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Abstract We study a new class of group inverses determined by right c-regular elements.
The new concept of right c-group inverses is introduced and studied. It is shown that every
right c-group invertible element is group invertible, and an example is given to show that group
invertible elements need not be right c-group invertible. The conditions that right c-group
invertible elements are precisely group invertible elements are investigated. We also study the
strongly clean decompositions of right c-group invertible elements. As applications, we give some
new characterizations of abelian rings and directly finite rings from the point of view of right
c-group inverses.
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1. Introduction

Throughout this paper, R is a unitary associative ring, the center of R is denoted by C(R)
and the group of units of the ring R is U(R). An involution *: R — R is an anti-isomorphism
which satisfies (a*)* = a, (ab)* = b*a*, (a +b)* = a* + b* for all a,b € R. For any a € R, we
use lann(a) = {z € R : za = 0} and rann(a) = {x € R : ax = 0} to denote the left and right
annihilator of a, respectively. Recall that an element a € R is Drazin invertible [1] if there is
x € R such that raz = z, ax = za, a® = a*T'x for some k > 0. The least such k is called the
index of a. The Drazin inverse is called the group inverse of @ when k = 1. It is well known
that an element a is group invertible if and only if a is strongly regular (that is, a € a> RN Ra?).
More results on group inverse of elements in various setting can be found in [2] and [3-5].

In [5], the Moore-Penrose inverse was introduced for a ring with involution. Also a detailed
study of core inverses and dual core inverses in rings was undertaken in [3]. For any element
a € R, consider the following conditions:

(1) ara = a; (2) zax = z; (3) za = az; (4) (azx)* = az; (5) (za)* = za; (6) za® = a; (7)
ar? =z.

Any element z satisfying (1) is called an inner inverse of a, and is denoted by a~. If x

satisfies (1)—(3), then z is called the group inverse of a, denoted by a#. If x satisfies (1), (2),

Received December 9, 2021; Accepted May 8, 2022

Supported by the National Natural Science Foundation of China (Grant No.12161049).
* Corresponding author

E-mail address: 1zhao@ahut.edu.cn (Liang ZHAO)



60 Jun JIAO and Liang ZHAO

(4) and (5), then z is called the Moore-Penrose inverse of a and is denoted by a'. The set of
all group invertible elements and Moore-Penrose invertible elements are denoted by R# and R,
respectively. It is well known that a is an EP element if a € R# N Rt and a# = af. Moreover,
x is the core inverse of a if it satisfies (1), (2), (4), (6) and (7), which is denoted by a®. And
x is the dual core inverse of a if it satisfies (1), (2) and (5)—(7), which is denoted by ag. The
set of all core invertible elements and dual core invertible elements are denoted by R® and Rg,,
respectively.

In 2012, Drazin defined a class of outer generalized inverses in [4]. Let a,b,c,y € R. Then
y is called the (b, ¢)-inverse of a if y € bRy NyRc,yab = b and cay = ¢. Later, Drazin shed a
new light on (b, ¢)-inverse by introducing left and right (b, ¢)-inverses in [6]. Let a,b,c,z € R.
Recalled from [6] that = is a left (resp., right) (b, ¢)-inverse of a if it satisfies zab = b,x € Re
(resp., cax = ¢,z € bR). According to [7], for a,c € R, a is right (resp., left) c-regular if there
exists © € R such that a = axca (resp., a = acxa), and z is called a right (resp., left) c-regular
inverse of a. It is clear that every right c-regular element is regular, but in general a regular
element need not be right c-regular by [7, Example 2.1].

In this paper, we investigate a new class of group inverses in unitary associative rings. More
precisely, we give an explicit description of group inverse determined by left and right c-regular
elements. The concepts of right and left c-group inverses are defined and investigated. It is
proved that if a is right c-group invertible, then a is group invertible. However, we shall give
examples to show that group invertible elements need not be right c-group invertible, and right
c-group invertible elements need not be left c-group invertible. We also study the strongly clean
decompositions of right c-group invertible elements, and study the relationship between right c-
group inverses and other generalized inverses including group inverses, Moore-Penrose inverses,
core inverses, dual core inverses, one-sided (b, ¢)-inverses and (b, ¢)-inverses. As applications, we
give some new characterizations of abelian rings, directly finite rings and EP elements by using
right c-group inverses.

This paper is organized as follows:

In Section 2, we define and study right and left c-group inverses of an element in a ring R. We
show that an element a is right c-group invertible if and only if a is group invertible and Ra C Rc
(Proposition 2.8). In Section 3, we further study the properties of right c-group invertible
elements. Of particular interest are the new characterization of strongly clean decompositions
of elements with respect to right c-group invertible elements (Theorem 3.4). Also we show that
every right c-group invertible element of R has a unique right c-group inverse if and only if R is
abelian (Proposition 3.7). Section 4 is devoted to study the relationships between right c-group
inverse, Moore-Penrose inverse, core inverse and (b, ¢)-inverse. As applications, we give some
new characterizations of EP elements and directly finite rings from the point of view of right

c-group inverses (Proposition 4.4 and Theorem 4.14).
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2. Right and left c-group inverses

This section is dedicated to the question of exploring the properties of group inverses de-
termined by right c-regular elements. The new concepts of left and right c-group inverses are
defined and discussed. An example is given to show that group invertible elements need not
be right c-group invertible. We also study the condition under which right c-group invertibility
coincides with group invertibility.

We begin with the following definition.

Definition 2.1 Let a,c € R. We say that a is right c-group invertible if there exists © € R
such that a = axca, x = xcax, axc = xca. Any element x, which satisfies the above conditions,
is called a right c-group inverse of a and is denoted as ai.

Dually, a is said to be left c-group invertible if there is y € R such that a = acya, y = yacy,
cya = acy. Any element y satisfying the above conditions is called a left c-group inverse of a and
is defined as .a*.

In what follows, we use R¥ (resp., .R”) to denote the set of all right (resp., left) c-group
invertible elements of R. It is clear that if a is right (resp., left) c-group invertible, then a is
group invertible. However, the next example shows that a group invertible element need not be

right c-group invertible.

Example 2.2 Let R = M3(F) be the ring of all 2 by 2 matrices over a field F. Let

11 0 1
a=xr = , C= GR
(o o) =0

Then it can be easily checked that a is group invertible and x is the group inverse of a. However,

0 0
axrca = a

for any element z since ca = (8 8). Thus, a is not right c-group invertible.

it is clear

The following proposition gives a characterization of right c-group inverse.

Proposition 2.3 Let a,z,c € R. Then the following statements are equivalent:
(1) x is a right c-group inverse of a;
(2) a = axca, Rxc = Ra, tR = aR;
(3) a = axca, rann(zc) = rann(a), lann(a) = lann(z);
(4) a = axca, Rxc C Ra, zR C aR;

(5) a = axca, rann(a) C rann(zc), lann(a) C lann(x).

Proof (1) = (2). Since z is a right c-group inverse of a, we have a = arca = zca® € xR and
r = xcax = azcx € aR. This implies that aR = xR. Also, we have zc = zcaxc = (vc)%a € Ra
and a = azxca = a’xc € Rrc. This shows that Rrc = Ra.

(2) = (3) and (4) = (5) are straightforward.
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(3) = (4). Since a = azca, we have (1 — xca) € rann(a) = rann(xzc). It follows that

2a € Ra. Therefore, we have Rrc C Ra. Similarly, since (azc—1) € lann(a) = lann(z),

xe = (xc
we get © = axcr € aR, and hence xR C aR.

(5) = (1). Since a = azca, we deduce that (1 — zca) € rann(a) C rann(xc). Then xc =
(zc)%a. Similarly, since (aze — 1) € lann(a) C lann(z), we get * = azcx. Therefore, we have
azc = a(zc)?a = (axcz)ca = zca. This implies that x = axcz = xcar, as desired. O

In particular, if ¢ is a central element, then we can give a description of right c-group invertible

elements, which is closely related to the idempotents of R.

Theorem 2.4 Let a,c € R and ¢ € C(R). Then the following statements are equivalent:

(1) a € R¥;

(2) There exists a unique idempotent element p € R such that aR = caR = pR, Ra = Rca =
Rp;

(3) ca € R~ and there is a unique idempotent element p € R such that lann(a) = lann(ca) =

lann(p), rann(a) = rann(ca) = rann(p).

Proof (1) = (2). Let p = aa?c. Then p? = aacaafc = aa?c = p. Since a = aa¥ca = pa € pR
and p = aaic € aR, we get aR = pR. Also since ¢ € C(R), we have

#

Fea = aa’cac € pR, p= aafc = caafé € caR,

ca = caa 7

thus pR = caR. Next, since
p=aa¥c=afca € Ra, a=aa¥ca=aaafc=apc Rp,

we have Rp = Ra. Furthermore, since ca = caafca € Rpand p = afca € Rca, we conclude that
Rp = Rca.
(2) = (3). Since Rca = Rp, there exist s,t € R such that ca = tp and p = sca. It follows

that ca = cap = casca since p is an idempotent, and thus ca € R~. By [3, Lemma 2.5], we have
lann(a) = lann(ca) = lann(p), rann(a) = rann(ca) = rann(p),

as desired.

(3) = (1). By the assumption, it is clear that
(1 —p) € rann(p) = rann(a), [(ca)” ca — 1] € rann(ca) = rann(a) = rann(p).
Then we conclude that a = ap = a(ca)”ca and p = p(ca)~ ca. Also, since
(p—1) € lann(p) = lann(a), [1 — ca(ca)”] € lann(ca) = lann(a) = lann(p),

we get a = pa = ca(ca)”a and p = ca(ca) p. Since a = ap and (p — 1) € lann(ca), we have

ca = cap and pca = ca. Let = p(ca)”p. Then we conclude that
azxca = ap(ca) pea = a(ca)” ca = a, xcax = p(ca)” pcap(ca)”p = p(ca) p = x,

xca = p(ca) pca =p, axc = ap(ca)” pc = ca(ca)” p = p.
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It remains to show the uniqueness of p. In fact, if there are two idempotent elements p1,p2 € R
such that lann(p;) = lann(a) = lann(ps), rann(p;) = rann(a) = rann(ps). Then it can be easily
checked that

(1 —p1) € lann(py) = lann(ps), (p2 — 1) € rann(ps) = rann(py),
which imply that p; = pips = p2. O
It is a well-known fact that the group inverse of a group invertible element is unique. Similarly,

one may suspect that if @ € R¥, then the right c-group inverse of a is also unique. However, the

following example eliminates the possibility.

Example 2.5 Let R = M5(F) be the ring of all 2 by 2 matrices over a field F. Take

1 1
a=c= , T = men €R
0 0 st

for some m,n,s,t € F. If xcar = x, a = axca and xca = axc, then

x:G g).

This shows that (5 8) is the right c-group inverse of a for some n € F. Therefore, the right
c-group inverse of a is not unique.
The following proposition gives a more straightforward way to show the right c-group invert-

ibility of an element.

Proposition 2.6 Let a,c € R. Then a € R¥ if and only if a = a’xc = yca® for some x,y € R.

In this case, ycax = axcx is a right c-group inverse of a.

Proof If a € R¥ and z, y are two right c-group inverses of a, then we have

a = axrca = ayca, rca = arc, Yca = ayc.
2 _ 2 Anal 1 _ 2 _ 2 h : — 2 _
xrc = xca”. Analogously, we get a = yca” = a“yc, that 1s, a = yca* =
2

This implies that a = a

a’zc. Conversely, if a = a’xc = yca?, then yca = yca’xc = axc. Let z = ycax. Then we get

zcaz = (ycax)ca(yca)r = ycaxca’rex = yclaxc)ar = yeyca’x = ycax = z,
azca = a(yca)rca = a*rcrca = arca = yca® = a.
Moreover, since we have
zca = yc(axc)a = yeycaa = yca = axc, azc = a(yca)re = a*rcre = axc.

We conclude that zca = azc. Therefore, a is right c-group invertible with a right c-group inverse
z = ycax = axce. O
Note that if the right c-group inverse of a is unique, then Proposition 2.6 can be rephrased

2

as a € R¥ if and only if a = a’zc = xca? for some z € R. In this case, a = xcax = axc.

Similarly, we have the following proposition.
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Proposition 2.7 Let a,c € R. Then a € .R* if and only if a = a*cx = cya® for some x,y € R.
In this case, yacx = ycya is a left c-group inverse of a.
The next proposition shows the condition under which right c-group invertibility coincides

with group invertibility.
Proposition 2.8 Let a,c € R. Then a € R¥ if and only if a € R* and Ra C Re.

Proof Since a € R¥, there is x € R such that xcaz = 2. It is clear that xc is the group inverse
of a. Since zca = axc, we have a = axca = a’xc € Re. Thus Ra C Re. Conversely, if a € R¥

and Ra C Rc, then there exist y,¢ € R such that a = aya,ya = ay and a = tc. This implies that
a =ya® = y?a® = y?aa® = y*tca® € Red?,
a = ayaya = a*y*a = a*y*tc € a*Re.
Therefore, a € R¥ by Proposition 2.6. O

The proof of the following proposition can be given similarly.

Proposition 2.9 Let a,c € R. Then a € .R* if and only if a € R* and aR C cR.
We next examine under what conditions the right (resp., left) c-group inverse of a right (resp.,

left) c-group invertible element is unique.

Theorem 2.10 Let a,c € R. If a € R¥ N .R* such that a¥ = .a*, then a has at most one
right (resp., left) c-group inverse.

Proof If af = .a”, then there is x € R such that a = axca = acra and zcar = v = racz. If y
is also a right c-group inverse of a with = # y. Then y = ycay = yacy. It follows that
Y = Yycay = ycarcay = aycarcy = arcy = rcay,
T = TACT = TACYACT = TCYAACT = TCYACTA = TCYa = Tacy.

Then we deduce that

ya = rcaya = arcya = aracy = ax,
Y = Yacy = yacracy = yacc.

It follows that y = yacx = axcr = xcax = x. Therefore, a has at most one right c-group inverse.
Similarly, we can show the uniqueness of left c-group inverse. O
Note that the condition in Theorem 2.10 is not superfluous. In fact, if a is right c-group

invertible, then a need not be left c-group invertible by the following example.

Example 2.11 Let R = M3(F) be the ring of all 2 by 2 matrices over a field F. Take

0 0 0 1
a= , C= € R.
0 1 0 0
a=a? 0 » c= 0 m ca® € a’Re N Rea?
1 ¢ 1 n

Then it is clear that
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for p,q,m,n € F. Therefore, a is right c-group invertible by Proposition 2.6. However,
0 0
a’c= .
0 0
This implies that a ¢ a?cR N cRa?, that is, a is not left c-group invertible by Corollary 2.7.

Remark 2.12 In view of Example 2.5 and Theorem 2.10, we observe that in general the right
and left c-group inverses of an element a are not unique. However, a7 ca and ac.a” are unique.

In fact, if x,y € R are two right c-group inverses of a, then we have
TC = TCATC = TCAYCATC = TCAAYCTC = AYCIC = YCaxc.

Therefore, xca = ycaxca = yca. Similarly, we can show that ac.a™ is also unique.

We next discuss some further properties related to right c-group invertible elements.

Proposition 2.13 Let a,c € R. If a¥ = .a”, then (a})# and .(.a™)* exist. In this case, a is

both a left c-group inverse of .a™ and a right c-group inverse of a} .

Proof If a¥ = .a”, then a} is unique by Theorem 2.10. Let 2 = af = .a¥. Then a = axca =

acxra, r = rcar = xacx, axc = rca and cra = acx. Then we conclude that
Ta = reaxra = arcra = ax,
axc = rca = TCACTa = GTCCTA = ATCACT = ACT.
Let y = a. Then we have
Yycxry = acra = a =Y, TYCT = TACT = T, TYC = TaC = QIC, YCTr = ACT.

Since acx = axc, we get xyc = ycr. Therefore, (a)# exists and a is a right c-group inverse of

af . Similarly, we conclude that
Yyrey = arca = a =Y, TCYTr = TrCar = T,
CYT = car = cra = acr, ITCY = TCa = aIc.

Since acz = axc, we get xcy = cyr. This implies that .(.a™)# exists and a is a left c-group

inverse of .a¥. O

Corollary 2.14 Let a,c € R. If af = .a” such that (a¥)# = .(.a™)#, then ((a7)7)# =
cle(ca®)#)# = ca® = af.

If R is a ring with an involution *, then we have the following lemma.

Lemma 2.15 Leta,c€ R. Ifa € Rf, then a* € . R¥*.
The following theorem shows that if an element a is right c-group invertible, then a* may be

left c-group invertible under some mild conditions.
Theorem 2.16 Let a,c € R such that (ca®)* = ca®. If a € R¥, then a* € .R¥.

Proof If a € R¥, then by Proposition 2.6, there exist m,n € R such that a = a®mc = nca?.
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Next, it suffices to show a* € (a*)2cR N cR(a*)? by Corollary 2.7. Since (ca?)* = ca® and

an* = nca®n*, an* is symmetrical, thus (an*)* = an* = na*. Then we have

a = nca® = n(ca®)* = na*a*c* = an*a*c* = a(can)*.

2

This implies that a* = cana®. Since a* = ¢*m*(a*)*, we conclude that a* = cana* =

canc*m*(a*)? € cR(a*)?. Furthermore, since a = nca?, we have

k k _k ok 2 ok ok __x k%

a* = (a*)%c*n* = a*a*c*n* = (a*)%a*c'n*c'n
= (a*)%canc*m*(a*)*c* n*c*n*

* %

= (a*)%canc*m*a*c*n* € (a*)?cR,

proving a* is left c-group invertible. O

3. Strongly clean decompositions for right c-group invertible elements

In this section, we study the strongly clean decompositions of right c-group invertible ele-
ments. A ring R is abelian if every idempotent element is central. An element « in a ring R is
called clean [8] if @ = e + u where e? = ¢ and u € U(R), and an element a is strongly clean if
a = e+u where €2 = e,u € U(R) and eu = ue. Note that an element a is strongly regular if and

only if there is an idempotent e € R and u € U(R) such that a = e + u, ae = ea and eae is zero.

Lemma 3.1 An element a € R* if and only if a = ue, ue = eu for some u € U(R) and

idempotent e = e?. In this case, u = a — 1 + a*a.

Proof If a € R¥, then a is strong regular. By [2, Lemma 3.5], we have a = ue, ue = eu and

u = a— 1+ a*a. Conversely, since ue = eu and u € U(R), we get
a=ue=ueueu ' =a*u"te aQR, a=u‘teueu = v ta® € Ra®.

This implies that a € a®? RN Ra?. Therefore, a € R¥. O
The following theorem shows that an element is group invertible if and only if it is both left

c-group invertible and right c-group invertible.

Theorem 3.2 Let a,c € R. Then the following statements are equivalent:
(1) a € R¥ N .R¥;
(2) a € R#;
(3) There exist ¢ € U(R) and e = e? such that a = ce and ce = ec.

In this case, ¢ = a — 1 + a*a is unique.

Proof (1) = (2). If a € R¥ N .R¥, then a € Rca? C Ra® and a € a*cR C a?R by Propositon
2.6 and Corollary 2.7. It follows that a € Ra® N a?R.

(2) & (3) is clear by Lemma 3.1. Since a# is unique, ¢ is unique.

(3) = (1). Since a = ce = ec, we have Ra C Rc and aR C cR. Combining with a € R, we
get a € R¥ N .R* by Propositon 2.8 and Corollary 2.9. O
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By Proposition 4.4, Lemma 2.15 and Theorem 3.2, we can give the following corollary im-
mediately which shows the equivalence of right c-group invertible elements and group invertible

elements.

#

Corollary 3.3 If R is a ring with involution and a* = a, then a € Ra71+a#a

a € R#.

The next result shows the relationship between right c-group invertible elements and strongly

if and only if

clean elements.

Theorem 3.4 Let a,c € R. Then the following statements are equivalent:

(1) a€ R¥;

(2) a € R and there exist ¢ € U(R) and f = f? such that a = c + f is a strongly clean
element.

In this case, c = a — 1 + a¥ ca.

Proof (1) = (2). Since a € R¥, it is clear that a € R¥ and there is # € R such that zcaz = .

2

It follows that zcaxca = xca. Let e = xca. Then e = e is an idempotent element. Since

a = axca = xca®, we have a = ae = ea. Let ¢ = a — 1 + zca. Then ¢ is a unit since

(a — 1+ zca)(xe — 14 zca) = (xc — 1 + zca)(a — 1 + zca) = 1.

Therefore, a = c+1—xca=c+1—e. Let f=1—e. Then f2= f =1— e is an idempotent

element. This implies that a = ¢+ f is a clean element. Since a = ae = ea, we have
af =a(l—e)=a—ae=a—ea=(1l-e)a= fa.

It follows that c¢f = (a— f)f =af — f = fa— f = f(a — f) = fe. Therefore, a = c+ fis a
strongly clean element.

(2) = (1). Since a = ¢+ f is a strongly clean element, we get a®> = a(c+ f) = ac+ af. Also
since a € R#, there is y € R such that a = ya®. This implies that

a = y(ac+ af) = yac +yaf = yac + yafc 'c = (ya +yafc ')c € Re.
By Proposition 2.8, we get a € R¥. O

Corollary 3.5 Let a,c € R. Then the following statements are equivalent:

(1) a € .R¥;

(2) a € R* and there exist c € U(R) and e = €2 such that a = c + e is a strongly clean
element.

In this case, c = a — 1 + ac.a® and ¢~ = c.a — 1+ ac.a™.

An element a € R# if and only if there is e2 = ¢ € R and u € U(R) such that a = e + u,

ae = ea and eae = 0. Accordingly, we have the following theorem for a € R¥.

Theorem 3.6 Let a,c € R. Then the following statements are equivalent:
(1) a€ R¥;
(2) There exist c € U(R) and e = e? such that a = e + ¢, ec = ce and aRNeR = {0};
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(3) There exist ¢ € U(R) and e = e? such that a = e + ¢, ec = ce and ae = ea = 0.

Proof (1) = (3). Let ¢ = a — 1+ affca and e = 1 — afca. By Theorem 3.4, we have
ae =a—aafca=a—a¥ca® =ea=0,a=e+c, ec=ce.
(3) = (1). Since there exist ¢ € U(R) and e = e? such that a = e + ¢ and ec = ce, a is

strongly clean. Also since ea = ae = 0, we get ae = e + ce = e + ec = 0. It follows that
a>=(e+tc)=e+2ec+ct=ectc?=(e+c)c=ac

Thus, a = a’c™' € a®>R. Analogously, we get a = ¢ 'a® € Ra®. Then a € R#. Therefore,
a € R¥ by Theorem 3.4 again.

(2) = (3). Since ae = e+ ce = e+ ec = ea, we have ae € aRNeR = {0}. Thus, ae = 0 = ea.

(3) = (2). Let € aRNeR. Then there exist s,t € R such that = as = et. It follows that
ex = eas = 0 since ea = 0. Thus, z = et = ex = 0. Then aRNeR = {0}. O

We conclude this section by showing a particularly nice behaviour of the uniqueness of right

c-group inverse on abelian rings.

Proposition 3.7 Let ¢ € R. Then every right c-group invertible element of R has a unique

right c-group inverse if and only if R is abelian.

Proof If R is abelian and a € R is right c-group invertible, then there exist x,y € R such that
a = axca = ayca, rcax = x and yca = ayc with  # y. Since cax is an idempotent element, it
follows that

T = TCAT = TCAYCAT = TCAAYCT = AYCT = Ycaxr = caxy.

Moreover, because axc, caxr and yca are idempotent elements, we also have
y = yeazrcay = (ayc)axcy = (axc)yayc = yaycaxc
= cazyayc = caxy(yca) = carycay = caxy = x.

Therefore, every right c-group invertible element has a unique right c-group inverse in an abelian
ring.

Conversely, suppose that every right c-group invertible element of R has a unique right c-
group inverse. If R is not abelian, then there is e? = e € R such that e is not central. Then
ex # ze for some x € R, and thus ex(1 — e) # 0. This implies that e # e + ex(1 —e). Let ¢ =e.
Then e is right e-group invertible with a right e-group inverse e. Moreover, we have

(e+ex(l—e))e(e+ex(l—e))=e+ex(l—e),
elet+ex(l—e))e=c=(e+ex(l—e)e.

This shows that e + ex(1 — e) is also a right e-group inverse of e, a contradiction. O

4. Relationships of various generalized inverses

In this section, we investigate the relationships between right c-group inverses and other

various generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual
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core inverses, one-sided (b, ¢)-inverses and (b, ¢)-inverses. Some work has already been done in
this topic (for example, see [3]). We start with the following result which shows that a € R* N Rf

implies a € Rfa# N 4o# R# under some conditions.

Theorem 4.1 Let a € R. Then the following statements are equivalent:
(1) a € R*NR;
(2) There exist x, y € R such that x is a right aa™-group inverse of a, y is a left aa*-group

inverse of a and ax, ya are projections.
Proof (1) = (2). If a € R* N R, then a and a' exist. Let z = a#aa’. Then we have
raa®ax = a¥ aa'aa® aa aa’ = a*aa’ =z,
azaa”a = aa”aa'aa®a = a, zaa”a = a*aaaa®a = a*a,
azaa” = aa®aa’aa® = aa® = a*a.

This implies that z is a right aa#-group inverse of a. Since ax = aa#aa' = aa’ and azvar =

aataa’ = aa® = ax, it follows that ax is a projection. Similarly, if we let v = afaa®, then
aaa™ya = aaa™a'aa®a = a, yaaa®y =y, aa”ya = aaa™y.

This shows that ¥ is a left aa#-group inverse of a. Since ya = a'aa#a = a’a and yaya = ya, ya
is also a projection.

(2) = (1). If x is a right aa”-group inverse of a, then a = araa®a = azxa. Also, if y is a left
aa®-group inverse of a, then a = aaa”ya = aya. Combining with (az)* = ar and (ya)* = ya,
we have a € R' by [9, Lemma 2.18]. Therefore, a € R# N Rf. O

Proposition 4.2 Ifa € R, then the following statements are equivalent:
(1) a € REF;

(2) There is x € R such that x is a right aat-group inverse of a with ra = ax.
Proof (1) = (2). Since a € R¥F aa’ = a'a. Let v = af. Then we have za = ax and
raatar = alaa’ = o' =2, azaa’a = a,
zaata = za = a'a = aa’ = azaal.

Therefore, we deduce that z is a right aa’-group inverse of a.

(2) = (1). If = is a right aa’-group inverse of a such that ax = xa, then we have
azaa’ = raa'a = ra, a = ax(aa’)a = ara, zaa'ar = vax = .

This implies that x is the group inverse of a and za = aa’. Therefore, a#a = aa', that is,
a€ RFF. O

Corollary 4.3 Leta € R. Ifa € RfaT Naat R7 such that afaT = 4ata™, then a is an EP element.

#

Proof Since a” .
aa

= ,qta™, there exists z € R such that x = afaT = 4ata™. Then we have

a = a:caaTa =ara, T = :caaTa:E = xaxr,
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a:caaT = :EaaTa = a, aaT:Ea = aaaT:c = aQaT:E.

It follows that za = azaa’ = aa®, thus a?at = aza = a and aa’za = aa’. Then a?alz = azx =
aat. Hence, ax = aa’ = za. Tt follows that a is an EP element by Proposition 4.2. O
If a* = a, then the next proposition shows that a being right c-group invertible implies the

EP property of a.

Proposition 4.4 Ifa = a*, then a is EP if and only if there is ¢ € R such that a is right c-group

invertible. In this case, ¢ = aa” = aa' = aa® = aag.

Proof If a is EP, then a is right aaf-group invertible by Proposition 4.2. Let ¢ = aa# = aal =
aa® = aag € R. Then a is right c-group invertible. Conversely, if a is right c-group invertible,
then there is & € R such that axc = zca and zcaxr = x. Since a* = a, we have (axc)* = (zc)*a =
(zca)* = a(zc)*. Tt follows that [a(zc)*zc]* = a(zc)*zc = (zc)*xca. Since a = axca = zca?,
we have a(zc)*xrca = (wc)*zca? = (ze)*a. Then [(zc)*a]* = (zc)*a = axc = zca. Therefore, we

have (z¢)*a(zc) = xcaxe = xe. Thus (ze)* = ze. Let z = xe. Then we have
(za)* = (xzca)* = axec = xca = za, (az)* = (axc)" = xca = axc = az,
aza =a, zaz=z.

Therefore, z = at. Moreover, it is clear that zc is the group inverse of a. Then a € R#* N R and
xzc = a* = al, that is, a is EP. O

Corollary 4.5 Let a € R such that a = a*. Then a is EP if and only if there is ¢ € R such that
a is left c-group invertible. In this case, ¢ = aa™ = aa' = aa® = aag.
Proposition 4.4 together with Corollary 4.5 implies the following corollary valid in the rings

with an involution.

Corollary 4.6 Let a € R such that a = a*. Then there is ¢ € R such that a € R¥ if and only
ifa € .R¥#.

When a* = a and ¢ = aa’, we next show that a € RFF is equivalent to a € Rf N R#.

Proposition 4.7 If a* = a, then a is an EP element if and only if a € RfaT N wot R?. In this

case, a' is both a left aa®-group inverse of a and a right aa’-group inverse of a.

Proof If a € RPP then a is right aaf-group invertible by Proposition 4.2. Let x be a right

aa’-group inverse of a. Then we have
azaata = aza = a, zvaalar = zax =z,

xaaTa = Ira = axaaT.

2. Since a* = a and a € Rfa“ we conclude that a is left aa-

Hence za = aa’ and a = za
group invertible by Lemma 2.15. Suppose that y € R is a left aaf-group inverse of a. Then
a = aaa'ya and aa'ya = aaaly = ay since a is an EP element. Thus a = a?y. This implies

that a = a?y = a®(aat)y = (aa’)za®. By Corollary 2.7, we get zay = raa'ra = aata’aat = af.



Right c-group inverses and their applications 71

Therefore, a' is a left aaf-group inverse of a. Also since

2 2

a = a’*y = a®y(aa’) = za®

= z(aat)a?,

we have zay is also a right aaf-group inverse of a by Proposition 2.6. This implies that a €
Rj&(ﬂ N ot R and a' is both a left aaf-group inverse of a and a right aaf-group inverse of a.
Conversely, since a € RfaT N wat R#, a is an EP element by Proposition 4.4 and Corollary 4.5. O

We need the following lemma, which is closely related to EP elements and has been investi-
gated in [3, Theorem 3.1].

Lemma 4.8 Let a € R” N R'. Then:
(1) a is EP if and only if a* = a' = a® = agp;
(2) a is EP if and only if aa® = aa’ = aa® = aag.
If ¢ = aa’, then the following theorem not only gives a new characterization of EP elements,

but also reveals the relations between a¥, af, a®, agm, aff, .a™ and EP elements.

Theorem 4.9 Let a € RT and a* = a. Then the following statements are equivalent:
(1) a € REF;
(2) a € R* N 4t R* and a™ is a left aa'-group inverse of a;
(3) a€ R*N Rj&(ﬂ and a* is a right aa’-group inverse of a;
(4) a € R®N ,,+ R and a® is a left aa'-group inverse of a;
(5) a€ RgN Rj&(ﬁ and ag is a right aa’-group inverse of a;
(6) a € R* N R' and a' is a left aa'-group inverse of a;
(7) a € R* N R' and a' is a right aa'-group inverse of a;
(8) a€ R*NR" and a € R” . N .1 R¥.

Proof (1) < (8) is clear by Proposition 4.7.

(1) = (2)-(7). Since a € RFF, a' is both a left aa’-group inverse of a and a right aa'-
group inverse of a by Proposition 4.7. By Lemma 4.8, we get a' = a® = agz = a”. The other
implications are clear by Proposition 4.7 and [3, Theorem 3.1].

(7) = (1). Since a' is a right aaf-group inverse of a, ataa™ = a' is the group inverse of a, we
deduce that at = a#. Hence a € RFP.

(6) = (1). Since a' is a left aaf-group inverse of a, aa'a’ is the group inverse of a. Thus
aata’ = a#. Tt follows that (a™)* = (af)*aal, thus (a*)*a = (a')*a. Since a* = a, we get
aa” = aa'. By Lemma 4.8, we get a € RFF.

(5) = (1). Since a € R*

7 +» a is group invertible. Combining with a € Rf, we have a €

R# N RY. If ag is a right aa’-group inverse of a, then agaa' = a#. Therefore, aa’ = aa®, that
is, a € RFP,

(4) = (1). If a® is a left aal-group inverse of a, then aa’a® = a#. Since a* = a, we deduce
that (aa™)* = [a(aa")a®]* = (a®)*aa’a = (a®)*a = (aa®)*. Thus aa™ = aa®, that is, a € RFF

by Lemma 4.8.
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(3) = (1). If a* is aright aa’-group inverse of a, then a#aa' = a#. It follows that aa® = aal,
thus a € RFP.

(2) = (1). If a* is a left aa’-group inverse of a, then aa'a® = a# = (aa')*a” = (al)*aa”.
Therefore, aa” = a*a = (a')*a = aa' since a* = a, that is, a € RFF. O

Now, we study the relationship between right c-group inverses and one-sided (b, ¢)-inverses.

Proposition 4.10 Let a,c € R such that a = a*. Then a is right c-group invertible if and only
if a is left (a, ¢)-invertible and Ra C Re.

Proof Since a is right c-group invertible, there is ¥ € R such that a = a?yc € Rc and a =
yca? € Rea?. This implies that a is left (a, ¢)-invertible. Conversely, if a is left (a, ¢)-invertible,
then there is € R such that a = zca? € Ra®. It follows that a = a?(zc)* € a®R since a* = a.
Therefore, a € Ra®? N a’R, that is, a« € R¥. Since Ra C Re, a is right c-group invertible by
Proposition 2.8. O

Corollary 4.11 Let a,c € R such that a = a*. Then a is left c-group invertible if and only if a
is right (c, a)-invertible and aR C cR.

In particular, we have the following corollary which is related to (b, ¢)-inverses.

Corollary 4.12 Ifa € R such that a = a*, then the following statements are equivalent:
(1) a is right (resp., left) a-group invertible;
(2) a is (a,a)-invertible;
(3) a € R*.
Over a directly finite ring R, the following proposition shows that 1 may be the unique right

c-group inverse of a for some a,c € R.

Proposition 4.13 Let a,c € R. Then the following statements are equivalent:
(1) R is a directly finite ring;
(2) If ac =1, then 1 is the unique right c-group inverse of a;

Proof (1) = (2). If ac = 1, then ca = 1 since R is directly finite. Therefore, we have
a = a(ca)ca, ca = cacaca, caca = acac = 1.

This implies that ca = 1 is a right c-group inverse of a. Let any z € R such that x is a right
c-group inverse of a. Then we have a = axca = ax. Since ac = ca = 1, we have a € U(R). Tt
follows that x = 1, and thus 1 is the unique right c-group inverse of a.

(2) = (1). Tt suffices to show ca = 1. In fact, since 1 is the unique right ¢-group inverse of a,
we have ca = (1¢)a = a(lc) = ac = 1, as desired. O

We conclude this section by giving a new characterization of directly finite rings.

Theorem 4.14 Let a,c € R. Then the following statements are equivalent:
(1) R is a directly finite ring;
(2) Ifac=1, then a¥ = ci.
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Proof (1) = (2). If R is a directly finite ring and ac = 1, then 1 is the unique right c-group

inverse of a by Proposition 4.13. Moreover, since ca = ac = 1, 1 is also the unique right a-group

inverse of ¢ again by Proposition 4.13. Therefore, we have a7 = ¢/ = 1.

(2) = (1). Let x € R be a right c-group inverse of a. Since a = ¢ and ac = 1, we have

axc = xca, cra = x. Therefore, we get crac = cx = xc. Then axca = acxa = xa = a, and hence

zac = ac = 1. This implies that ca = cxa = xac=1. O
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