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Abstract For any positive integers k1, k2 and any set A ⊆ N, let Rk1,k2
(A,n) be the number

of solutions of the equation n = k1a1 + k2a2 with a1, a2 ∈ A. Let Ā = N\A. Yang and Chen

proved that if k1 and k2 are two integers with k2 > k1 ≥ 2 and (k1, k2) = 1, then there does

not exist any set A ⊆ N such that Rk1,k2
(A,n) = Rk1,k2

(Ā, n) for all sufficiently large integers

n. For two integers k > 1 and t ≥ 1, define fk(t) to be the number of sets A ⊆ N such that

R1,k(A,n) = R1,k(Ā, n) holds for all integers n ≥ t. Yang and Chen proved that fk(t) is finite

and limt→∞

log fk(t)
t

= log 2. They also asked if it is true that for any integers k, l > 1 there

exists t0(k, l) such that fk(t) = fl(t) for all integers t ≥ t0. In this paper, we give the exact

formula of fk(t) when t ≤ k, which implies that fk(t) = fl(t) for all integers t ≤ min{k, l}.

Keywords representation function; partition; Sárközy problem
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1. Introduction

Let N be the set of all nonnegative integers. For a set A ⊆ N, let R1(A, n), R2(A, n) and

R3(A, n) denote the number of solutions of a1+a2 = n, a1, a2 ∈ A; a1+a2 = n, a1, a2 ∈ A, a1 < a2

and a1 + a2 = n, a1, a2 ∈ A, a1 ≤ a2, respectively. For i = 1, 2, 3, Sárközy asked whether there

exist two sets A and B with infinite symmetric difference such that Ri(A, n) = Ri(B, n) for all

sufficiently large integers n. Dombi [1] proved that the answer is negative for i = 1 and positive

for i = 2. For i = 3, Chen and Wang [2] proved that the answer is also positive. Later, Lev [3],

Sándor [4] and Tang [5] provided new and nice proofs, respectively.

In [6], Yang and Chen considered the Sárközy problem with weighted representation func-

tions. For any positive integers k1, . . . , kt and any set A ⊆ N, let Rk1,...,kt
(A, n) be the number

of solutions of the equation n = k1a1+ · · ·+ktat with a1, . . . , at ∈ A. Let Ā = N\A. They posed

the following question:

Question 1.1 ( [6]) Is there a set A ⊆ N such that Rk1,...,kt
(A, n) = Rk1,...,kt

(Ā, n) for all

n ≥ n0?

They answered this question for t = 2 and proved the following results.

Theorem 1.2 ([6]) If k1 and k2 are two integers with k2 > k1 ≥ 2 and (k1, k2) = 1, then
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there does not exist any set A ⊆ N such that Rk1,k2
(A, n) = Rk1,k2

(Ā, n) for all sufficiently large

integers n.

Theorem 1.3 ([6]) If k is an integer with k > 1, then there exists a set A ⊆ N such that

R1,k(A, n) = R1,k(Ā, n) (1.1)

for all integers n ≥ 1.

Furthermore, if 0 ∈ A, then (1.1) holds for all integers n ≥ 1 if and only if

A = {0}
⋃

(

∞
⋃

i=0

[(k + 1)k2i, (k + 1)k2i+1 − 1]
)

,

where [x, y] = {n : n ∈ Z, x ≤ n ≤ y}.

Later, Li and Ma [7] proved the same results by using generating function. For two integers

k > 1 and t ≥ 1, define fk(t) to be the number of sets A ⊆ N such that (1.1) holds for all integers

n ≥ t. By Theorem 1.3, we have fk(1) = 2. Yang and Chen [6] proved the following result and

posed a question.

Theorem 1.4 ([6]) Let k be an integer with k > 1. Then, for each integer t ≥ 1, fk(t) is finite

and

lim
t→∞

log fk(t)

t
= log 2.

Question 1.5 ( [6]) Is it true for any integers k, l > 1 there exists t0 = t0(k, l) such that

fk(t) = fl(t) for all integers t ≥ t0?

In this paper, we give the exact formula of fk(t) when t ≤ k.

Theorem 1.6 Let k be an integer with k > 1. Then

fk(t) =

{

2, t = 1,

2t−1, 2 ≤ t ≤ k.

Furthermore, for any integers k, l > 1, fk(t) = fl(t) holds for all integers t ≤ min{k, l}.

2. Proof of Theorem 1.6

To prove Theorem 1.6, we need some Lemmas.

Lemma 2.1 ([7]) There exists a set A ⊆ N such that Rk1,...,kt
(A, n) = Rk1,...,kt

(Ā, n) for all

integers n ≥ n0 if and only if there is a polynomial p(x) (including zero polynomial) of degree at

most n0 − 1 such that for |x| < 1,

t
∏

i=1

(

∑

a∈A

xkia
)

−

t
∏

i=1

( 1

1− xki
−

∑

a∈A

xkia
)

= p(x).

Lemma 2.2 Let k and t be two positive integers with k ≥ t > 1 and let A ⊆ N. The equality

R1,k(A, n) = R1,k(Ā, n) holds for all integers n ≥ t if and only if

χA(0) + χA(1) = 1, (2.1)



582 Xiaohui YAN

χA(i) + χA(i + k) = 1 for 0 ≤ i ≤ t− 1, (2.2)

χA(i) + χA([
i

k
]) = 1 for i ≥ k + t and t− 1 < i < k, (2.3)

where χA(m) is the characteristic function of the set A, that is, χA(m) = 1 if m ∈ A and

χA(m) = 0 if m /∈ A.

Proof Let f(x) be the generating function associated with A, that is,

f(x) =
∑

a∈A

xa =
∞
∑

i=0

χA(i)x
i.

Suppose that R1,k(A, n) = R1,k(Ā, n) holds for n ≥ t. It follows from Lemma 2.1 that there

is a polynomial p(x) (including zero polynomial) of degree at most t− 1 such that for |x| < 1,

p(x) =f(x)f(xk)− (
1

1− x
− f(x))(

1

1 − xk
− f(xk))

=
f(xk)

1− x
+

f(x)

1− xk
−

1

(1− x)(1 − xk)
,

that is,

f(x) =
1

1− x
− f(xk)(1 + x+ · · ·+ xk−1) + p(x)(1 − xk). (2.4)

Let

p(x) =

t−1
∑

i=0

αix
i.

Then

p(x)(1 − xk) =

t−1
∑

i=0

αix
i −

t−1
∑

i=0

αix
k+i.

Since

f(xk)(1 + x+ · · ·+ xk−1) =

∞
∑

i=0

χA([
i

k
])xi

and
1

1− x
=

∞
∑

i=0

xi,

it follows that
1

1− x
− f(xk)(1 + x+ · · ·+ xk−1) =

∞
∑

i=0

(1− χA([
i

k
]))xi.

So
∞
∑

i=0

χA(i)x
i =

∞
∑

i=0

(1− χA([
i

k
]))xi +

t−1
∑

i=0

αix
i −

t−1
∑

i=0

αix
k+i.

Noting that t ≤ k, we have

χA(i) = 1− χA([
i

k
]) for i ≥ k + t and t− 1 < i < k

and

χA(i) = 1− χA([
i

k
]) + αi, χA(i+ k) = 1− χA([

i+ k

k
])− αi for 0 ≤ i ≤ t− 1.
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Then

χA(i) + χA([
i

k
]) = 1 for i ≥ k + t and t− 1 < i < k

and

χA(i) + χA(i+ k) + χA(0) + χA(1) = 2 for 0 ≤ i ≤ t− 1. (2.5)

Take i = 0 in (2.5), and we have

2χA(0) + χA(k) + χA(1) = 2.

If χA(0) = 1, then χA(1) = 0. If χA(0) = 0, then χA(1) = 1. Therefore,

χA(0) + χA(1) = 1.

It follows from (2.5) that

χA(i) + χA(i + k) = 1 for 0 ≤ i ≤ t− 1,

which proves the necessary part of Lemma 2.2.

Next, we prove the sufficient part of Lemma 2.2. It follows from Lemma 2.1 and (2.4) that

we only need to prove there exists a polynomial p(x) of degree at most t− 1 such that

f(x) =
1

1− x
− f(xk)(1 + x+ · · ·+ xk−1) + p(x)(1 − xk).

It follows from (2.3) that

f(x) =

∞
∑

i=0

χA(i)x
i =

k+t−1
∑

i=0

χA(i)x
i +

∞
∑

i=k+t

χA(i)x
i

=

k+t−1
∑

i=0

χA(i)x
i +

∞
∑

i=k+t

(1 − χA([
i

k
]))xi

=

k+t−1
∑

i=0

(χA(i) + χA([
i

k
])− 1)xi +

∞
∑

i=0

(1− χA([
i

k
]))xi

=
1

1− x
− f(xk)(1 + x+ · · ·+ xk−1) +

k+t−1
∑

i=0

(χA(i) + χA([
i

k
])− 1)xi.

By (2.1)–(2.3) and t ≤ k we have

k+t−1
∑

i=0

(χA(i) + χA([
i

k
])− 1)xi

=

t−1
∑

i=0

(χA(i) + χA([
i

k
])− 1)xi +

k+t−1
∑

i=k

(χA(i) + χA([
i

k
])− 1)xi

=

t−1
∑

i=0

(χA(i) + χA([
i

k
])− 1)xi +

t−1
∑

i=0

(χA(i+ k) + χA([
i+ k

k
])− 1)xk+i

=

t−1
∑

i=0

(χA(i) + χA(0)− 1)xi +

t−1
∑

i=0

(1− χA(i) + χA(1)− 1)xk+i
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= (1 − xk)

t−1
∑

i=0

(χA(i) + χA(0)− 1)xi.

Let

p(x) =

t−1
∑

i=0

(χ(i) + χ(0)− 1)xi.

Then the degree of p(x) at most t− 1 and

f(x) =
1

1− x
− f(xk)(1 + x+ · · ·+ xk−1) + p(x)(1 − xk).

This completes the proof of Lemma 2.2. 2

Now, we will prove Theorem 1.6.

Proof of Theorem 1.6. It follows from Theorem 1.3 that fk(1) = 2. We will use induction on

2 ≤ t ≤ k to prove fk(t) = 2t−1.

If t = 2, by Lemma 2.2, then R1,k(A, n) = R1,k(Ā, n) holds for all integers n ≥ 2 if and only

if

χA(0) + χA(1) = 1, χA(0) + χA(k) = 1, χA(1) + χA(k + 1) = 1

and

χA(i) + χA([
i

k
]) = 1 for i ≥ k + 2 and 1 < i < k.

Then

A = {0}
⋃

(

∞
⋃

i=0

[(k + 1)k2i, (k + 1)k2i+1 − 1]
)

or

A = [1, k]
⋃

(

∞
⋃

i=0

[(k + 1)k2i+1, (k + 1)k2i+2 − 1]
)

.

Therefore, fk(2) = 2.

Assume that fk(t) = 2t−1 with 2 ≤ t ≤ k−1. Then there are 2t−1 different setsA1, A2, . . . , A2t−1

such that

R1,k(Aj , n) = R1,k(Āj , n) (1 ≤ j ≤ 2t−1)

holds for all integers n ≥ t. It is clear that every set Aj also satisfies

R1,k(Aj , n) = R1,k(Āj , n)

for all integers n ≥ t+ 1. By Lemma 2.2 we have

χAj
(t) + χAj

(t+ k) = 1

and

χAj
(m) + χAj

([
m

k
]) = 1,

m ∈
∞
⋃

s=1

([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1]).
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For every set Aj , let A
′

j be a set satisfying

χA′

j
(m) = χAj

(m), m 6∈

∞
⋃

s=0

([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1])

and

χA′

j
(m) = 1− χAj

(m), m ∈

∞
⋃

s=0

([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1]).

Then

χA′

j
(t) + χA′

j
(t+ k) = 1

and

χA′

j
(m) + χA′

j
([
m

k
]) = 1, m ∈

∞
⋃

s=1

([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1]).

Moreover,

χA′

j
(0) + χA′

j
(1) = 1,

χA′

j
(i) + χA′

j
(i+ k) = 1 for 0 ≤ i ≤ t,

χA′

j
(i) + χA′

j
([
i

k
]) = 1 for i ≥ k + t+ 1 and t < i < k.

It follows from Lemma 2.2 that R1,k(A
′

j , n) = R1,k(Ā′

j , n) holds for all integers n ≥ t+ 1.

Next, we will prove these sets A1, A
′

1, . . . , A2t−1 , A′

2t−1 are different. Then fk(t+ 1) ≥ 2t. If

there exist A′

i = A′

j (i 6= j), then

1− χAi
(m) = χA′

i
(m) = χA′

j
(m) = 1− χAj

(m)

for all m ∈
⋃

∞

s=0
([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1]), which implies

χAi
(m) = χAj

(m),m ∈

∞
⋃

s=0

([kst, ks(t+ 1)− 1] ∪ [ks(t+ k), ks(t+ k + 1)− 1]).

Also, it is clear that

χAi
(m) = χA′

i
(m) = χA′

j
(m) = χAj

(m)

for all m /∈
⋃

∞

s=0
([kst, ks(t+1)−1]∪[ks(t+k), ks(t+k+1)−1]). Hence, Ai = Aj , a contradiction.

Therefore, A′

1, . . . , A
′

2t−1 are different. It is clear that Ai 6= A′

i. If there exist A′

i = Aj (i 6= j),

then

χA′

i
(t) = χAj

(t), χA′

i
(t) 6= χAi

(t), χAi
(0) = χA′

i
(0) = χAj

(0).

Noting that t ≤ k − 1, we have

1 = χAj
(t) + χAj

([
t

k
]) = χAj

(t) + χAj
(0) = χA′

i
(t) + χAi

(0).

Since

1 = χAi
(t) + χAi

([
t

k
]) = χAi

(t) + χAi
(0),



586 Xiaohui YAN

it follows that χAi
(t) = χA′

i
(t), a contradiction. Therefore, A1, A

′

1, . . . , A2t−1 , A′

2t−1 are different.

Then fk(t + 1) ≥ 2t. Let A be a set with R1,k(A, n) = R1,k(Ā, n) for all integers n ≥ t + 1. It

follows from Lemma 2.2 that

χA(0) + χA(1) = 1,

χA(i) + χA(i+ k) = 1 for 0 ≤ i ≤ t,

χA(i) + χA([
i

k
]) = 1 for i ≥ k + t+ 1 and t < i < k.

Since the set A is completely determined by χA(1), χA(2), . . . , χA(t), it follows that fk(t+1) ≤ 2t.

Therefore,

fk(t+ 1) = 2t.

This completes the proof of Theorem 1.6. 2
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