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Abstract In the present paper, effects of entropy generation and nonlinear thermal radiation

on Jeffery nanofluid over permeable stretching sheet with partial slip effect were analyzed. The

suitable similarity transformation is utilized for the reduction of a set of governing equations,

which are solved by using Differential Transformation Method (DTM) with the help of symbolic

software MATHEMATICA. The accuracy of impact of slip parameter on coefficient of skin

friction by using DTM and numerical method (Shooting technique with fourth-order Runge-

Kutta) is illustrated and good agreement is found. Further, velocity, temperature, nanoparticle

volume fraction and entropy generation profiles are shown graphically and studied in detail for

various physical parameters. We notice that, as slip parameter rises the velocity and entropy

generation profile rises. Enhancement in the effect of nonlinear thermal radiation reduces the

entropy generation.
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1. Introduction

In several industrial and engineering processes, prominent importance of flow over stretching

sheet can be seen, for instance, in polymer sheets extrusion, production of glass–fiber and paper,

wire drawing, metal–spinning. In these cases, the rate of cooling and stretching is very much

needed in obtaining the desired final quality of the product. The theory of flow over a stretching

plate was coined by Crane [1]. After this work, several researchers gave their attention towards

the flow over stretching surface and a lot of work has been done on this problem [2–6]. In the

above cited literature, fluid velocity is taken zero at the solid boundary. But in certain cases,

replacement of no slip boundary condition by the partial slip boundary condition is more required.

A slip boundary condition in which fluid velocity is directly proportional to tangential stress was

initiated by Navier [7]. Further, Navier boundary conditions were extended by Shikhmurzaev [8],

Choi et al. [9] and Matthews [10]. Consideration of heat generation/absorption and slip boundary

conditions over stretching sheet was studied by Das et al. [11] and Dodda et al. [12]. Some works

related to partial slip boundary conditions can be seen in [13–16]. A remarkable variation in the

flow field through the bounding surface can be seen in the residence of suction or injection of a

Received January 28, 2022; Accepted May 21, 2022

* Corresponding author

E-mail address: ashask@kud.ac.in (S. K. ASHA); maligayitri@gmail.com (G. MALI)



524 S. K. ASHA and G. MALI

fluid. In practice, suction tries to enhance the skin friction and opposite behaviour can be seen

in injection. On suction or injection, a considerable investigation has been conducted by many

researchers; few are given in the ref. [17–20].

Effect of radiation heat transfer has important applications in physics, various engineering

branches, industries, material science such as in the design of equipments, glass generation,

gas turbines, satelights, furnace design, propulsion system, power plants for inter planetary

fights which operate at high temperatures. Hence, in such processes nonlinear thermal radiation

effects cannot be neglected. Many researchers utilized radiation effect which was examined by

linearized Rosseland approximation. But, this linearized Rosseland approximation is valid only

for smaller variation of temperature in the middle of the plate and ambient fluid. But, non-

linearized Rosseland approximation is sensible and plays an important role for larger variation

of temperature. By using non-linearised Rosseland approximation one can solve the problems

for both small and large variations of temperature on boundary and the ambient fluid. But, on

boundary layer the impacts of thermal radiation are known very little. Hossain and Takhar [21],

Takhar et al. [22] and Hossain et al. [23] studied in detail radiation impacts on heat transfer

problems. In the temperature equation, addition of radiation effects gives highly nonlinear

partial differential equation.

Nowadays, interest of many researchers is on entropy of thermodynamical systems. In heat

transfer processes, the presence of entropy generation is customary and is related to thermody-

namic irreversibility. Such irreversibility are viscous dissipation, mass diffusion, magnetic effect

and heat transfer. The study of all these irreversibility helps us to recognize the irreversibility

connected with many components and to ignore the loss of accessible energy. This instruction

helps us to design thermal systems, guess the price of engineering systems and optimize complex

systems. Entropy generation was initiated by Bejan [24]. Second law of thermodynamics is the

reason why increment is possible in such irreversibility. Because of this increment in irreversibil-

ity, efficiency of various types of thermodynamical systems increases. Thus entropy generation

plays a major part in finding out the demonstration of thermal machines such as heat engines,

power plants, heat pumps and so on. Some more works on entropy generation can be seen

in [25–29].

In real world, we can see many applications of non–Newtonian fluids in different fields such

as food processing industries, chemical engineering, mechanical engineering and so on. Because

of this reason, attention of several researchers is towards the study of transport phenomena of

non-Newtonian fluids and Jeffrey model is one among them. This model describes the impact of

relaxation and retardation times. It shows linear viscoelastic feature and has many applications

in polymer sector. Jeffrey originated the retardation concept to study the wave propagation

appearance in the earth’s mantle and at the end in the description of the Jeffrey temperature

flux model. Relaxation time explains the time taken by the fluid to bring back from the changed

position to their original stability state. Some other woks on Jeffrey nanofluid can be seen

in [30–36].

There are a number of analytical, semi-analytical and numerical methods used to solve non-
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linear differential equations. DTM is famous among them. Because, DTM has some advantages

over other methods. Perturbation techniques depend on small or large quantities but DTM

is independent of them. Therefore, for nonlinear problems containing governing equations and

boundary/initial conditions having small or large quantities or not, DTM can be applied. Unlike

analytical methods, DTM does not need to compute auxiliary parameter, initial guesses and aux-

iliary linear operator and solves equations directly. DTM helps us to demonstrate the solutions

of a given nonlinear problem by utilizing Padé approximant and Ms-DTM or other modifications.

The partial slip and nonlinear thermal radiation effects on Jeffrey nanofluid over permeable

stretching sheet is not yet studied. Impacts of thermal radiation, on boundary layer are known

very little in literature. Non-linearized Rosseland approximation is sensible and plays an impor-

tant role for larger variation of temperature and one can solve the problems for both small and

large variations of temperature on boundary and the ambient fluid. In most of the literature,

entropy generation is studied by using stretching sheet with various nanofluids and effects. But,

entropy generation by considering Jeffrey nanofluid model and permeable stretching sheet by

using DTM is not yet studied. We get the ordinary differential equations by utilizing appropri-

ate similarity transformation. We get highly nonlinear reduced ordinary differential equations

which are solved by using semi-analytical method known as differential transformation method

(DTM) [37–39]. We obtain an analytical solution in terms of polynomial by using this method.

DTM is different from traditional higher–order Taylor series method. To calculate higher orders,

Taylor series method becomes very expensive. Therefore, DTM is another tool to have analytic

Taylor series solution of differential equations and can be applied directly to these nonlinear

differential equations in the absence of discretization, linearization. Hence, the errors related to

discretization cannot affect DTM. The accuracy of DTM and numerical method is illustrated

and also matching between these two methods can be seen in figure. Similarly, for various dif-

ferential equations the accuracy of solutions by using analytical, semi–analytical and numerical

methods can be seen in [40–45]. Further, velocity, temperature, nanoparticle volume fraction and

entropy generation profiles are displayed graphically and studied in detail for various physical

parameters.

2. Mathematical formulation

As shown in Figure 1, a stretching flat sheet is moving along the horizontal direction with

velocity
←→
Uw = a x where a > 0 and a is constant parameter. The surface is permeable and suction

or blowing occurs at the surface in vertical direction. Velocity of the fluid out of boundary layer

is zero. The governing equations are given below [12,18–20]

∂
←→
U

∂x
+
∂
←→
V

∂y
= 0, (2.1)

1 + λ

γ
(
←→
U
∂
←→
U

∂x
+
←→
V
∂
←→
U

∂y
)
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=
∂2
←→
U

∂y2
+ λ1(

←→
U

∂3
←→
U

∂x∂y2
+
←→
V
∂3
←→
U

∂y3
− ∂
←→
U

∂x

∂2
←→
U

∂y2
+
∂
←→
U

∂y

∂2
←→
U

∂x∂y
), (2.2)

←→
U
∂
←→
T

∂x
+
←→
V
∂
←→
T

∂y
= α

∂2
←→
T

∂y2
+ τ

[
DB(

∂
←→
C

∂y

∂
←→
T

∂y
) +

DT

T∞
(
∂
←→
T

∂y
)2
]
− 1

(ρc)p

∂qr
∂y

, (2.3)

←→
U
∂
←→
C

∂x
+
←→
V
∂
←→
C

∂y
= DB

∂2
←→
C

∂y2
+
DT

T∞

∂2
←→
T

∂y2
. (2.4)

Where,
←→
U and

←→
V are velocity components along the x and y direction, respectively. µ is the

coefficient of fluid viscosity, ρf is density of the fluid, ρp is density of the nanoparticle, (ρc)f

is heat capacity of the base fluid, (ρc)p is heat capacity of the nanoparticle, τ =
(ρc)p
(ρc)f

is the

ratio of effective heat capacity of the nanoparticle material to heat capacity of the fluid, qr is

radiative heat flux,
←→
T is fluid temperature, α = k

(ρc)f
is the thermal diffusivity of the fluid, k

is the thermal coductivity,
←→
C is nanoparticle volume fraction,

←→
T∞ is temperature of the fluid

far away from the stretching sheet, D←→
T

is Brownian diffusion coefficient, DB is thermophoresis

diffusion coefficient.

Figure 1 Schematic diagram of permeable stretching surface

By utilizing Rosseland approximation qr,

qr =
−4σ∗

3k∗
∂
←→
T 4

∂y
=
−16σ∗

3k∗
←→
T 3 ∂

←→
T

∂y
, (2.5)

the boundary conditions are as follows

←→
U =

←→
Uw + L

∂
←→
U

∂y
,
←→
V =

←→
Vw,
←→
C =

←→
Cw,

←→
T =

←→
Tw as y = 0, (2.6)

←→
U → 0,

←→
T →

←→
T∞,

←→
C →

←→
C∞ as y→∞. (2.7)

Non-dimensional similarity variables as follows

η =
y

x
(Re)

1
2 , ψ =

←→
Uw x(Re)

−1
2 f(η), θ(η) =

←→
T −←→T∞
←→
Tw −

←→
T∞

, ϕ(η) =

←→
C −←→C∞
←→
Cw −

←→
C∞

, (2.8)

where, η is similarity variable, ϕ is dimensionless nanoparticle volume fraction, f is dimensionless

stream function, θ is dimensionless fluid temperature, ψ is stream function.

Where θw is temperature ratio parameter and is given below

θw =

←→
Tw
←→
T∞

, θw > 1, (2.9)
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where ψ(x, y) is defined as
←→
U =

∂ψ

∂y
,
←→
V = −∂ψ

∂x
. (2.10)

Eq. (2.1) is automatically satisfied by using (2.10) and Eqs. (2.2)–(2.4) are reduced into ordinary

differential equations as given below

f ′′′ + β (f ′′
2 − ff ′′′′) + (1 + λ)(ff ′′ − f ′2) = 0, (2.11)

(1 +Rd)θ′′ + Pr(fθ′ +Nb ϕ′θ′ +Nt(θ′
2
))+

Rd
[
(θw − 1)3θ3θ′′ + 3(θw − 1)3θ2θ′

2
+ 3(θw − 1)θθ′′

]
+

Rd
[
3(θw − 1)(θ′

2
) + 3(θw − 1)2θ2θ′′ + 6(θw − 1)2θθ′

2]
= 0, (2.12)

ϕ′′ + Le fϕ′ +
Nt

Nb
θ′′ = 0. (2.13)

Boundary conditions (2.6) and (2.7) are transformed as follows

f(0) = S, f ′(0) = 1 + δ f ′′(0), θ(0) = 1, ϕ(0) = 1 at η = 0, (2.14)

f ′ → 0, θ → 0, ϕ→ 0 as η →∞. (2.15)

The parameters are defined as

Nb =
(ρc)pDB(

←→
Cw −

←→
C∞)

(ρc)fγ
, Nt =

(ρc)pD←→T (
←→
Tw −

←→
T∞)

(ρc)fγ
←→
T∞

, P r =
γ

α
,

Le =
γ

DB
, Rd =

16σ∗
←→
T∞

3kk∗
, S = −

←→
Vw(x)

√
x

γ
←→
Uw

, Re =

←→
Uw

γ
x, δ = L(

a

γ
)

1
2 , (2.16)

where, Nb is Brownian motion parameter, Nt is thermophoresis parameter, Pr is Prandtl num-

ber, Rd is thermal radiation parameter, S is suction/injection parameter (S > 0 for suction and

S < 0 for injection), Le is lewis number, Re is Reynolds number, δ is velocity slip parameter,
←→
Uw is velocity of the wall along the x axis, k∗ is mean absorption coefficient, k is thermal con-

ductivity, γ is kinematic viscosity, σ∗ is Stefan-Boltzmann constant,
←→
Tw is temperature at the

surface,
←→
Cw is nanoparticle volume fraction at wall temperature,

←→
C∞ is ambient nanoparticle

volume fraction, α is thermal diffusivity.

Where Cf and Shx are given below

Cf =
τw

ρf
←→
Uw

2
, Shx =

x qm

DB(
←→
Cw −

←→
C∞)

, (2.17)

where τw and qm are given below

τw =
µ

1 + λ

[∂←→U
∂y

+ λ1(
←→
U
∂2
←→
U

∂x∂y
+
←→
V
∂2
←→
U

∂y2
)
]
y=o

, qm = −DB(
∂
←→
C

∂y
)y=0. (2.18)

Here, τw is wall shearing stress, qw is surface heat flux, qm is surface mass flux, λ is relaxation

to retardation times, λ1 is retardation time, β is Deborah number, µ is dynamic viscosity of the

base fluid, Cf is skin-friction coefficient, Shx is sherwood number.
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Using Eqs. (2.6), (2.7), (2.17) and (2.18) is reduced as

Cf (Re)
1
2 =

1

1 + λ
[f ′′(0) + β f ′(0)f ′′(0)− f(0)f ′′′(0)], (Re)

−1
2 Shx = −ϕ′(0). (2.19)

3. Entropy generation analysis

The volumetric entropy generation equation is represented as [24–26]

Sgen =
[ 1
←→
T∞

(k +
16σ∗

←→
T 3

3k∗
)(
∂
←→
T

∂y
)2
]
+

[Rd DB
←→
C∞

(
∂
←→
C

∂y
)2 +

Rd DB
←→
T∞

(
∂
←→
T

∂y
)(
∂
←→
C

∂y
)
]
. (3.1)

The above equation contains two effects:

(a) First part represents heat transfer irreversibility;

(b) Second part represents diffusive irreversibility.

The characteristics entropy generation is given below

S0 =
k(
←→
Tw −

←→
T∞)2

←→
T∞2 x2

. (3.2)

The entropy generation number is

NS =
Sgen

S0
. (3.3)

By using Eqs. (3.1)–(3.3)and Eq. (2.8), the dimensionless form of entropy generation is,

NS = Re[1 +Rd(1 + θ(θw − 1))3](θ′)2 +Re ε(
Ω

Σ
)2(ϕ′)2 +Re ε(

Ω

Σ
)θ′ϕ′, (3.4)

where

Re =

←→
Uw(x)

γ
x, ∆T = (

←→
Tw −

←→
T∞), Σ =

←→
Tw −

←→
T∞

←→
T∞

, Ω =

←→
Cw −←→c∞
←→
C∞

, ε =
Rd DB

←→
C∞

k
, (3.5)

where, NS is dimensionless entropy number,
∑

is dimensionless temperature difference, Ω, ε are

dimensionless constant parameters, ∆T is temperature difference.

4. Method of solution

The differential transform of function u(η) for jth derivative is,

U [j] =
1

j!
[
dju

dηj
]. (4.1)

Here, u(η) gives the main function and u(j) is transformed function. Inverse differential transform

is,

u(η) =
∞∑
j=0

F (j)[(η − η0)j ]. (4.2)
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In real world problems, we represent u(η) in finite series and given as,

u(η) =
c∑

j=0

U(j)[(η − η0)j ]. (4.3)

Here, c is calculated by the convergence in this study. The reduced governing Eqs. (2.11)–

(2.13) with Eqs. (2.14) and (2.15) and entropy generation Eq. (3.4) are resolved by utilizing

DTM method and we get the following Eqs. (4.4)–(4.7)

(h+ 1)(h+ 2)(h+ 3)F (h+ 3)+

β
[ h∑
b=0

F (−b+ h)(−b+ h+ 1)(−b+ h+ 2)F (−b+ h+ 2)
]
−

β
[ h∑
b=0

F (−b+ h)(b+ 1)(b+ 2)(b+ 3)(b+ 4)F (b+ 4)
]
+

(1 + λ)
[ h∑
b=0

F (−b+ h)(b+ 1)(b+ 2)F (b+ 2)
]
−

(1 + λ)
[ h∑
b=0

F (−b+ h+ 1)(−b+ h+ 1)(b+ 1)F (b+ 1)
]
= 0, (4.4)

(1 +Rd)(h+ 1)(h+ 2)T (h+ 2) + Pr
[ h∑
b=0

(b+ 1)T (b+ 1)F (−b+ h)
]
+

Pr
[
Nb

h∑
b=0

(b+ 1)(−b+ h+ 1)P (b+ 1)T (−b+ h+ 1)
]
+

Pr
[
Nt

h∑
b=0

(b+ 1)(−b+ h+ 1)T (b+ 1)T (−b+ h+ 1)
]
+

Rd
[
(θw − 1)3

h∑
b=0

h−b∑
r=0

h−b−r∑
s=0

T (b)T (r)T (s)(−b− r − s+ h+ 2)×

(−b− r − s+ h+ 1)T (−b− r − s+ h+ 2)
]
+

Rd
[
3(θw − 1)3

h∑
b=0

h−b∑
r=0

T (r)T (−r + b)(−b+ h+ 1)T (−b+ h+ 1)(r + 1)T (r + 1)
]
+

Rd
[
3(θw − 1)

h∑
b=0

T (−b+ h)(b+ 1)(b+ 2)T (b+ 2)
]
+

Rd
[
3(θw − 1)2

h∑
b=0

h−b∑
r=0

T (b)T (r)(−b− r + h+ 2)(−b− r + h+ 1)T (−b− r + h+ 2)
]
+

Rd
[
6(θw − 1)2

h∑
b=0

h−b∑
r=0

T (b)(r + 1)T (r + 1)(−b− r + h+ 1)T (−b− r + h+ 1)
]
+

Rd
[
3(θw − 1)

h∑
b=0

(b+ 1)(−b+ h+ 1)T (b+ 1)T (−b+ h+ 1)
]
= 0, (4.5)
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(h+ 1)(h+ 2)P (h+ 2) + Le
h∑

b=0

(b+ 1)P (b+ 1)F (−b+ h)+

Nt

Nb
(h+ 1)(h+ 2)T (h+ 2) = 0, (4.6)

NS =Re
h∑

b=0

(b+ 1)(−b+ h+ 1)T (b+ 1)T (−b+ h+ 1)+

ReRd

h∑
b=0

(b+ 1)(−b+ h+ 1)T (b+ 1)T (−b+ h+ 1)+

ReRd(θw − 1)3
h∑

b=0

h−b∑
r=0

h−b−r∑
s=0

h−b−r−s∑
t=0

(b+ 1)T (b+ 1)(r + 1)T (r + 1)×

T (s)T (−b− r − s+ h− t)T (t)+

3ReRd(θw − 1)
h∑

b=0

h−b∑
r=0

T (b)(r + 1)T (r + 1)(−b− r + h+ 1)T (−b− r + h+ 1)+

3ReRd(θw − 1)2
h∑

b=0

h−b∑
r=0

T (r)T (−r + b)(−b+ h+ 1)T (−b+ h+ 1)(r + 1)T (r + 1)+

Re ε(
Ω

ε
)2

h∑
b=0

(b+ 1)(−b+ h+ 1)P (b+ 1)P (−b+ h+ 1)+

Re ε(
Ω

ε
)

h∑
b=0

(b+ 1)(−b+ h+ 1)T (b+ 1)P (−b+ h+ 1). (4.7)

Transformed boundary conditions are

F (0) = S, F (1) = 1 + δ F (2), F (2) =
n1
2
, F (3) =

n2
6
,

T (0) = 1, P (0) = 1, T (1) = n3, P (1) = n4. (4.8)

Differential transform of f(η), θ(η), ϕ(η) are F (k), T (k), P (k) and with the help of boundary

conditions (2.14) and (2.15), we can find constants n1, n2, n3 and n4.

By using Eq. (4.8) we get the following iterations,

F [4] =
1

24 Sβ
[n2 + Sβ n1 + (1 + λ)S n1 − (1 + λ)(1 + λ n1)

2],

T [2] = −Pr(S n3 +Nb n3 n4 +Nt n2
3)− 3 Rd (θw − 1)n23 (1 + (θw − 1))2

2(1 +Rd) + 2Rd (θw − 1)3 + 6Rd (θw − 1) + 6Rd (θw − 1)2
,

P [2] = −1

2
[−2Nt

Nb

Pr(S n3 +Nb n3 n4 +Nt n2
3)− 3 Rd (θw − 1)n23 (1 + (θw − 1))2

2(1 +Rd) + 2Rd (θw − 1)3 + 6Rd (θw − 1) + 6Rd (θw − 1)2
+ Le S n4].

Putting these iterations in Eq. (4.3), we obtain the following closed form of solutions,

f(η) = S + (1 + δ
n1
2
)η +

n2
2
η2 + · · ·
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θ(η) =1 + n3 η −
Pr(S n3 +Nb n3 n4 +Nt n2

3)− 3 Rd (θw − 1)n23 (1 + (θw − 1))2

2(1 +Rd) + 2Rd (θw − 1)3 + 6Rd (θw − 1) + 6Rd (θw − 1)2
η2 + · · ·

ϕ(η) =1 + n4 η −
1

2
[
−2Nt
Nb

Pr(S n3 +Nb n3 n4 +Nt n2
3)− 3 Rd (θw − 1)n23 (1 + (θw − 1))2

2(1 +Rd) + 2Rd (θw − 1)3 + 6Rd (θw − 1) + 6Rd (θw − 1)2
+

Le S n4] η
2 + · · ·

5. Result and discussion

To illustrate the characteristics of the problem, the results are exhibited in Figures 2–13 and

are discussed in detail. The accuracy of impact of slip parameter on coefficient of skin friction by

using DTM and numerical method is illustrated in Table 1 and good agreement is found. Also

the matching between these two methods can be seen in Figure 14.

Figure 2 Variation of f ′(η) on δ when β = 1, S = 2, δ = 0

Figure 3 Variation of f ′(η) on λ when β = 1, S = 2, δ = 0

Figure 2 shows that velocity profile increases as value of slip parameter δ increases. Slip at the

surface wall rises and as a result slip at the surface wall reaches to a lesser amount of penetration

due to the stretching surface into the fluid. Figure 3 shows that velocity profile increases as ratio

of relaxation to retardation times parameter λ increases. Physically, as λ increases, retardation
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time begins to degrade. Particles go rapidly as time consumption of particles to move from

disturbed to balanced system degrades. Hence, velocity rises. Figure 4 shows that velocity

profile reduces as Deborah number β rises. Because, λ1 is dependent on retardation time and λ1

is an increasing function of β. Hence, velocity degrades whenever particles consume much time.

Figure 4 Variation of f ′(η) on β when λ = 0.1, S = 2, δ = 0

Figure 5 Variation of θ(η) on Nb when S = 0.1, Pr = 1, Le = 1, θw = 1.1, Rd = 0.1, Nt = 0.05

Figures 5 and 6 illustrate the impact of Brownian motion parameter Nb and thermophore-

sis parameter Nt on temperature profile. As Nb and Nt rise, the arbitrary movement of the

nanoparticles rises. This arbitrary movement of the nanoparticles generates more heat. There-

fore, temperature profile rises. The variation of thermal radiation parameter Rd on θ(η) is

explained in Figure 7. As, Rd delivers the heat energy into the flow, internal conductivity of the

fluid directs the fluid flow to be hotter hence with the rise of Rd, θ(η) enhances.

Figure 8 shows that as Prandtl number Pr increases, temperature profile reduces. Larger

viscous diffusivity and weaker thermal diffusivity can be seen in fluids having higher Pr. Because

of this variation in fluids, thermal boundary layer thickness reduces. Hence, θ(η) reduces. Figure

9 shows that as Lewis number Le rises, nanoparticle volume fraction profile degrades. Le and

Brownian diffusion coefficient are of opposite behaviour. As Le rises, Brownian diffusion coeffi-
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cient reduces. Because of this reduction, nanoparticle volume fraction profile degrades. Figure

10 shows that as values of S rises, nanoparticle volume fraction profile reduces.

Figure 6 Variation of θ(η) on Nt when S = 0.1, Pr = 1, Le = 1, θw = 1.1, Rd = 0.1, Nb = 0.05

Figure 7 Variation of θ(η) on Rd when S = 0.1, Pr = 1, Le = 1, θw = 1.1, Nt = 0.05, Nb = 0.05

Figure 8 Variation of θ(η) on Pr when S = 0.1, Pr = 1, Le = 1, θw = 1.1, Rd = 0.1, Nb = 0.05,

Nt = 0.05
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Figure 9 Variation of ϕ(η) on Le when S = 0.1, Pr = 2, θw = 1.1, Rd = 1, Nb = 0.1, Nt = 0.1
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Figure 10 Variation of ϕ(η) on S when Nt = 0.1, Pr = 2, Le = 1, θw = 1.1, Rd = 1, Nb = 0.1
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Figure 11 Variation of Rd on entropy generation when S = 0.1, Pr = 2, Le = 1, θw = 1.1, Nt = 0.1,

Nb = 0.1, ε = 0.0001, Ω = 1,
∑

= 1, Re = 0.1, δ = 0
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Figure 12 Variation of δ on entropy generation when S = 0.1, Pr = 2, Le = 1, θw = 1.1, Rd = 0.1,∑
= 1, Ω = 1, Re = 0.1, ε = 0.0001, Nb = 0.1, Nt = 0.1
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Figure 13 Variation of S on entropy generation when Re = 0.1, Pr = 2, Le = 1, θw = 1.1, Rd = 0.1,

Nb = 0.1,
∑

= 1, Ω = 1, ε = 0.0001, δ = 0, Nt = 0.1
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Figure 14 Comparision graph of skin friction coefficient on δ

On entropy generation the impact of Rd is given in Figure 11. Entropy generation profile

reduces as value of Rd rises. This is because, the transfer of heat energy is observed in the
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entropy production. Effect of δ on entropy generation is shown in Figure 12. In the vicinity of

the sheet, reduction in entropy generation number is observed as δ rises. However, partial slip

effect can be neglected when the distance becomes larger. In Figure 13, the effect of S on entropy

generation is given. It is noted that, as the value of S rises, the entropy generation rises. Near

the surface, the entropy generation rate rises as the value of S rises.

Coefficient of skin friction on various values of δ is compared with the previous studies by

Bhattacharyya et al. [16] using numerical method (Shooting technique with fourth-order Runge-

Kutta) and present studies. It is clear that present and previous studies are in good agreement.

δ Bhattacharyya et al. [16] Present study

0 −1.0000 −1.00004
0.1 −0.88602 −0.88601
0.2 −0.78764 −0.78761
1 −0.43002 −0.43021
2 −0.28890 −0.28898
10 −0.08299 −0.08299
20 −0.04480 −0.04479
50 −0.01899 −0.01899
100 −0.00953 −0.00953

Table 1 Coefficient of skin-friction f ′′(0) for δ with λ = 0, S = 0, β = 0

6. Conclusions

Effects of entropy generation and nonlinear thermal radiation on Jeffery nanofluid over per-

meable stretching sheet with partial slip have been studied. The accuracy of impact of slip

parameter on coefficient of skin friction by using DTM and numerical method (Shooting tech-

nique with fourth-order Runge–Kutta) is illustrated in Table 1 and good agreement is found.

Further, the novelty and the accuracy of these two methods can be seen in Figure 14. The

outcome of various parameters is given below:

I For larger value of S, the nanoparticle volume fraction profile decreases whereas entropy

generation profile increases.

I As value of δ rises, the velocity profile increases and entropy generation profile reduces.

I By increasing the values of Rd, the temperature profile enhances whereas entropy genera-

tion profile reduces.

I As Le rises, the nanoparticle volume fraction profile reduces.

I As Nb and Nt rise, the temperature profile rises.

I Comparison of skin friction coefficient for δ is in good agreement with the present as well

as previous studies.
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