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Abstract A graph G without isolated vertices is a least common multiple of two graphs H; and
H, if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of
G into edge disjoint copies of H1 and Hz. The collection of all least common multiples of H; and
H, is denoted by LCM(H1, H2) and the size of a least common multiple of H; and H is denoted
by lem(H1, Hz). In this paper lem(Py, P, O Py), lem(Py, Cr, O Cy) and lem (K13, K1,m O K1,5)

are determined.
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1. Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.
The number of vertices of a graph G denoted by v(G), is called the order of G and the number
of edges of G denoted by e(G), is called the size of G.

A graph H is said to divide a graph G if there exists a set of subgraphs of GG, each isomorphic
to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-
decomposition of G. If G has an H-decomposition, we say that G is H-decomposable and write
H|G.

A graph is called a common multiple of two graphs Hy and Hs if both H;|G and H2|G. A
graph G is a least common multiple of H; and H if G is a common multiple of H; and Hs
and no other common multiple has fewer edges. Several authors have investigated the problem
of finding least common multiples of pairs of graphs H; and Hs; that is graphs of minimum
size which are both H; and Hs decomposable. The problem was introduced by Chartrand et
al. in [1] and they showed that every two nonempty graphs have a least common multiple. The
problem of finding the size of least common multiples of graphs has been studied for several
pairs of graphs: cycles and stars [1-3], paths and complete graphs [4], pairs of complete graphs,
complete graphs and a 4-cycle, paths and stars and pairs of cycles. Least common multiple of

digraphs were considered in [5].
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If G is a common multiple of H; and Hy and G has ¢ edges, then we call G a (q, Hy, Ha)
graph. An obvious necessary condition for the existence of a (¢, Hy, H2) graph is that e(Hi)|gq
and e(Hsz)|q. This obvious necessary condition is not always sufficient. Therefore, we may ask:
Given two graphs H; and Hs, for which value of ¢ does there exist a (¢, H1, Ha) graph? Adams,
Bryant and Maenhaut [6] gave a complete solution to this problem in the case where Hj is the
4-cycle and Hj is a complete graph; Bryant and Maenhaut [7] gave a complete solution to this
problem in the case where H; is the complete graph K3 and Hs is a complete graph. Thus the
problem to find least common multiple of H; and Hs is to find the least positive integer ¢ such
that there exists a (q, Hi, H2) graph. We denote the set of all least common multiples of H;
and Hs by LCM(Hy, Hy). The size of a least common multiple of Hy and Hs is denoted by
lem(Hy, Hy). Since every two nonempty graphs have a least common multiple, LCM(H;, Hs)
is nonempty. For many pairs of graphs number of elements of LCM(Hy, H3) is greater than
one. For example both P; and Cg are least common multiples of Py and Ps. In fact Chartrand
et al. [8] proved that for every positive integer n there exist two graphs having exactly n least

common multiples.
2. Preliminaries

The path P, having vertex set {v1,va,...,v,} and edge set {e1,ea, ..., e,_1} will be denoted
by (e1,e2,...,en—1) and a star K, having vertex set {vi,ve,...,vn41}, where vy is the hub
vertex, and edge set {e1, ea,...,e,} will be denoted by [v1;e1,€a,...,e,]. The cartesian product
of two graphs G and H denoted by G O H is a graph with vertex set V(G) x V(H) for which
{(z,a),(y,b)} is an edge if x = y and {a,b} € E(H) or {z,y} € E(G) and a =b. v(G O H) =
v(G)v(H) and e(G O H) = v(G)e(H) +v(H)e(Q).

Theorem 2.1 ([9]) A nontrivial connected graph G is Eulerian if and only if every vertex of G

has even degree.

Theorem 2.2 ([9]) Let G and H be nontrivial connected graphs. Then G O H is Eulerian if
and only if both G and H are Eulerian or every vertex of G and H is odd.

Theorem 2.3 ([9]) A nontrivial graph G is a bipartite graph if and only if G contains no odd

cycles.

Theorem 2.4 ([10]) Let E be an Eulerian circuit in a graph G. If k1, ks, ..., k,, are positive
integers such that ky + ko + - - -+ kn, = e(G) and each less than g(E), where g(F) is the length of

the minimal cycle contained in E, then G can be decomposed into paths of lengths k1, ko, ..., kp.
Theorem 2.5 ([11]) A complete bipartite graph of size ¢ =0 (mod 3) is K1 3-decomposable.

Theorem 2.6 ([12]) If the graphs G and H have an F-decomposition, then their cartesian
product G O H also has an F-decomposition.

Theorem 2.7 ([13]) If the graphs G and H are bipartite, then lem(G, H) < e(G).e(H) where
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equality holds if ged(e(G), e(H)) = 1.
For a graph G, let G* for t = 1, 2,3 denote the t-th copy of G. Let v denote a vertex and e

denote an edge in G*.

3. Main results

In this section we compute
lem(Py, P, O Py), lem(Py, Cp, O Cy) and lem (K 3, Ky O K1 ).
lecm of P, and P,, OO P,

Let a1,az,...,am, and by, bs,..., b, be the vertices of P,, and P,, respectively. P, x {b,},
1 < j < n are the P,-fibers and {a;} x P,,, 1 <i <m are the P,-fibers in P,, O P,. Label the
vertices and edges of the j-th P,,-fiber, Py, x {b;} as {v1,j,v24, .-, Vm, i}, {f1.5: f2.r- s fm—1,}
and that of the i-th P,-fiber, {a;} X P, as {v;1,v2,---,Vin}, {€i1,€i2,---,€in—1}. A path on

m vertices P,, has m — 1 edges and it is P,-decomposable if and only if n — 1 divides m — 1.

fi1 fa1 fa1 fm-1,1
e oo O 0O
— — — — -
— ~ o < g
© fi2© foo © faa© frm-1,2 |
e o o O O
o o o % C\El
o o5 <
|l fise| fes® | fasz© S
e o o O O
o o o o o o
o o o o o o
d flm,—l ° f2,n—1 ° f3,n—1 * 'fm—l,n—l'
— — — — c '_"
3 3 3 3 2
— ~ o < g
Ny O 5 N <
o o o
fl,n f2,n f3,n fm—l,n

Figure 1 P, O P,

m(n—1)+n(m—1); m,n =0 (mod 3),
Theorem 3.1 lem(Py, P, O P,) = m,n =1 (mod 3),
3(m(n—1)+n(m—1)); otherwise.

Proof Least common multiple of P, and P,, O P, is the number of edges in the graph F
of least size that is both Ps;-decomposable and P,, OO P,,-decomposable. Since e(P,, O P,) =
m(n — 1) + n(m — 1), e(F) must be a multiple of 3 and m(n — 1) + n(m — 1). We consider
various cases for m and n in modulo 3 and will construct in each case a graph of least size that
is Py-decomposable and P,, O P,,-decomposable. Let G = P,,, O P,.

Let X = {(a,b) : a,b = 0 (mod 3) or a,b =1 (mod 3)}. Then m(n —1)+n(m—1) =0
(mod 3) if and only if (m,n) € X.
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Case 1. (m,n) € X.

Subcase 1.1. Let m,n =0 (mod 3). The m—1 edges of the j-th P,,-fiber, where 1 < j <n—1,
together with the edge e; ; make a Py,41, which is Ps-decomposable. Similarly, the n — 1 edges
of the i-th P,-fiber, where 2 <14 < m, together with the edge f; , will make a P, 11 and it is Ps-
decomposable. Thus G is Py-decomposable and hence lem(Py, P, O P,) = m(n—1) +n(m—1).

Subcase 1.2. Let m,n =1 (mod 3). Then each P,,-fiber has 3k edges and each P,,-fiber has
3l edges for some positive integers k and [. So each fiber and hence P,, O P, is P4;-decomposable.
Thus lem(Py, P, O P,) = m(n—1) + n(m — 1).

Case 2. (m,n) ¢ X.

In this case P, O P, is not Py-decomposable. Since Py and P,, O P, have no odd cycles
by Theorem 2.3, both are bipartite. Also ged(3,m(n — 1)+ n(m —1)) = 1. So by Theorem 2.7,
lem(Py, P, O Py) =3(m(n—1) +n(m—1)). O

From Theorem 3.1 the following result is obtained, which is a subcase of the open problem:

The P,-decomposability of a graph.

Theorem 3.2 P,, O P, is Py-decomposable if and only if m =0 (mod 3) and n =0 (mod 3)
orm=1 (mod 3) and n =1 (mod 3).

lem of P, and C,, O C,,

Let a1,az,...,am and by, be, ..., b, be the vertices of C,,, and C,, respectively. C,, x {b;},
1 < j < nare the Cp,-fibers and {a;} x Cy,, 1 <1i <m are the Cy,-fibers in C,, O C,,. Label the
vertices and edges of the j-th Cp,-fiber, Cp, x {b;} as {vij,v2.,. -, Um i}, {f1,5s f2r-- s fmoj}
and that of the i-th Cy,-fiber, {a;} x Cy, as {vi1,vi2,.--,Vin}, {€i1,€i2,---,€in}

Theorem 3.3 lem(Py,C,, O C,) = {2mn ifmn E 0 (mod 3),

6mn otherwise.
Proof Least common multiple of Py and C,, O C,, is the number of edges in the graph F' of
least size that is both Psy-decomposable and C,,, O Cj,-decomposable. Since e(C,, O C,,) = 2mn,
e(F) must be a multiple of 3 and 2mn.

Let G = C,, O Cy,. If G is Py-decomposable, then G € LCM(Py, Cy, O CY,). Since deg(v) = 2
for all v € V(Cy,), by Theorem 2.1, the cycle C,, is Eulerian for every n. So by Theorem 2.2,
G = C,, O C,, is Eulerian. If m or n is a multiple of three, e(C,,, O C,,) = 2mn is a multiple of
three. Let e(C,,, O C,) = 3r, for some r € Z. Then by Theorem 2.4, C,,, O C,, can be decomposed
into 7 copies of Py and hence G = C,,, O C,, is Py-decomposable. Thus lem(Py, C,,, O C),) = 2mn,
if mn =0 (mod 3).

Suppose mn # 0 (mod 3). Then C,, O C,, is not Ps-decomposable and the least positive
integer which is a multiple of 3 and 2mn is 6mn. We will prove that lem(Py, Cp, O Cy,) = 6mn
if mn # 0 (mod 3). For this consider various cases for m and n in modulo 3 and in each case we
will construct a graph of size 6mn that is both P,-decomposable and C,, [J Cj-decomposable.
Let G =C,, OC,.
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Casel. m=3k+1,n=3l+1.

Let H be the graph obtained by identifying the vertex v}, ,, of G' with the vertex v{; of
n Of G? with v1 1 of G3. Clearly, H is C,,, O C,-decomposable. A P,
decomposition of H is given below. In each G! consider the Csiy1-fibers and the Cs;yq-fibers
except the first and last fibers. The first 3k edges in the Csg1-fiber makes a Psi1 and the first
3l edges in the C3;41-fiber makes a P31 and both are Py-decomposable. A P;-decomposition of
the remaining edges of H is obtained as follows. For 1 <i<m—-1,1<j<n—1land 1<t <3,

G? and the vertex v?

<et1,j7 fn,j—f—l’efn,j> < le zn?fztn> < 7177,,176’}?7,,%7 72n,1> <e$n,n7f'r?;1,1ﬂe§n,n>

Thus H is P,;-decomposable.

Figure 2 m=4,n=4

Case2. m=3k+2,n=3l+1.

Let H be the graph obtained by identifying the vertex vm , of Gt with the vertex v2 .1 Of
mon Of G? with vy, of G®. Clearly, H is Cp, O Cy,-decomposable. A Py
decomposition of H is given below. In each G? consider the Csyo-fibers and the Cs;i-fibers
except the first and last fibers. The first 3k edges in the Csgo-fiber makes a Psi1 and the first
3l edges in the C3;41-fiber makes a Ps;1 and both are Py-decomposable. A P;-decomposition of
the remaining edges of H is obtained as follows. For 1 <i<m—-1,2<j<n—land 1<t <3,

<e§,jaf7tn71,jaf7tn,j> <21’ znafztn> <61 1afrn »He m1>

< 'fn,n’ezn,n727efm,n71> <671n,n’672n,n7e§n,n>

G? and the vertex v2

The edges {em 9, € m 3y ey ef,m_3} makes a P3;_o and it has 3] —3 edges which is P;-decomposable.
Thus H is Py-decomposable.

Case 3. m=3k+2, n=3+2.

Let H be the graph obtained by identifying the vertex v, ; of G' with the vertex v, of
w1 of G? with v}, of G®. Clearly, H is Cy, O Cp-decomposable. A Py
decomposition of H is given below. In each G? consider the Csp2-fibers except the last fiber
and the Cs;qo-fibers except the first and last fibers. The 3k edges in the Csgo-fiber except the

G? and the vertex v?
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edges { f1,;, fm,j;1 < j < n—1} makes a Ps;1 and the 3 edges in the Cy;4o-fiber except the edges
{ei1,€in;2 <i<m—1} makes a P31 and both are Py-decomposable. A Pj-decomposition of

the remaining edges of H is obtained as follows. For 2 <i<m,2<j<m—1land 1<t <3,

<fij’ ;7jaefn,j> <e§,17e§,n7 zﬁfl,n> <ff,1,€§,1,€§,2>
11 2 2 3 3
<e§,n72’e§,n717f'fn,n> <el,n’fm,1’el,n> < m,17el,n7fm,1>
The edges {e] 3,€f 4,..., el ,, 3} makesa P3y_5 and it has 3] —3 edges which is P;-decomposable.

Thus H is Ps;-decomposable.
In all three cases e(H) = 6mn and H € LCM(Py, C,,, O Cy,). Thus lem(Py, C,, O Cp,) = 6mn
if mn £ 0 (mod 3). O

From Theorem 3.3, the following result is obtained.

Theorem 3.4 C,, O C), is Py-decomposable if and only if the number of vertices of C,, O C,

is a multiple of three.

lem of K 3 and K, O K 5.

Figure 3 Kim O Kin

Let a1, az,...,am+1 and by, ba, ..., by41 be the vertices of K ,, and K ,, respectively. K ,, ¥
{b;}, 1 < j < n+1 are the Ky y-fibers and {a;} x K1n, 1 < i < m + 1 are the Ky ,-
fibers in Kj,, O Ki,. Label the vertices and edges of the j-th K ,,-fiber, K1, x {b;}
as {v1,j,V25, - Um+1,5}, {f1.5,f2,5:---, fm,;} and that of the i-th K ,-fiber, {a;} x K1, as

{Uz’,la Vi,2y - o Ui,n+1}7 {ei,la €i2y .4, ei,n}-

(m+1n+m(n+1); m,n =0 (mod 3),
Theorem 3.5 lem(Ki 3, K1m O K1) = m,n =2 (mod 3),
3(m+1)n+m(n+1)); otherwise.

Proof Least common multiple of K; 3 and K ,, O K; 5, is the number of edges in the graph of
least size that is both K 3-decomposable and K ,,, O K ,,-decomposable. Let G = K ,, O K 5.
Then e(G) = n(m+1)+m(n+1) = 2mn+m-+n and e(G) is a multiple of 3 if and only if m,n =0
(mod 3) or m,n =2 (mod 3). Let X = {(a,b) : m,n =0 (mod 3) or m,n =2 (mod 3)}.

Case 1. (m,n) € X.
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Subcase 1.1. If m,n = 0 (mod 3), by Theorem 2.5, K1 ,, and K , are K; 3-decomposable.
Then by Theorem 2.6, G = K1 ,, O K1 5, is K7 3-decomposable. So G € LCM(K7 3, Ky, O K1 )
and lem(K4 3, K1,m O K1) = (m+ 1)n+m(n+1).

Subcase 1.2. If m,n = 2 (mod 3), in G consider the first 3k edges of K n,-fibers and the
first 3! edges of the K ,-fibers, except the first K ,, and K; ,-fibers. These edges will have
a K 3-decomposition. In any K ,,-fiber the edges fsry1;, far42,; for 2 < j < n+1, in any
K n-fiber the edges €; 3141, €5,3142 for 2 < i < m 4 1 and the edges in the first K ,,-fiber and

K p-fiber remains. A K 3-decomposition of these edges are given below

1 1
[Vi,15 fim1,15 €i,3141, €i,3142] /b (V1,55 €151, fant1js Fanra ity

Thus G is K 3-decomposable.

Case 2. (m,n) ¢ X.

In this case K, O K, is not Ps-decomposable. Since Py and K; ,, O K; , have no odd
cycles by Theorem 2.3, both are bipartite. Also ged(3, (m+1)n+m(n+1)) = 1. So by Theorem
2.7, lem(Py, K10y O K1) =3(m+ Dn+m(n+1)). O

Theorem 3.6 K, ,, UK, is K; 3-decomposable if and only if number of edges of K1 ., O K ,

is a multiple of three.
Proof From Theorem 3.5 the result follows. O
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