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Abstract An (Ok1
, Ok2

)-partition of a graph G is the partition of V (G) into two non-empty

subsets V1 and V2, such that G[V1] and G[V2] are graphs with components of order at most

k1 and k2, respectively. In this paper, we consider the problem of partitioning the vertex set

of a planar graph with girth restriction such that each part induces a graph with components

of bounded order. We prove that every planar graph with girth at least 6 and i-cycle is not

intersecting with j-cycle admits an (O2, O3)-partition, where i ∈ {6, 7, 8} and j ∈ {6, 7, 8, 9}.
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1. Introduction

In this paper, we only consider finite simple graphs. Given a graph G, let V (G), E(G),

and F (G) denote the vertex set, edge set and face set, respectively. We say that two cycles are

intersecting if they have at least one common vertex. We use g(G) to denote the girth of G,

which is the length of a shortest cycle in G. A planar graph is a graph that can be embedded in

the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their

endpoints. Such a drawing is called a plane graph.

For each i ∈ {1, 2, . . . ,m}, let Gi be the class of graphs satisfying some special proper-

ties. Given a graph G, a (G1, G2, . . . , Gm)-partition of G is the partition of V (G) into m sets

V1, V2, . . . , Vm, such that Vi induces a graph in Gi for each i ∈ {1, 2, . . . ,m}.

The following are notations of some graph classes.

I: the class of edgeless graphs;

F : the class of forests;

Ok: the class of graphs whose components have order at most k;

Pk: the class of graphs whose components are paths of order at most k;

Fd: the class of forests with maximum degree d;

∆d: the class of graphs with maximum degree d.
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A k-vertex, k+-vertex and k−-vertex are a vertex of degree k, at least k and at most k,

respectively. A k-neighbour of a vertex is a neighbour that is k-vertex, and k+-neighbour and

k−-neighbour are defined analogously. A k-face, k+-face, and k−-face are defined in the same

way. We use N(v) to denote the set of the neighbours of v. Let N [v] denote N(v) ∪ {v}. For

a vertex v ∈ V (G) and a f ∈ F (G), we use d(v) to denote the degree of v and use d(f) to

denote the size of f . We use dk(f) to denote the number of k-vertices incident with f . We write

f = [v1v2 . . . vm] if v1, v2, . . . , vm are all vertices of f in cyclic order. An (ℓ1, ℓ2, . . . , ℓk)-face is a

k-face [v1v2 · · · vk] with d(vi) = ℓi for every i ∈ {1, 2, . . . , k}.

For an (O2, O3)-partition of G, we suppose that V (G) is partitioned into two parts O2 and O3

where O2 and O3 induce graphs whose components have order at most 2, at most 3, respectively.

We also call the sets O2 and O3 color classes, and a vertex in O2 and O3 is said to have color

O2 and O3, respectively.

There are many results on partitions of planar graphs. The celebrated Four Color Theorem

[1, 2] implies that every planar graph has an (I, I, I, I)-partition. Poh [3] showed that every

planar graph admits an (F2, F2, F2)-partition. Sittitrai and Nakprasit [4] showed that there

does not exist an integer k such that every planar graph without 4-cycles and 5-cycles has a (∆1,

∆k)-partition. They also showed that every planar graph without 4-cycles and 5-cycles has a

(∆4, ∆4)-partition, a (∆3, ∆5)-partition, and a (∆2, ∆9)-partition. Liu and Lv [5] proved that

every planar graph without 4-cycles and 5-cycles has a (∆2, ∆6)-partition. Dross, Montassier,

Pinlou [6] proved that every triangle-free planar graph admits an (F5, F)-partition.

We are interested in the partition of planar graphs with girth restrictions. Montassier and

Ochem [7] constructed graphs with girth 4 that do not admit (∆d1
, ∆d2

)-partition for each

d1, d2 ≥ 0. Borodin and Glebov [8] showed that every planar graph with girth 5 admits an (I,

F)-partition. Havet and Sereni [9] proved that graphs with girth 5 admit a (∆4, ∆4)-partition.

Choi and Raspaud [10] proved that graphs with girth 5 admit a (∆3, ∆5)-partition. Axenovich,

Ueckerdt and Weiner [11] showed that a planar graph with girth at least 6 has a (P15, P15)-

partition. Borodin and Ivanova [12] proved that every planar graph with girth at least 7 has a

(P3, P3)-partition. Choi, Dross and Ochem [13] proved that every planar graph with girth at

least 9 admits an (I, O9)-partition. They also showed that every planar graph with girth at

least 10 has an (I, P3)-partition.

Our main result is stated as follows.

Theorem 1.1 Every planar graph with girth at least 6 and i-cycle not intersecting with j-cycle

admits an (O2, O3)-partition, where i ∈ {6, 7, 8} and j ∈ {6, 7, 8, 9}.

2. Structure properties of minimum counterexample

In order to prove Theorem 1.1, we use the discharging technique. Let G be the counterex-

ample to Theorem 1.1 with minimal number of |V (G)| + |E(G)|. G is a plane graph. Clearly,

the graph G is connected. According to the minimality of G, G has no (O2, O3)-partitions

but every proper subgraph of G has. For an i-cycle with i = 6, 7, 8 or a j-cycle with j = 6, 7
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with a hanging 1-vertex, it is obvious that it has an (O2, O3)-partition. Therefore, they are not

minimal counterexamples. Furthermore, if i-cycle is not intersecting with j-cycle in graph G, we

can deduce that i-face is not intersecting with j-face, where i ∈ {6, 7, 8} and j ∈ {6, 7, 8, 9}.

Lemma 2.1 Every vertex in G has degree at least 2.

Proof Let v be a 1-vertex in G and G′ = G − v. According to the minimality of G, G′ has

an (O2, O3)-partition. We can obtain an (O2, O3)-partition of G by giving v the color distinct

from its neighbour, which is a contradiction. 2

Lemma 2.2 Every vertex v with 2 ≤ d(v) ≤ 4 in G has at least one 3+-neighbour.

Proof Suppose to the contrary that every neighbour of v has degree 2. Let G′ = G − N [v].

Since the girth of graph G is at least 6, the neighbours of each 2-neighbour of v are different

and can only be in G′. Let v1, . . . , vm with 2 ≤ m ≤ 4 be the 2-neighbours of v. According

to the minimality of G, G′ has an (O2, O3)-partition. We color vi with i = 1, . . . ,m with the

color different from that of their neighbours in G′, respectively. Then, if at least two of vi are

colored O2, then we assign O3 to v, otherwise we assign O2 to v. Therefore, we can obtain an

(O2, O3)-partition of G, which is a contradiction. 2

Lemma 2.3 There are no adjacent 2-vertices in graph G.

Proof Suppose to the contrary that v1 and v2 are two adjacent 2-vertices. Let G′ = G−{v1, v2}.

By the minimality of G, G′ has an (O2, O3)-partition. We color v1 and v2 with the color different

from that of their neighbours in G′, respectively. In this way, we get an (O2, O3)-partition of G,

which is a contradiction. 2

In graph G, if a path is the longest induced path whose internal vertices all have degree 2,

then we call it a chain. A chain is a k-chain if it has k internal 2-vertices. According to Lemma

2.3, we know there are no adjacent 2-vertices in graph G, so G has only 1-chains.

We give some interpretations here. In all the following tables, if the position of the vertices

is symmetrical, we only list one coloring method.

If v is incident with one 1-chain and has two 3+-neighbours, then we call it a good 3-vertex;

if v is incident with two 1-chains and has one 3+-neighbour, then we call it a weak 3-vertex; if v

has three 3+-neighbours, then we call it a best 3-vertex. According to Lemmas 2.2 and 2.3, we

can know that there are only the above types of 3-vertices in G.

Lemma 2.4 Let v1 and v2 be two adjacent 3-vertices. If v1 is a weak 3-vertex, then v2 cannot

be a weak 3-vertex.

Proof Suppose to the contrary that v2 is a weak 3-vertex. Let u1 and u2 be two 2-neighbours

of v1. Let u3 and u4 be two 2-neighbours of v2. Let G′ = G − {v1, v2, u1, u2, u3, u4}. By the

minimality of G, G′ has an (O2, O3)-partition. Firstly, we color ui with i = 1, 2, 3, 4 with the

color different from that of their 3+-neighbours in G′, respectively. According to the colors of ui
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with i = 1, 2, 3, 4, we use the coloring methods in Table 1 to color v1 and v2. Therefore, we can

obtain an (O2, O3)-partition of G, which is a contradiction.2

u1 u2 u3 u4 v1 v2

O3 O3 O3 O3 O2 O2

O3 O3 O3 O2 O2 O3

O3 O2 O3 O2 O3 O2

O3 O3 O2 O2 O2 O3

O3 O2 O2 O2 O3 O3

O2 O2 O2 O2 O3 O3

Table 1 Coloring method 1

Lemma 2.5 Let v1 and v2 be two adjacent 3-vertices. If v1 is a good 3-vertex, then v2 cannot

be a weak 3-vertex.

Proof Suppose to the contrary that v2 is a weak 3-vertex. Let u1, u2 be the 2-neighbours of v2

and u3 be the 2-neighbour of v1. Let G′ = G − {v1, v2, u1, u2, u3}. By the minimality of G, G′

has an (O2, O3)-partition. Firstly, we color v1 and ui with i = 1, 2, 3 with the color different from

that of their 3+-neighbours in G′, respectively. According to the colors of u1, u2, v1 and u3, we

use the coloring methods in Table 2 to color v2. Therefore, we can obtain an (O2, O3)-partition

of G, which is a contradiction. 2

u1 u2 v1 u3 v2

O3 O3 O3 O2/O3 O2

O3 O2 O3 O2/O3 O2

O2 O2 O3 O2/O3 O3

O3 O3 O2 O2/O3 O3

O3 O2 O2 O2/O3 O3

O2 O2 O2 O2/O3 O3

Table 2 Coloring method 2

Lemma 2.6 Let v1 and v2 be two 3-vertices and v3 be the common 2-neighbour of v1 and v2.

Then v1 and v2 cannot both be weak 3-vertices.

Proof Suppose to the contrary that v1 and v2 are both weak 3-vertices. Let w1 and w2 be the

2-neighbours of v1 and v2, respectively. Let G′ = G − {v1, v2, v3, w1, w2}. By the minimality

of G, G′ has an (O2, O3)-partition. Firstly, we color vi and wi with i = 1, 2 with the colors

different from that of their 3+-neighbours in G′, respectively. According to the colors of w1, w2,

v1 and v2, we use the coloring methods in Table 3 to color v3. Therefore, we can obtain an (O2,

O3)-partition of G, which is a contradiction. 2
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w1 w2 v1 v2 v3

O2 O2 O2 O2 O3

O2 O2 O2 O3 O3

O2 O3 O2 O2 O3

O2 O2 O3 O3 O3

O3 O3 O2 O2 O3

O2 O3 O2 O3 O3

O3 O2 O2 O3 O3

O2 O3 O3 O3 O2

O3 O3 O2 O3 O2

O3 O3 O3 O3 O2

Table 3 Coloring method 3

Lemma 2.7 For a (3, 3, 2, 3, 2, 3)-face f = [v1v2v3v4v5v6], v1 can only be best 3-vertex.

Proof Suppose to the contrary that v1 has a 2-neighbour z. By Lemma 2.6, we know v2 and v6

are good 3-vertices. Let graph G′ be a graph obtained from G by deleting z and all vertices on

f . By the minimality of G, G′ has an (O2,O3)-partition. Firstly, we color v2, v4, v6 and z with

the color different from that of their neighbours in G′, respectively. According to the colors of

v2, v4, v6 and z, we use the coloring methods in Table 4 to color v1, v3 and v5. Therefore, we

can obtain an (O2, O3)-partition of G, which is a contradiction. 2

v2 v4 v6 z v1 v3 v5

O2 O2 O2 O2/O3 O3 O3 O3

O2 O2 O3 O2/O3 O3 O3 O2

O2 O3 O2 O2/O3 O3 O3 O3

O3 O2 O2 O2/O3 O3 O2 O3

O2 O3 O3 O2/O3 O3 O3 O2

O3 O2 O3 O2/O3 O2 O3 O3

O3 O3 O2 O2/O3 O3 O2 O3

O3 O3 O3 O2/O3 O2 O2 O2

Table 4 Coloring method 4

3. Discharging procedure

In order to reach the final contradiction, we will apply a discharging procedure. According

to Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2, and
∑

v∈V d(v) =
∑

f∈F d(f) = 2|E|, we get:

∑

v∈V (G)

(2d(v)− 5) +
∑

f∈F (G)

(
1

2
d(f)− 5) = −10. (3.1)
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For all x ∈ V (G) ∪ F (G), let 2d(v) − 5 and 1
2d(f) − 5 be its initial charge ω(v) and ω(f),

respectively. Let τ(v → f) denote the charge v sends to f . From the above formula, we can

know that the total initial charge is negative. Then we can design appropriate discharging rules

and redistribute weights. Finally, we will prove that each x ∈ V (G) ∪ F (G) has final charge

ω′(v) ≥ 0 and ω′(f) ≥ 0 by keeping the total sum of charges unchanged in discharging process.

It leads to a contradiction that

0 ≤
∑

x∈V (G)∪F (G)

ω′(x) =
∑

x∈V (G)∪F (G)

ω(x) = −10, (3.2)

and thus such counterexample does not exist. Our discharging rules are defined as follows.

(R1) Every 2-vertex gets charge 1
2 from each of its 3+-neighbour.

For each 3+-vertex v, let α(v) be the remaining charge of v after rule (R1).

(R2) Every 3+-vertex v sends charge α(v) to incident d(f)-face (6 ≤ d(f) ≤ 8).

(R3) Every d(v)-vertex v sends charge α(v)
d(v) to each incident 9-face (d(v) ≥ 3).

In the following, we will prove that ω′(x) ≥ 0 for all x ∈ V (G) ∪ F (G).

Lemma 3.1 For each v ∈ V (G), the final charge ω′(v) ≥ 0.

Proof Let v be a 2-vertex. We know ω′(v) = −1 + 1
2 × 2 = 0 by (R1).

By the discharging rules, we only need to show that α(v) ≥ 0 for 3+-vertex.

Let v be a 3-vertex. By Lemma 2.2, we know v has at least one 3+-neighbour. If v is a weak

3-vertex, then α(v) = 1− 1
2 × 2 = 0 by (R1); if v is a good 3-vertex, then α(v) = 1 − 1

2 = 1
2 by

R1; if v is a best 3-vertex, then α(v) = 1 by (R1).

Let v be a 4-vertex. By Lemma 2.2, we know v has at least one 3+-neighbour. So α(v) ≥

3−max{ 1
2 × 3, 1

2 × 2, 1
2 × 1, 0} = 3

2 by (R1).

Let v be a 5+-vertex. We know α(v) ≥ 2d(v)− 5− d(v) × 1
2 = 3

2d(v)− 5 ≥ 5
2 by (R1). 2

Lemma 3.2 For each f ∈ F (G), the final charge ω′(f) ≥ 0.

Proof Let f be a 6-face. If f is incident with at least two 4+-vertices, then ω′(f) ≥ 1
2 × 6− 5+

3
2 × 2 = 1 by (R2). If f is incident with a 5+-vertex, then ω′(f) ≥ 1

2 × 6 − 5 + 5
2 = 1

2 by (R2).

Therefore, we only need to consider the case that there is at most one 4-vertex on the 6-face,

and the rest are 2-vertices and 3-vertices.

Case 1. d2(f) = 0.

For (3, 3, 3, 3, 3, 4)-face, we know ω′(f) ≥ −2 + 1
2 × 5 + 2 = 5

2 by (R2).

For (3, 3, 3, 3, 3, 3)-face, we know ω′(f) ≥ −2 + 1
2 × 6 = 1 by (R2).

Case 2. d2(f) = 1.

For (3, 3, 3, 3, 3, 2)-face, we know v1 and v5 cannot be weak 3-vertices at the same time by

Lemma 2.6. So ω′(f) ≥ −2 + 1
2 × 4 = 0 by (R2).

For (4, 3, 3, 3, 3, 2)-face, we know τ(v1 → f) + τ(v2 → f) + τ(v3 → f) ≥ 3
2 + 1

2 + 1
2 = 5

2 by

(R2). So ω′(f) ≥ −2 + 5
2 = 1

2 .

For (4, 3, 3, 3, 2, 3)-face and (4, 3, 3, 2, 3, 3)-face, we know τ(v1 → f) ≥ 2 by (R2). So ω′(f) ≥
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−2 + 2 = 0.

Case 3. d2(f) = 2.

For (3, 3, 2, 3, 2, 3)-face, v1 can only be best 3-vertex by Lemma 2.7. By Lemma 2.6, we know

v2 and v6 are good 3-vertices. So ω′(f) ≥ −2 + 1 + 1
2 × 2 = 0 by (R2).

For (4, 3, 2, 3, 2, 3)-face, we know τ(v1 → f) ≥ 2 by (R2). So ω′(f) ≥ −2 + 2 = 0.

For (3, 4, 2, 3, 2, 3)-face, we know v6 is a good 3-vertex by Lemma 2.6. So τ(v2 → f)+τ(v6 →

f) ≥ 3
2 + 1

2 = 2 by (R2). So ω′(f) ≥ −2 + 2 = 0.

For (3, 3, 2, 4, 2, 3)-face, we know τ(v1 → f) + τ(v4 → f) ≥ 1
2 + 3

2 = 2 by (R2). So ω′(f) ≥

−2 + 2 = 0.

For (3, 3, 2, 3, 3, 2)-face, we know these 3-vertices all are good 3-vertices by Lemmas 2.4 and

2.5. So ω′(f) = −2 + 1
2 × 4 = 0 by (R2).

For (3, 3, 2, 3, 4, 2)-face, we know v1 and v2 are good 3-vertices by Lemmas 2.4 and 2.5. So

τ(v1 → f) + τ(v2 → f) + τ(v5 → f) ≥ 1
2 + 1

2 + 3
2 = 5

2 by (R2). So ω′(f) ≥ −2 + 5
2 = 1

2 .

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2)-faces and (4, 2, 3, 2, 3, 2)-faces in G.

By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case of

d2(f) ≥ 3.

Let f be a 7-face. If f is incident with at least one 4+-vertex, then ω′(f) ≥ 1
2 × 7− 5+ 3

2 = 0

by (R2). Therefore, we only need to consider the case that f is only incident with 2-vertices and

3-vertices.

Case 1. d2(f) = 0.

For (3, 3, 3, 3, 3, 3, 3)-face, we know ω′(f) ≥ − 3
2 + 1

2 × 7 = 2 by (R2).

Case 2. d2(f) = 1.

For (3, 3, 3, 3, 3, 3, 2)-face, we know τ(v2 → f)+τ(v3 → f)+τ(v4 → f)+τ(v5 → f) ≥ 1
2×4 = 2

by (R2). So ω′(f) ≥ − 3
2 + 2 = 1

2 .

Case 3. d2(f) = 2.

For (3, 3, 3, 2, 3, 3, 2)-face, we know v5 and v6 are good 3-vertices by Lemmas 2.4 and 2.5. So

τ(v2 → f) + τ(v5 → f) + τ(v6 → f) ≥ 1
2 × 3 = 3

2 by (R2). So ω′(f) ≥ − 3
2 + 3

2 = 0.

For (3, 3, 3, 3, 2, 3, 2)-face, we know v1 and v4 are good 3-vertices by Lemma 2.6. So τ(v1 →

f) + τ(v2 → f) + τ(v3 → f) + τ(v4 → f) ≥ 1
2 × 4 = 2 by (R2). So ω′(f) ≥ − 3

2 + 2 = 1
2 .

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3)-faces in G. By Lemma 2.3, we

know that there are no adjacent 2-vertices in graph G. So there is no case of d2(f) ≥ 3.

Let f be a 8-face. If f is incident with at least one 4+-vertex, then ω′(f) ≥ 1
2 × 8− 5+ 3

2 = 1
2

by (R2). Therefore, we only need to consider the case that f is only incident with 2-vertices and

3-vertices.

Case 1. d2(f) = 0.

For (3, 3, 3, 3, 3, 3, 3, 3)-face, we know ω′(f) ≥ −1 + 1
2 × 8 = 3 by (R2).

Case 2. d2(f) = 1.

For (3, 3, 3, 3, 3, 3, 3, 2)-face, we know τ(v2 → f) + τ(v3 → f) ≥ 1
2 × 2 = 1 by (R2). So

ω′(f) ≥ −1 + 1 = 0.

Case 3. d2(f) = 2.
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For (3, 3, 3, 2, 3, 3, 3, 2)-face, we know τ(v2 → f) + τ(v6 → f) ≥ 1
2 × 2 = 1 by (R2). So

ω′(f) ≥ −1 + 1 = 0.

For (3, 3, 3, 3, 2, 3, 3, 2)-face, we know v6 and v7 are good 3-vertices by Lemmas 2.4 and 2.5.

So ω′(f) ≥ −1 + 1
2 × 2 = 0 by (R2).

For (3, 3, 3, 3, 3, 2, 3, 2)-face, we know v1 and v5 are good 3-vertices by Lemma 2.6. So ω′(f) ≥

−1 + 1
2 × 2 = 0 by (R2).

Case 4. d2(f) = 3.

For (3, 2, 3, 3, 2, 3, 3, 2)-face, we know v6 and v7 are good 3-vertices by Lemmas 2.4 and 2.5.

So ω′(f) ≥ −1 + 1
2 × 2 = 0 by (R2).

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3, 3)-faces and (3, 2, 3, 2, 3, 2, 3, 2)-

faces in G. By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there

is no case of d2(f) ≥ 4.

Let f be a 9-face. If f is incident with at least two 4+-vertices, then ω′(f) ≥ 1
2×9−5+ 3

8×2 =
1
4 by (R3). If f is incident with a 5+-vertex, then ω′(f) ≥ 1

2 × 9− 5+ 1
2 = 0 by (R3). Therefore,

we only need to consider the case that there is at most one 4-vertex on the 9-face, and the rest

are 2-vertices and 3-vertices.

Case 1. d2(f) = 0.

For (3, 3, 3, 3, 3, 3, 3, 3, 3)-face and (3, 3, 3, 3, 3, 3, 3, 3, 4)-face, we know τ(v1 → f) + τ(v2 →

f) + τ(v3 → f) ≥ 1
6 × 3 = 1

2 by (R3). So ω′(f) ≥ − 1
2 + 1

2 = 0.

Case 2. d2(f) = 1.

For (3, 3, 3, 3, 3, 3, 3, 3, 2)-face, (3, 3, 3, 3, 4, 3, 3, 3, 2)-face, (3, 3, 3, 3, 3, 4, 3, 3, 2)-face, (3, 3, 3, 3,

3, 3, 4, 3, 2)-face and (3, 3, 3, 3, 3, 3, 3, 4, 2)-face, we know that at least five of these 3-vertices are

either good 3-vertices or best 3-vertices. So ω′(f) ≥ − 1
2 + 1

6 × 5 = 1
8 by (R3).

Case 3. d2(f) = 2.

For (3, 3, 3, 3, 3, 3, 2, 3, 2)-face and (3, 3, 3, 3, 3, 2, 3, 3, 2)-face, we know τ(v2 → f) + τ(v3 →

f) + τ(v4 → f) ≥ 1
6 × 3 = 1

2 by (R3). So ω′(f) ≥ − 1
2 + 1

2 = 0.

For (3, 3, 3, 3, 2, 3, 3, 3, 2)-face, we know τ(v2 → f) + τ(v3 → f) + τ(v7 → f) ≥ 1
6 × 3 = 1

2 by

(R3). So ω′(f) ≥ − 1
2 + 1

2 = 0.

For (3, 3, 3, 3, 3, 3, 2, 4, 2)-face, (3, 3, 3, 3, 3, 4, 2, 3, 2)-face, (3, 3, 3, 3, 4, 3, 2, 3, 2)-face, (3, 3, 3, 4,

3, 3, 2, 3, 2)-face, (3, 3, 3, 3, 3, 2, 3, 4, 2)-face, (3, 3, 3, 3, 4, 2, 3, 3, 2)-face, (3, 3, 3, 4, 3, 2, 3, 3, 2)-face

and (3, 3, 4, 3, 3, 2, 3, 3, 2)-face, (3, 3, 3, 3, 2, 3, 3, 4, 2)-face, (3, 3, 3, 3, 2, 3, 4, 3, 2)-face, (3, 3, 3, 4, 2, 3,

3, 3, 2)-face and (3, 3, 4, 3, 2, 3, 3, 3, 2)-face, we know 4-vertex sends charge at least 3
8 to face and

τ(v2 → f) ≥ 1
6 by (R3). So ω′(f) ≥ − 1

2 + 1
6 + 3

8 = 1
24 .

Case 4. d2(f) = 3.

For (3, 3, 3, 2, 3, 3, 2, 3, 2)-face, we know v1 is a good 3-vertex by Lemma 2.6. By Lemmas 2.4

and 2.5, we know v5 and v6 are good 3-vertices. So ω′(f) ≥ − 1
2 + 1

6 × 3 = 0 by (R3).

By Lemma 2.6, we know that there are no (3, 3, 3, 3, 2, 3, 2, 3, 2)-faces, (4, 3, 3, 3, 2, 3, 2, 3, 2)-

faces and (3, 4, 3, 3, 2, 3, 2, 3, 2)-faces in G.

For (3, 3, 3, 3, 2, 4, 2, 3, 2)-face, (3, 3, 3, 2, 3, 3, 2, 4, 2)-face, (3, 3, 3, 2, 3, 4, 2, 3, 2)-face, (3, 3, 3, 2,

4, 3, 2, 3, 2)-face and (3, 3, 4, 2, 3, 3, 2, 3, 2)-face, we know v2 is either good 3-vertex or best 3-vertex.
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So ω′(f) ≥ − 1
2 + 1

6 + 3
8 = 1

24 by (R3).

For (3, 4, 3, 2, 3, 3, 2, 3, 2)-face and (4, 3, 3, 2, 3, 3, 2, 3, 2)-face, we know v5 and v6 are good

3-vertices by Lemmas 2.4 and 2.5. So ω′(f) ≥ − 1
2 + 1

6 + 1
6 + 3

8 = 5
24 by (R3).

For (3, 3, 2, 3, 3, 2, 3, 3, 2)-face and (3, 3, 2, 3, 3, 2, 3, 4, 2)-face, we know v1, v2, v4 and v5 are

good 3-vertices Lemmas 2.4 and 2.5. So ω′(f) ≥ − 1
2 + 1

6 × 4 = 1
6 by (R3).

Case 5. d2(f) = 4.

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3, 2, 3)-faces, (3, 2, 4, 2, 3, 2, 3, 2, 3)-

faces and (4, 2, 3, 2, 3, 2, 3, 2, 3)-faces in G.

For (3, 2, 3, 2, 4, 2, 3, 2, 3)-face, we know v1 and v9 are good 3-vertices by Lemmas 2.4 and 2.5.

So ω′(f) ≥ − 1
2 + 3

8 + 1
6 × 2 = 5

24 by (R3).

By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case

of d2(f) ≥ 5.

Let f be a 10+-face. We know that a 10+-face is not involved in discharging rules, so

ω′(f) = ω(f) = 1
2d(f)− 5 ≥ 1

2 × 10− 5 = 0. 2
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