The linear subspace Aα, for α ∈ Λ, is called the weight space of A associate to α, the element

α ∈ Λ ∪ {0} are called weights of A.

Lemma 3.10 Let (L,A) be a Leibniz-Rinehart algebra, where L = H ⊕ (
⊕

α∈Γ Lγ), A = A0 ⊕
(
⊕

α∈ΛAα) , ψ : L → L, ϕ : A → A are two automorphisms such that ψ(H) = H,ϕ(A0) = A0

and ϕ(Aα) ⊂ Aα. By Example 3.3, we know that (L,A) is a regular Hom-Leibniz-Rinehart

algebra. Then we have

L = H ⊕
(⊕
α∈Γ

Lαψ−1

)
, A = A0 ⊕

(⊕
α∈Λ

Aαϕ−1

)
,

which makes the regular Hom-Leibniz-Rinehart algebra (L,A) be the roots system Γ′ = {αψ−1 :

α ∈ Γ} and weights system Λ′ := {αϕ−1 : α ∈ Λ}.
The following lemma is analogous to the results of [23].

Lemma 3.11 For any γ, ξ ∈ Γ ∪ {0} and α, β ∈ Λ ∪ {0}, the following assertions hold.

(1) L0 = H;

(2) ψ(Lγ) = Lγψ−1 and ψ−1(Lγ) = Lγψ;

(3) If [Lγ , Lξ] ̸= 0, then γψ−1 + ξψ−1 ∈ Γ ∪ {0} and [Lγ , Lξ] ⊂ Lγψ−1+ξψ−1 ;

(4) If AαAβ ̸= 0, then α+ β ∈ Λ ∪ {0} and AαAβ ⊂ Aα+β ;

(5) If AαLγ ̸= 0, then α+ γ ∈ Γ ∪ {0} and AαLγ ⊂ Lα+γ ;

(6) If ρL(Lγ)Aα ̸= 0, then α+ γ ∈ Λ ∪ {0} and ρ(Lγ)Aα ⊂ Aα+γ .

4. Connections of roots

In what follows, L denotes a split regular Hom-Leibniz-Rinehart algebra and

L = H ⊕
(⊕
γ∈Γ

Lγ

)
, A = A0 ⊕

(⊕
α∈Λ

Aα

)
.
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Given a linear functional γ : H → K, we denote by −γ : H → K the element in H∗ defined by

(−γ)(h) := −γ(h) for all h ∈ H. We also denote −Γ := {−γ : γ ∈ Γ}. In a similar way we can

define −Λ := {−α : α ∈ Λ}. Finally, we denote ±Γ := Γ ∪ −Γ and ±Λ := Λ ∪ −Λ.

Definition 4.1 Let γ, ξ ∈ Γ. We say that γ is connected to ξ if

• Either ξ = ϵγψz for some z ∈ Z and ϵ ∈ {1,−1}.
• Either there exists a family {ζ1, ζ2, . . . , ζn} ⊂ ±Λ ∪ ±Γ, with n ≥ 2, such that

(1) ζ1 ∈ {γψk|k ∈ Z}.
(2) ζ1ψ

−1 + ζ2ψ
−1 ∈ ±Γ,

ζ1ψ
−2 + ζ2ψ

−2 + ζ3ψ
−1 ∈ ±Γ,

ζ1ψ
−3 + ζ2ψ

−3 + ζ3ψ
−2 + ζ4ψ

−1 ∈ ±Γ,

· · ·
ζ1ψ

−i + ζ2ψ
−i + ζ3ψ

−i+1 + · · ·+ ζi+1ψ
−1 ∈ ±Γ,

· · ·
ζ1ψ

−n+2 + ζ2ψ
−n+2 + ζ3ψ

−n+3 + · · ·+ ζn−1ψ
−1 ∈ ±Γ.

(3) ζ1ψ
−n+1 + ζ2ψ

−n+1 + ζ3ψ
−n+2 + · · ·+ ζnψ

−1 ∈ {±ξψ−m|m ∈ Z}.
We will also say that {ζ1, ζ2, . . . , ζn} is a connection from γ to ξ.

The proof of the next result is analogous to the one of [21].

Proposition 4.2 The relation ∼ in Γ is an equivalence relation, where γ ∼ ξ if and only if γ is

connected to ξ.

By Proposition 4.2 we can consider the quotient set

Γ/ ∼= {[γ] : γ ∈ Γ}

with [γ] being the set of nonzero roots which are connected to γ. Our next goal is to associate

an ideal I[γ] to [γ]. Fix [γ] ∈ Γ/ ∼, we start by defining

L0,[γ] :=
( ⊕
ξ∈[γ],−ξ∈Λ

A−ξLξ

)
+
( ⊕
ξ∈[γ]

[L−ξ, Lξ]
)
.

Now we define

L[γ] :=
⊕
ξ∈[γ]

Lξ.

Finally, we denote by I[γ] the direct sum of the two subspaces above:

I[γ] := L0,[γ] ⊕ L[γ].

Proposition 4.3 For any [γ] ∈ Λ/ ∼, the following assertions hold.

(1) [I[γ], I[γ]] ⊂ I[γ];

(2) ψ(I[γ]) = I[γ];

(3) AI[γ] ⊂ I[γ];

(4) ρL(I[γ])(A)L ⊂ I[γ];

(5) For any [γ] ̸= [δ], we have [I[γ], I[δ]] = 0.
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Proof (1) First we check that [I[γ], I[γ]] ⊂ I[γ], we can write

[I[γ], I[γ]] = [L0,[γ] ⊕ L[γ], L0,[γ] ⊕ L[γ]]

⊂ [L0,[γ], L[γ]] + [L[γ], L0,[γ]] + [L[γ], L[γ]]. (4.1)

Given δ ∈ [γ], we have [L0,[γ], Lδ] ⊂ Lδ ⊂ L[γ]. By a similar argument, we get [Lδ, L0,[γ]] ⊂ L[γ].

Next we consider [L[γ], L[γ]]. If we take δ, η ∈ [γ] such that [Lδ, Lη] ̸= 0, then [Lδ, Lη] ⊂
Lδ+η. If δψ−1 + ηψ−1 = 0, we get [Lδ, L−δ] ⊂ L0,[γ] . Suppose that δψ−1 + ηψ−1 ∈ Γ. We

infer that {δ, η} is a connection from δ to δψ−1 + ηψ−1. The transitivity of ∼ now gives that

δψ−1 + ηψ−1 ∈ [γ] and so [Lδ, Lη] ⊂ L[γ]. Hence

[L[γ], L[γ]] ∈ I[γ]. (4.2)

From (4.1) and (4.2), we get [I[γ], I[γ]] ⊂ I[γ].

(2) It is easy to check that ψ(I[γ]) = I[γ].

(3) and (4) are similar to [23].

(5) We will study the expression [I[γ], I[δ]]. Notice that

[I[γ], I[δ]] = [L0,[γ] ⊕ L[γ], L0,[δ] ⊕ L[δ]]

⊂ [L0,[γ], L[δ]] + [L[γ], L0,[δ]] + [L[γ], L[δ]]. (4.3)

First we consider [L[γ], L[δ]] and suppose that there exist γ1 ∈ [γ], δ1 ∈ [δ] such that [Lγ1 , Lδ1 ] ̸=
0. As necessarily γ1ψ

−1 ̸= −δ1ψ−1, then γ1ψ
−1+δ1ψ

−1 ∈ Γ. So {γ1, δ1,−γ1ψ−1} is a connection

between γ1 and δ1. By the transitivity of the connection relation we see γ ∈ [δ], a contradiction.

Hence [Lγ1 , Lδ1 ] = 0, and so

[L[γ], L[δ]] = 0. (4.4)

By the definition of L0,[γ], we have

[L0,[γ], L[δ]] =
[( ∑

γ1∈[γ],−γ1∈Λ

A−γ1Lγ1

)
+
( ∑
γ1∈[γ]

[L−γ1 , Lγ1 ]
)
, L[δ]

]
.

Suppose that there exist γ1 ∈ [γ] and δ1 ∈ [δ] such that

[Lδ1 , [Lγ1 , L−γ1 ]] = 0.

Suppose that [Lδ1 , [Lγ1 , L−γ1 ]] ̸= 0, then Hom-Leibniz identity gives

0 ̸=[ψψ−1(Lδ1), [Lγ1 , L−γ1 ]]

⊂[[ψ−1(Lδ1), Lγ1 ], ψ(L−γ1)] + [[ψ−1(Lδ1), L−γ1 ], ψ(Lγ1)].

Hence

[ψ−1(Lδ1), Lγ1 ] + [ψ−1(Lδ1), L−γ1 ] ̸= 0,

which contradicts (4.4). Therefore, [Lδ1 , [Lγ1 , L−γ1 ]] = 0.

For the expression [A−γ1Lγ1 , L[δ]], suppose there exists δ1 ∈ [δ] such that [A−γ1Lγ1 , Lδ1 ] ̸= 0.

By Definition 3.1, we have

[A−γ1Lγ1 , Lδ1 ] = [Lδ1 , A−γ1Lγ1 ] ⊂ ϕ(A−γ1)[Lδ1 , Lγ1 ] + ρL(Lδ1)(A−γ1)Lδ1ψ−1 .
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By the discussion above, we get [Lδ1 , Lγ1 ] = 0. Since [A−γ1Lγ1 , L[δ]] ̸= 0, it follows that 0 ̸=
ρL(Lδ1)(A−γ1)Lδ1ψ−1 ⊂ Aδ1−γ1Lδ1ψ−1 . Thus Aδ1−γ1 ̸= 0 and δ1 − γ1 ∈ Λ ∪ {0}. δ1 ∼ γ1, a

contradiction. So [A−γ1Lγ1 , L[δ]] = 0. Therefore, we have [L0,[γ], L[δ]] = 0. In a similar way we

can prove [L[γ], L0,[δ]] = 0, we conclude [I[γ], I[δ]] = 0. 2
Definition 4.4 A Hom-Leibniz-Rinehart algebra (L,A) is simple if [L,L] ̸= 0, AA ̸= 0, AL ̸= 0

and its only ideals are {0}, J , L and the kernel of ρ.

Theorem 4.5 The following assertions hold.

(1) For any [γ] ∈ Γ/ ∼, the linear space I[γ] = L0,[γ] + L[γ] of L associated to [γ] is an ideal

of L.

(2) If L is simple, then there exists a connection from γ to δ for any γ, δ ∈ Γ and

H =
( ∑
γ∈Γ,−γ∈Λ

A−γLγ

)
+

(∑
γ∈Γ

[L−γ , Lγ ]
)
.

Proof (1) Since [I[γ],H] + [H, I[γ]] ⊂ I[γ], by Proposition 3.3, we have

[I[γ], L] =
[
I[γ], H ⊕

( ⊕
ξ∈[γ]

Lξ

)
⊕
( ⊕
δ/∈[γ]

Lδ

)]
⊂ I[γ]

and

[L, I[γ], ] =
[
H ⊕

( ⊕
ξ∈[γ]

Lξ

)
⊕
( ⊕
δ/∈[γ]

Lδ

)
, I[γ]

]
⊂ I[γ].

Furthermore,

[I[γ], L]+[L, I[γ]] =
[
I[γ],H⊕

( ⊕
ξ∈[γ]

Lξ

)
⊕
( ⊕
δ/∈[γ]

Lδ

)]
+
[
H⊕

( ⊕
ξ∈[γ]

Lξ

)
⊕
( ⊕
δ/∈[γ]

Lδ

)
, I[γ]

]
⊂ I[γ].

As we also have ψ(I[γ]) = I[γ]. So we show that I[γ] is a Hom-Leibniz ideal of L. We also have

that I[γ] is an A-module, then we conclude I[γ] is an ideal of L.

(2) The simplicity of L implies I[γ] ∈ {J, L, kerρL}. If some γ ∈ Γ is such that I[γ] = L, then

[γ] = Γ. Otherwise, if I[γ] = J for any α ∈ Γ, then [γ] = [δ] for any γ, δ ∈ Γ, and so [γ] = Γ.

Otherwise, if I[γ] = ker ρ for any γ ∈ Γ, then [γ] = [δ] for any γ, δ ∈ Γ, and so [γ] = Γ. Thus

H = (
∑
γ∈Γ,−γ∈ΛA−γLγ) + (

∑
γ∈Γ[L−γ , Lγ ]). 2

Theorem 4.6 We have

L = U +
∑

[γ]∈Λ/∼

I[γ],

where U is a linear complement in H of (
∑
γ∈Γ,−γ∈ΛA−γLγ) + (

∑
γ∈Γ[L−γ , Lγ ]) and any I[γ] is

one of the ideals of L described in Theorem 4.4, satisfying [I[γ], I[δ]] = 0 if [γ] ̸= [δ].

Proof I[γ] is well defined and is an ideal of L and it is clear that

L = H ⊕
∑
[γ]∈Γ

L[γ] = U +
∑

[γ]∈Γ/∼

I[γ].

Finally, Proposition 4.3 gives us [I[γ], I[δ]] = 0 if [γ] ̸= [δ]. 2
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Definition 4.7 The annihilator of a Hom-Leibniz-Rinehart algebra L is the set

Z(L) := {v ∈ L : [v, L] + [L, v] = 0 and ρ(v) = 0}.

Corollary 4.8 If Z(L) = 0 and H = (
∑
γ∈Γ,−γ∈ΛA−γLγ) + (

∑
γ∈Γ[L−γ , Lγ ]). Then L is the

direct sum of the ideals given in Theorem 4.5,

L =
⊕

[γ]∈Γ/∼

I[γ].

Furthermore, [I[γ], I[δ]] = 0 if [γ] ̸= [δ].

Proof Since H = (
∑
γ∈Γ,−γ∈ΛA−γLγ)+(

∑
γ∈Γ[L−γ , Lγ ]), it follows that L =

∑
[γ]∈Γ/∼ I[γ]. To

verify the direct character of the sum, take some v ∈ I[γ] ∩ (
∑

[δ]∈Γ/∼,[δ] ̸=[γ] I[δ]). Since v ∈ I[γ],

the fact [I[γ], I[δ]] = 0 when [γ] ̸= [δ] gives us[
v,

∑
[δ]∈Γ/∼,[δ]̸=[γ]

I[δ]

]
+
[ ∑
[δ]∈Γ/∼,[δ]̸=[γ]

I[δ], v
]
= 0.

In a similar way, v ∈
∑

[δ]∈Γ/∼,[δ] ̸=[γ] I[δ] implies [v, I[γ]] + [I[γ], v] = 0. It is easy to obtain that

ρL(v) = 0. That is v ∈ Z(L) and so v = 0. 2
5. Decompositions of A

We will discuss the weight spaces and decompositions of A similar to [23] and omit the proof.

Definition 5.1 Let α, β ∈ Λ we say that α and β are connected if

• Either β = εα for some ε ∈ {1,−1};
• Either there exists a family {σ1, σ2, . . . , σn} ⊂ ±Λ ∪ ±Γ, with n ≥ 2, such that

(1) σ1 = α.

(2) σ1 + σ2 ∈ ±Λ ∪ ±Γ,

σ1 + σ2 + σ3 ∈ ±Λ ∪ ±Γ,

· · ·
σ1 + σ2 · · ·+ σn−1 ∈ ±Λ ∪ ±Γ,

(3) σ1 + σ2 · · ·+ σn ∈ {β,−β}.
We will also say that {σ1, σ2, . . . , σn} is a connection from α to β.

Proposition 5.2 The relation ≈ in Λ is an equivalence relation, where α ≈ β if and only if α

is connected to β.

By Proposition 5.2, we can consider the quotient set

Λ/ ≈:= {[α]|α ∈ Λ},

where [α] denotes the set of nonzero weights of A which are connected to α. In the following we

will associate an adequate ideal A[α] to any [α]. For a fixed α ∈ Λ, we define

A0,[α] :=
( ∑
β∈[α],−β∈Λ

ρL(L−β)(Aβ) +
( ∑
β∈[α]

A−β , Aβ

))
⊂ A0, A[α] :=

⊕
β∈[α]

Aβ .
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Then we denote by A[α] the direct sum of the two subspaces above,

A[α] := A0,[α] ⊕A[α].

Proposition 5.3 For any α, β ∈ Λ, the following assertions hold.

(1) A[α]A[α] ⊂ A[α].

(2) If [α] ̸= [β], then A[α]A[β] = 0.

Theorem 5.4 Let A be a commutative and associative algebra associated to a Hom-Leibniz-

Rinehart algebra L. Then the following assertions hold.

(1) For any [α] ∈ Λ/ ≈, the linear space A[α] = A0,[α] ⊕ A[α] of A associated to [α] is an

ideal of A.

(2) If A is simple, then all weights of Λ are connected. Furthermore,

A0 =
∑

−α∈Γ,α∈Λ

ρL(L−α)(Aα) +
(∑
α∈Λ

A−αAα

)
.

Theorem 5.5 Let A be a commutative and associative algebra associated to a Hom-Leibniz-

Rinehart algebra L. Then

A = V +
∑

[α]∈Λ/≈

A[α],

where V is a linear complement in A0 of
∑

−α∈Γ,α∈Λ ρ
L(L−α)(Aα) + (

∑
α∈ΛA−αAα) and any

A[α] is one of the ideals of A described in Theorem 4.4 (1), satisfying A[α]A[β] = 0, whenever

[α] ̸= [β].

Let us denote by Z(A) the center of A, that is, Z(A) := {a ∈ L|aA = 0}.

Corollary 5.6 Let (L,A) be a Hom-Leibniz-Rinehart algebra. If Z(A) = 0 and

A0 =
∑

−α∈Γ,α∈Λ

ρL(L−α)(Aα) +
(∑
α∈Λ

A−αAα

)
,

then A is the direct sum of the ideals given in Theorem 4.5, that is,

A =
∑

[α]∈Λ/≈

A[α],

satisfying A[α]A[β] = 0, whenever [α] ̸= [β].

6. The simple components

In this section we focus on the simplicity of split regular Hom-Leibniz-Rinehart algebra (L,A)

by centering our attention in those of maximal length. From now on we always assume that Λ

is symmetric in the sense that Λ = −Λ.

Lemma 6.1 Let (L,A) be a split regular Hom-Leibniz-Rinehart and I an ideal of L. Then

I = (I ∩H)⊕ (I ∩
⊕

γ∈Γ Lγ).

Proof Since (L,A) is split, we get L = H ⊕ (
⊕

γ∈Γ Lγ). By the assumption that I is an ideal

of L, it is clear that I is a submodule of L. Since a submodule of a weight module is again a
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weight module. Thus I is a weight module and therefore, I = (I ∩H)⊕ (I ∩
⊕

γ∈Γ Lγ). 2
Lemma 6.2 Let (L,A) be a split regular Hom-Leibniz-Rinehart algebra with Z(L) = 0 and I

an ideal of L. If I ⊂ H, then I = {0}.

Proof Since I ⊂ H, [I,H] + [H, I] ⊂ [H,H] = 0. It follows that [I, L] + [L, I] = [I,
⊕

γ∈Γ Lγ ] +

[
⊕

γ∈Γ Lγ , I] ⊂ H ∩ (
⊕

γ∈Γ Lγ) = 0. So I ⊂ Z(L) = 0. 2
Observe that if L is of maximal length, then we have

I = (I ∩H)⊕
( ⊕
γ∈ΓI

Lγ

)
, (6.1)

where ΓI = {γ ∈ Γ : I ∩ Lγ ̸= 0}.
In particular, in case I = J , we get

J = (J ∩H)⊕
( ⊕
γ∈ΓJ

Lγ

)
(6.2)

with ΓJ = {γ ∈ Γ : J ∩ Lγ ̸= 0} = {γ ∈ Γ : 0 ̸= Lγ ⊂ J}.
From here, we can write

Γ = ΓJ ∪ Γ¬J , (6.3)

where Γ¬J = {γ ∈ Γ : Lγ ̸= 0 and J ∩ Lγ = 0}. Therefore, we can write

L = H ⊕
( ⊕
γ∈ΓJ

Lγ

)
⊕
( ⊕
δ∈Γ¬J

Lδ

)
. (6.4)

Let us introduce the notion of root-multiplicativity in the framework of split regular Hom-

Leibniz-Rinehart algebras of maximal length, in a similar way to the ones for split regular

Hom-Lie Rinehart algebras in [23].

Definition 6.3 A split regular Hom-Leibniz-Rinehart algebra (L,A) is called root-multiplicative

if the following conditions hold:

(1) Given γ, δ ∈ Γ¬J such that γψ−1 + δψ−1 ∈ Γ, then [Lγ , Lδ] ̸= 0.

(2) Given γ ∈ ΓJ , δ ∈ Γ¬J such that γψ−1 + δψ−1 ∈ ΓJ , then [Lγ , Lδ] ̸= 0.

(3) Given α ∈ Λ, γ ∈ Γ such that α+ γ ∈ Γ, then AαLγ ̸= 0.

(4) If α+ β ∈ Λ, then AαAβ ̸= 0.

Definition 6.4 A split regular Hom-Leibniz-Rinehart (L,A) is called of maximal length if dim

Lγ=dim Aα = 1 for any γ ∈ Γ and α ∈ Λ.

Proposition 6.5 Suppose H = (
∑
γ∈Γ¬J ,−γ∈ΛA−γLγ) + (

∑
γ∈Γ¬J [L−γ , Lγ ]), ZLie(L) = 0 and

root-multiplicative. If Γ¬J has all of its roots ¬J-connected, then any ideal I of L such that

I * H ⊕ J , then I = L.

Proof By (6.1) and (6.3), we can write

I = (I ∩H)⊕
( ⊕
γ∈Γ¬J,I

Lγ

)
,
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where Γ¬J,I = Γ¬J ∩ ΓI and ΓJ,I = ΓJ ∩ ΓI . Since I * H ⊕ J , there exists γ0 ∈ Γ¬J such that

0 ̸= Lγ0 ⊂ I. (6.5)

By Lemma 3.11, ψ(Lγ0) = Lγ0ψ−1 . Eq. (6.5) gives us ψ(Lγ0) ⊂ ψ(I) = I. So Lγ0ψ−1 ⊂ I.

Similarly, we get

Lγ0ψ−n ⊂ I, for n ∈ N. (6.6)

For any δ ∈ Γ¬J , β /∈ ±γ0ψ−n, for n ∈ N, the fact that γ0 and γ are ¬J-connected gives us a

¬J-connection {γ1, γ2, . . . , γn} ⊂ Γ¬J from γ0 to δ such that

γ1 = γ0 ∈ Γ¬J , γk ∈ Γ¬J , for k = 2, . . . , n,

γ1ψ
−1 + γ2ψ

−1 ∈ ΓΥ,

· · ·

γ1ψ
−n+1 + γ2ψ

−n+1 + γ3ψ
−n+2 + · · ·+ γn−1ψ

−2 + γnψ
−1 ∈ ΓΥ,

γ1ψ
−n+1 + γ2ψ

−n+1 + γ3ψ
−n+2 + · · ·+ γiψ

−n+i−1 + · · ·+

γn−1ψ
−2 + γnψ

−1 ∈ {±βϕ−m : m ∈ N}.

Taking into account γ1 = γ0 ∈ Γ¬J , if γ2 ∈ Λ (resp., γ2 ∈ Γ¬J), the root-multiplicativity and

maximal length of (L,A) allow us to assert

0 ̸= Aγ1Lγ2 = Lγ1+γ2 (resp., 0 ̸= [Lγ1 , Lγ2 ] = Lγ1ψ−1+γ2ψ−1).

By (6.6), we have

0 ̸= Lγ1ψ−1+γ2ψ−1 ⊂ I.

We can discuss in a similar way from γ1ψ
−1 + γ2ψ

−1 ∈ Γ¬J , γ3 ∈ Λ∪Γ¬J and γ1ψ
−2 + γ2ψ

−2 +

γ3ψ
−1 ∈ Γ¬J to get

0 ̸= [Lγ1ψ−1+γ2ψ−1 , Lγ3 ] = Lγ1ψ−2+γ2ψ−2+γ3ψ−1 .

Thus we have

0 ̸= Lγ1ψ−2+γ2ψ−2+γ3ψ−1 ⊂ I.

Following this process with the ¬J-connection {γ1, γ2, ..., γn}, we obtain that

0 ̸= Lγ1ψ−n+1+γ2ψ−n+1+γ3ψ−n+2+···+γnψ−1 ⊂ I.

It follows that either

Lδψ−m ⊂ I or L−δψ−m ⊂ I (6.7)

for any δ ∈ Γ¬J ,m ∈ N. Moreover, we have

δψ−m ∈ Γ¬J . (6.8)

Since H = (
∑
γ∈Γ¬J ,−γ∈ΛA−γLγ) + (

∑
γ∈Γ¬J [L−γ , Lγ ]), by (6.7) and (6.8), we get

H ⊂ I. (6.9)
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Now, for any Υ ∈ {J,¬J}, given any δ ∈ ΓJ , the facts δ ̸= 0,H ⊂ I and the maximal length of

(L,A) show that

Lδ = [Lδψ,H] ⊂ I.

The decomposition of L in (6.4) finally gives us H = I. 2
Another interesting notion related to a split Hom-Leibniz-Rinehart algebra of maximal length

(L,A) is Lie annihilator. Write L = H ⊕ (
⊕

γ∈Γ¬J Lγ)⊕ (
⊕

δ∈ΓJ Lδ).

Definition 6.6 The Lie-annihilator of a split Hom-Leibniz-Rinehart algebra of maximal length

(L,A) is the set

ZLie(L) :=
{
v ∈ L :

[
v,H ⊕

( ⊕
γ∈Γ¬J

Lγ

)]
+
[
H ⊕

( ⊕
γ∈Γ¬J

Lγ

)
, v
]
= 0 and ρ(v) = 0

}
.

Observe that Z(L) ⊂ ZLie(L).

In the following, we will discuss the relation between the decompositions of L and A of a

Hom-Leibniz-Rinehart algebra (L,A).

Definition 6.7 A split regular Hom-Leiniz-Rinehart algebra (L,A) is tight if ZLie(L) = 0,

Z(A) = 0, AA = A, AL = L and

H =
( ∑
γ∈Γ¬J ,−γ∈Λ

A−γLγ

)
+

( ∑
γ∈Γ¬J

[L−γ , Lγ ]
)
,

A0 =
( ∑

−α∈Γ¬J ,α∈Λ

ρ(L−α)(Aα)
)
+
(∑
α∈Λ

A−αAα

)
.

Remark 6.8 Let (L,A) be a tight split regular Hom-Leibniz-Rinehart algebra, then

L =
∑

[γ]∈Γ¬J/∼

I[γ], A =
∑

[α]∈Λ/≈

A[α]

with any I[γ] an ideal of L verifying [I[γ], I[δ]] = 0 if [γ] ̸= [δ] and any A[α] an ideal of A satisfying

A[α]A[β] = 0 if [α] ̸= [β].

Proposition 6.9 Let (L,A) be a tight split regular Hom-Leibniz-Rinehart algebra, then for

any [γ] ∈ Γ¬J/ ∼ there exists a unique [α] ∈ Λ/ ≈ such that A[α]I[γ] = 0.

Proof Similar to Proposition 4.2 in [21]. 2
Theorem 6.10 Let (L,A) be a tight split regular Hom-Leibniz-Rinehart algebra, then

L =
∑

i∈Γ¬J/I

Li, A =
∑
j∈K

Aj

with any Li a nonzero ideal of L and any Aj a nonzero ideal of A. Furthermore, for any i ∈ I

there exists a unique j̃ ∈ K such that Aj̃Li = 0.

Theorem 6.11 Let (L,A) be a tight split regular Hom-Leibniz-Rinehart algebra of maximal

length and root multiplicative. If ΓJ , Γ¬J are symmetric and Γ¬J has all of its roots ¬J-
connected, then any ideal I of L such that I ⊆ J satisfies either I = J or J = I ⊕ I ′ with I ′ an
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ideal of L.

Proof By (6.1), we can write

I = (I ∩H)⊕
( ⊕
γ∈ΓJI

Lγ

)
, (6.10)

and with ΓJI ⊂ ΓJ . For any γ /∈ ΓJ , we have

[J ∩H,Lγ ] + [Lγ , J ∩H] ⊂ Lγ ⊂ J.

Hence, in case [J ∩H,Lγ ]+ [Lγ , J ∩H] ̸= 0 we have γ ∈ ΓJ , a contradiction. Hence [J ∩H,Lγ ]+
[Lγ , J ∩H] = 0, and so

J ∩H ⊂ ZLie(L). (6.11)

Taking into account I ∩H ⊂ J ∩H = 0, we also write

I =
⊕
δ∈ΓJI

Lδ

with ΓJI ⊂ ΓJ . Hence, we can take some δ0 ∈ ΓI such that

0 ̸= Lδ0 ⊂ I.

Now, we can argue with the root-multiplicativity and the maximal length of L as in Proposition

6.5 to conclude that given any δ ∈ ΓJ , there exists a ¬J-connection {δ1, δ2, . . . , δr} from δ0 to δ

such that

0 ̸= [[...[Lδ0 , Lδ2 ], ...], Lδr ] ∈ Lδψ−m , for m ∈ N

and so

Lϵδψ−m ⊂ I, for some ϵ ∈ ±1,m ∈ N. (6.12)

Note that δ ∈ ΓJ indicates Lδ ∈ J . By Lemma 3.11, ψ(Lδ) = Lδψ−1 . Since L is of maximal

length, we have ψ(Lδ) ⊂ ψ(J) = J . So Lδψ−1 ⊂ I. Similarly, we get

Lδψ−m ∈ J, for m ∈ N. (6.13)

Hence we can argue as above with the root-multiplicativity and maximal length of L from δ

instead of δ0, to get that in case ϵδ0ϕ
−m ∈ ΓJ for some ϵ ∈ ±1, then 0 ̸= Lϵδ0ψ−m ∈ I.

The decomposition of J in (6.12) finally gives us I = J .

Now suppose there is not any δ0 ∈ ΓJI such that −δ0 ∈ ΓJI . Then we have

ΓJ = ΓJI ∪̇ − ΓJI , (6.14)

where −ΓJI := {−γ|γ ∈ ΓJI}. Define

I ′ :=
( ∑

−γ∈−ΓJI ,γ∈Λ

AγL−γ

)
⊕

( ⊕
−γ∈−ΓJI

L−γ

)
. (6.15)

First, we claim that I ′ is a Hom-Leibniz-ideal of L. In fact, By Lemma 3.11, ψ(L−γ) ⊂
L−γψ−1 , −γψ−1 ∈ −ΓJI and ψ(AγL−γ) ⊂ ψ(L0) ⊂ L0 if AγL−γ ̸= 0 (otherwise is trivial). So

ψ(I ′) ⊂ I ′.



496 Shuangjian GUO, Xiaohui ZHANG and Shengxiang WANG

Since AγL−γ ⊂ L0, by (6.15), we have

[L, I ′] =
[
H ⊕

( ⊕
δ∈Γ¬J

Lδ

)
,
( ∑

−γ∈−ΓJI ,γ∈Λ

AγL−γ

)
⊕
( ⊕

−γ∈−ΓJI

L−γ

)]
⊂

[ ⊕
δ∈Γ¬J

Lδ,
( ∑

−γ∈−ΓJI ,γ∈Λ

AγL−γ

)]
+
[⊕
δ∈Γ

Lδ,
⊕

−γ∈−ΓJI

L−γ

]
+

∑
−γ∈−ΓJI

L−γ . (6.16)

For the expression [
⊕

δ∈Γ¬J Lδ, (
∑

−γ∈−ΓJI ,γ∈ΛAγL−γ)] in (6.16), if some [Lδ, AγL−γ ] ̸= 0,

we have that in case δ = −γ, [L−γ , AγL−γ ] ⊂ L−γψ−1 ⊂ I ′, and in case δ = γ, since I is a

Hom-Leibniz-ideal of L, −γ /∈ ΓJI implies [L−γ , A−γLγ ] = 0. By the maximal length of L and

the symmetry of Γ, we have [Lγ , AγL−γ ] = 0. Suppose δ /∈ {γ,−γ}. By Definition 3.3,

[Lδ, AγL−γ ] ⊂ ϕ(Aγ)[Lδ, L−γ ] + ρL(Lδ)(Aγ)L−γ .

Since (L,A) is regular, ϕ(Aγ) ⊂ Aγ . As [Lδ, AγL−γ ] ̸= 0, we get

Aγ [Lδ, L−γ ] ̸= 0 or ρL(Lδ)(Aγ)L−γ ̸= 0.

By the maximal length of L, either Aγ [Lδ, L−γ ] = Lγ+(δ−γ)ψ−1 or ρL(Lδ)(Aγ)L−γ = Lδ. In both

cases, since γ ∈ ΓJI , by the root-multiplicativity of L, we have L−δ ⊂ I and therefore −δ ∈ ΓJI .

That is, Lδ ⊂ I ′. So [
⊕

δ∈Γ¬J Lδ, (
∑

−γ∈−ΓJI ,γ∈ΛAγL−γ)] ⊂ I ′.

For the expression [
⊕

δ∈Γ¬J Lδ,
⊕

−γ∈−ΓJI L−γ ] in (6.16), if some [Lδ, L−γ ] ̸= 0, then

[Lδ, L−γ ] = L(δ−γ)ψ−1 .

On the one hand, let δ − γ ̸= 0. Since γ ∈ ΓJI , by the root-multiplicativity of L, we have

[Lγ , L−δ] = L(γ−δ)ψ−1 ⊂ I. So (δ − γ)ψ−1 ∈ ΓI and therefore, L(δ−γ)ψ−1 ⊂ I ′. On the other

hand, let δ − γ = 0. Suppose [Lγ , L−γ ] ̸= 0, since γ ∈ ΓJI , we get [Lγ , L−γ ] ⊂ I. Thus

L−γ = [[Lγ , L−γ ], L−γψ] ⊂ I. According to the discussion above, γ,−γ ∈ ΓJI , a contradiction

with (6.14). So [
⊕

δ∈Γ¬J Lδ,
⊕

−γ∈−ΓJI L−γ ] ⊂ I ′.

Secondly, we claim that ρL(I ′)(A)L ⊂ I ′. In fact, by Definition 3.1, we have

ρ(I ′)(A)L ⊂ [I ′, AL] +A[I ′, L].

Since I ′ is a Hom-Leibniz-ideal of L, we get [I ′, AL] ⊂ I ′, [I ′, L] ⊂ I ′. So it suffices to verify that

AI ′ ⊂ I ′. For this, we calculate

AI ′ =
(
A0 ⊕

(⊕
α∈Λ

Aα

))( ∑
−γ∈−ΓJI ,γ∈Λ

AγL−γ

)
⊕
( ⊕

−γ∈−ΓJI

L−γ

)
⊂

I ′ +
(⊕
α∈Λ

Aα

)( ∑
−γ∈−ΓJI ,γ∈Λ

AγL−γ

)
+
(⊕
α∈Λ

Aα

)( ⊕
−γ∈−ΓJI

L−γ

)
. (6.17)

For the expression (
⊕

α∈ΛAα)(
∑

−γ∈−ΓJI ,γ∈ΛAγL−γ) in (6.17), if some Aα(AγL−γ) ̸= 0,

we have that in case α = −γ, clearly, Aα(AγL−γ) = A−γ(AγL−γ) ⊂ L−γ ⊂ I ′. In case of

α = γ, since −γ /∈ ΓI , we get A−γ(A−γLγ) = 0. By the the maximal length of L, we have

Aα(AγL−γ) = Aγ(AγL−γ) = 0. Suppose that α /∈ {γ,−γ}, by the the maximal length of L, we

have Aα(AγL−γ) = Lα. Since γ ∈ ΓJI , by the root-multiplicativity of L, we have L−γ ⊂ I, that

is, −α ∈ ΓJI . So α ∈ −ΓJI and Lα ⊂ I ′. Thus (
⊕

α∈ΛAα)(
∑

−γ∈−ΓJI ,γ∈ΛAγL−γ) ⊂ I ′.
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For the expression (
⊕

α∈ΛAα)(
⊕

−γ∈−ΓJI L−γ) in (5.17), if some AαL−γ ̸= 0, in case α−γ ∈
ΓJI , by the root-multiplicativity of L, we have A−αLγ ̸= 0. Again by the maximal length of L,

we have A−αLγ = L−α+γ . So −α+ γ ∈ ΓJI , a contradiction. Thus α− γ ∈ −ΓJI and therefore,

(
⊕

α∈ΛAα)(
⊕

−γ∈−ΓJI L−γ) ⊂ I ′.

By the discussion above, we have shown that ρ(I ′)(A)L ⊂ I ′ and therefore I ′ is an ideal of

(L,A).

Finally, we will verify that L = I⊕I ′ with ideals I, I ′. Since [I ′, I] = 0, by the commutativity

of H, we get
∑
γ∈Γ[Lγ , L−γ ] = 0, so H must have the form

H =
( ∑
γ∈ΓJI ,−γ∈Λ

AγL−γ

)
⊕
( ∑

−γ∈−ΓJI ,γ∈Λ

AγL−γ

)
. (6.18)

In order to show that the sum in (6.18) is direct, we take any h ∈ (
∑
γ∈ΓJI ,−γ∈ΛAγL−γ) ⊕

(
∑

−γ∈−ΓJI ,γ∈ΛAγL−γ). Suppose h ̸= 0, then h /∈ Z(L). Since L is split, there is vδ ∈ Lδ, δ ∈ Γ

satisfying [h, vδ] = δ(h)ψ(vδ) ̸= 0. By Proposition 4.3, 0 ̸= δ(h)ψ(vδ) ∈ Lδψ−1 . While Lδψ−1 ⊂
I ∩ I ′ = 0, a contradiction. So h = 0, as required. And this finishes the proof. 2
Corollary 6.12 Let (L,A) be a tight split regular Hom-Leibniz-Rinehart algebra of maximal

length and root-multiplicative. If ΓJ , Γ¬J are symmetric and Γ¬J has all of its roots ¬J-
connected, and Λ has all its nonzero weights connected. Then

L =
⊕
i∈I

Li, A =
⊕
j∈K

Aj ,

where any Li is a simple ideal of L having all of its nonzero roots connected satisfying [Li, Li′ ] = 0

for any i′ ∈ I with i ̸= i′, and any Aj is a simple ideal of A satisfying AjAj′ = 0 for any j′ ∈ K

such that j′ ̸= j.

Furthermore, for any i ∈ I there exists a unique j ∈ K such that AjLi ̸= 0. We also have

that any Li is a split regular Hom-Leibniz-Rinehart algebra over Aj .

Proof It is analogous to Theorem 5.7 in [23]. 2
Acknowledgements The authors are grateful to the referees for carefully reading the manuscrip-

t and for many valuable comments which largely improved the article.
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