Journal of Mathematical Research with Applications Jan., 2023, Vol. 43, No. 1, pp. 59–73 DOI:10.3770/j.issn:2095-2651.2023.01.007 Http://jmre.dlut.edu.cn

Right c-Group Inverses and Their Applications

Jun JIAO, Liang ZHAO*

School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract We study a new class of group inverses determined by right c-regular elements. The new concept of right c-group inverses is introduced and studied. It is shown that every right c-group invertible element is group invertible, and an example is given to show that group invertible elements need not be right c-group invertible. The conditions that right c-group invertible elements are precisely group invertible elements are investigated. We also study the strongly clean decompositions of right c-group invertible elements. As applications, we give some new characterizations of abelian rings and directly finite rings from the point of view of right c-group inverses.

Keywords right c-group inverse; group inverse; right c-regular elements; strongly clean decomposition

MR(2020) Subject Classification 15A09; 16U90; 16W10

1. Introduction

Throughout this paper, R is a unitary associative ring, the center of R is denoted by C(R) and the group of units of the ring R is U(R). An involution $*: R \to R$ is an anti-isomorphism which satisfies $(a^*)^* = a$, $(ab)^* = b^*a^*$, $(a+b)^* = a^* + b^*$ for all $a, b \in R$. For any $a \in R$, we use $lann(a) = \{x \in R : xa = 0\}$ and $rann(a) = \{x \in R : ax = 0\}$ to denote the left and right annihilator of a, respectively. Recall that an element $a \in R$ is Drazin invertible [1] if there is $x \in R$ such that xax = x, ax = xa, $a^k = a^{k+1}x$ for some $k \geq 0$. The least such k is called the index of a. The Drazin inverse is called the group inverse of a when k = 1. It is well known that an element a is group invertible if and only if a is strongly regular (that is, $a \in a^2R \cap Ra^2$). More results on group inverse of elements in various setting can be found in [2] and [3–5].

In [5], the Moore-Penrose inverse was introduced for a ring with involution. Also a detailed study of core inverses and dual core inverses in rings was undertaken in [3]. For any element $a \in R$, consider the following conditions:

(1)
$$axa = a$$
; (2) $xax = x$; (3) $xa = ax$; (4) $(ax)^* = ax$; (5) $(xa)^* = xa$; (6) $xa^2 = a$; (7) $ax^2 = x$.

Any element x satisfying (1) is called an inner inverse of a, and is denoted by a^- . If x satisfies (1)–(3), then x is called the group inverse of a, denoted by $a^\#$. If x satisfies (1), (2),

Received December 9, 2021; Accepted May 8, 2022

Supported by the National Natural Science Foundation of China (Grant No. 12161049).

* Corresponding author

E-mail address: lzhao@ahut.edu.cn (Liang ZHAO)

(4) and (5), then x is called the Moore-Penrose inverse of a and is denoted by a^{\dagger} . The set of all group invertible elements and Moore-Penrose invertible elements are denoted by $R^{\#}$ and R^{\dagger} , respectively. It is well known that a is an EP element if $a \in R^{\#} \cap R^{\dagger}$ and $a^{\#} = a^{\dagger}$. Moreover, x is the core inverse of a if it satisfies (1), (2), (4), (6) and (7), which is denoted by $a^{\#}$. And x is the dual core inverse of a if it satisfies (1), (2) and (5)–(7), which is denoted by $a_{\#}$. The set of all core invertible elements and dual core invertible elements are denoted by $R^{\#}$ and $R_{\#}$, respectively.

In 2012, Drazin defined a class of outer generalized inverses in [4]. Let $a,b,c,y\in R$. Then y is called the (b,c)-inverse of a if $y\in bRy\cap yRc,yab=b$ and cay=c. Later, Drazin shed a new light on (b,c)-inverse by introducing left and right (b,c)-inverses in [6]. Let $a,b,c,x\in R$. Recalled from [6] that x is a left (resp., right) (b,c)-inverse of a if it satisfies $xab=b,x\in Rc$ (resp., $cax=c,x\in bR$). According to [7], for $a,c\in R$, a is right (resp., left) c-regular if there exists $x\in R$ such that a=axca (resp., a=acxa), and x is called a right (resp., left) c-regular inverse of a. It is clear that every right c-regular element is regular, but in general a regular element need not be right c-regular by [7, Example 2.1].

In this paper, we investigate a new class of group inverses in unitary associative rings. More precisely, we give an explicit description of group inverse determined by left and right c-regular elements. The concepts of right and left c-group inverses are defined and investigated. It is proved that if a is right c-group invertible, then a is group invertible. However, we shall give examples to show that group invertible elements need not be right c-group invertible, and right c-group invertible elements need not be left c-group invertible. We also study the strongly clean decompositions of right c-group invertible elements, and study the relationship between right c-group inverses and other generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual core inverses, one-sided (b,c)-inverses and (b,c)-inverses. As applications, we give some new characterizations of abelian rings, directly finite rings and EP elements by using right c-group inverses.

This paper is organized as follows:

In Section 2, we define and study right and left c-group inverses of an element in a ring R. We show that an element a is right c-group invertible if and only if a is group invertible and $Ra \subseteq Rc$ (Proposition 2.8). In Section 3, we further study the properties of right c-group invertible elements. Of particular interest are the new characterization of strongly clean decompositions of elements with respect to right c-group invertible elements (Theorem 3.4). Also we show that every right c-group invertible element of R has a unique right c-group inverse if and only if R is abelian (Proposition 3.7). Section 4 is devoted to study the relationships between right c-group inverse, Moore-Penrose inverse, core inverse and (b, c)-inverse. As applications, we give some new characterizations of EP elements and directly finite rings from the point of view of right c-group inverses (Proposition 4.4 and Theorem 4.14).

2. Right and left c-group inverses

This section is dedicated to the question of exploring the properties of group inverses determined by right c-regular elements. The new concepts of left and right c-group inverses are defined and discussed. An example is given to show that group invertible elements need not be right c-group invertible. We also study the condition under which right c-group invertibility coincides with group invertibility.

We begin with the following definition.

Definition 2.1 Let $a, c \in R$. We say that a is right c-group invertible if there exists $x \in R$ such that a = axca, x = xcax, axc = xca. Any element x, which satisfies the above conditions, is called a right c-group inverse of a and is denoted as $a_c^{\#}$.

Dually, a is said to be left c-group invertible if there is $y \in R$ such that a = acya, y = yacy, cya = acy. Any element y satisfying the above conditions is called a left c-group inverse of a and is defined as $_ca^{\#}$.

In what follows, we use $R_c^{\#}$ (resp., $_cR^{\#}$) to denote the set of all right (resp., left) c-group invertible elements of R. It is clear that if a is right (resp., left) c-group invertible, then a is group invertible. However, the next example shows that a group invertible element need not be right c-group invertible.

Example 2.2 Let $R = M_2(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F} . Let

$$a = x = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R.$$

Then it can be easily checked that a is group invertible and x is the group inverse of a. However, it is clear

$$axca = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq a$$

for any element x since $ca = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Thus, a is not right c-group invertible.

The following proposition gives a characterization of right c-group inverse.

Proposition 2.3 Let $a, x, c \in R$. Then the following statements are equivalent:

- (1) x is a right c-group inverse of a;
- (2) a = axca, Rxc = Ra, xR = aR;
- (3) a = axca, rann(xc) = rann(a), lann(a) = lann(x);
- (4) $a = axca, Rxc \subseteq Ra, xR \subseteq aR;$
- (5) a = axca, $rann(a) \subseteq rann(xc)$, $lann(a) \subseteq lann(x)$.

Proof (1) \Rightarrow (2). Since x is a right c-group inverse of a, we have $a = axca = xca^2 \in xR$ and $x = xcax = axcx \in aR$. This implies that aR = xR. Also, we have $xc = xcaxc = (xc)^2 a \in Ra$ and $a = axca = a^2xc \in Rxc$. This shows that Rxc = Ra.

 $(2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are straightforward.

- $(3) \Rightarrow (4)$. Since a = axca, we have $(1 xca) \in \text{rann}(a) = \text{rann}(xc)$. It follows that $xc = (xc)^2a \in Ra$. Therefore, we have $Rxc \subseteq Ra$. Similarly, since $(axc-1) \in \text{lann}(a) = \text{lann}(x)$, we get $x = axcx \in aR$, and hence $xR \subseteq aR$.
- $(5) \Rightarrow (1)$. Since a = axca, we deduce that $(1 xca) \in \text{rann}(a) \subseteq \text{rann}(xc)$. Then $xc = (xc)^2a$. Similarly, since $(axc 1) \in \text{lann}(a) \subseteq \text{lann}(x)$, we get x = axcx. Therefore, we have $axc = a(xc)^2a = (axcx)ca = xca$. This implies that x = axcx = xcax, as desired. \square

In particular, if c is a central element, then we can give a description of right c-group invertible elements, which is closely related to the idempotents of R.

Theorem 2.4 Let $a, c \in R$ and $c \in C(R)$. Then the following statements are equivalent:

- (1) $a \in R_c^{\#}$;
- (2) There exists a unique idempotent element $p \in R$ such that aR = caR = pR, Ra = Rca = Rp:
- (3) $ca \in R^-$ and there is a unique idempotent element $p \in R$ such that lann(a) = lann(ca) = lann(p), rann(a) = rann(ca) = rann(p).

Proof (1) \Rightarrow (2). Let $p = aa_c^\# c$. Then $p^2 = aa_c^\# caa_c^\# c = aa_c^\# c = p$. Since $a = aa_c^\# ca = pa \in pR$ and $p = aa_c^\# c \in aR$, we get aR = pR. Also since $c \in C(R)$, we have

$$ca = caa_c^\# ca = aa_c^\# cac \in pR, \quad p = aa_c^\# c = caa_c^\# \in caR,$$

thus pR = caR. Next, since

$$p = aa_c^{\#}c = a_c^{\#}ca \in Ra, \quad a = aa_c^{\#}ca = aaa_c^{\#}c = ap \in Rp,$$

we have Rp = Ra. Furthermore, since $ca = caa_c^{\#}ca \in Rp$ and $p = a_c^{\#}ca \in Rca$, we conclude that Rp = Rca.

 $(2) \Rightarrow (3)$. Since Rca = Rp, there exist $s, t \in R$ such that ca = tp and p = sca. It follows that ca = cap = casca since p is an idempotent, and thus $ca \in R^-$. By [3, Lemma 2.5], we have

$$lann(a) = lann(ca) = lann(p), \quad rann(a) = rann(ca) = rann(p),$$

as desired.

 $(3) \Rightarrow (1)$. By the assumption, it is clear that

$$(1-p) \in \operatorname{rann}(p) = \operatorname{rann}(a), \quad [(ca)^- ca - 1] \in \operatorname{rann}(ca) = \operatorname{rann}(a) = \operatorname{rann}(p).$$

Then we conclude that $a = ap = a(ca)^- ca$ and $p = p(ca)^- ca$. Also, since

$$(p-1) \in \operatorname{lann}(p) = \operatorname{lann}(a), \quad [1 - ca(ca)^-] \in \operatorname{lann}(ca) = \operatorname{lann}(a) = \operatorname{lann}(p),$$

we get $a = pa = ca(ca)^-a$ and $p = ca(ca)^-p$. Since a = ap and $(p-1) \in lann(ca)$, we have ca = cap and pca = ca. Let $x = p(ca)^-p$. Then we conclude that

$$axca = ap(ca)^{-}pca = a(ca)^{-}ca = a, \quad xcax = p(ca)^{-}pcap(ca)^{-}p = p(ca)^{-}p = x,$$

$$xca = p(ca)^-pca = p$$
, $axc = ap(ca)^-pc = ca(ca)^-p = p$.

It remains to show the uniqueness of p. In fact, if there are two idempotent elements $p_1, p_2 \in R$ such that $lann(p_1) = lann(a) = lann(p_2)$, $rann(p_1) = rann(a) = rann(p_2)$. Then it can be easily checked that

$$(1-p_1) \in \operatorname{lann}(p_1) = \operatorname{lann}(p_2), \quad (p_2-1) \in \operatorname{rann}(p_2) = \operatorname{rann}(p_1),$$

which imply that $p_1 = p_1 p_2 = p_2$. \square

It is a well-known fact that the group inverse of a group invertible element is unique. Similarly, one may suspect that if $a \in R_c^{\#}$, then the right c-group inverse of a is also unique. However, the following example eliminates the possibility.

Example 2.5 Let $R = M_2(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F} . Take

$$a = c = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad x = \begin{pmatrix} m & n \\ s & t \end{pmatrix} \in R$$

for some $m, n, s, t \in \mathbb{F}$. If xcax = x, a = axca and xca = axc, then

$$x = \begin{pmatrix} 1 & n \\ 0 & 0 \end{pmatrix}.$$

This shows that $\begin{pmatrix} 1 & n \\ 0 & 0 \end{pmatrix}$ is the right c-group inverse of a for some $n \in \mathbb{F}$. Therefore, the right c-group inverse of a is not unique.

The following proposition gives a more straightforward way to show the right c-group invertibility of an element.

Proposition 2.6 Let $a, c \in R$. Then $a \in R_c^{\#}$ if and only if $a = a^2xc = yca^2$ for some $x, y \in R$. In this case, ycax = axcx is a right c-group inverse of a.

Proof If $a \in R_c^{\#}$ and x, y are two right c-group inverses of a, then we have

$$a = axca = ayca, xca = axc, yca = ayc.$$

This implies that $a = a^2xc = xca^2$. Analogously, we get $a = yca^2 = a^2yc$, that is, $a = yca^2 = a^2xc$. Conversely, if $a = a^2xc = yca^2$, then $yca = yca^2xc = axc$. Let z = ycax. Then we get

$$zcaz = (ycax)ca(yca)x = ycaxca^2xcx = yc(axc)ax = ycyca^2x = ycax = z,$$

$$azca = a(yca)xca = a^2xcxca = axca = yca^2 = a.$$

Moreover, since we have

$$zca = yc(axc)a = ycycaa = yca = axc, \quad azc = a(yca)xc = a^2xcxc = axc.$$

We conclude that zca = azc. Therefore, a is right c-group invertible with a right c-group inverse z = ycax = axcx. \square

Note that if the right c-group inverse of a is unique, then Proposition 2.6 can be rephrased as $a \in R_c^{\#}$ if and only if $a = a^2xc = xca^2$ for some $x \in R$. In this case, $a_c^{\#} = xcax = axcx$.

Similarly, we have the following proposition.

Proposition 2.7 Let $a, c \in R$. Then $a \in {}_cR^{\#}$ if and only if $a = a^2cx = cya^2$ for some $x, y \in R$. In this case, yacx = ycya is a left c-group inverse of a.

The next proposition shows the condition under which right c-group invertibility coincides with group invertibility.

Proposition 2.8 Let $a, c \in R$. Then $a \in R_c^{\#}$ if and only if $a \in R^{\#}$ and $Ra \subseteq Rc$.

Proof Since $a \in R_c^{\#}$, there is $x \in R$ such that xcax = x. It is clear that xc is the group inverse of a. Since xca = axc, we have $a = axca = a^2xc \in Rc$. Thus $Ra \subseteq Rc$. Conversely, if $a \in R^{\#}$ and $Ra \subseteq Rc$, then there exist $y, t \in R$ such that a = aya, ya = ay and a = tc. This implies that

$$a = ya^{2} = y^{2}a^{3} = y^{2}aa^{2} = y^{2}tca^{2} \in Rca^{2},$$

 $a = ayaya = a^{2}y^{2}a = a^{2}y^{2}tc \in a^{2}Rc.$

Therefore, $a \in R_c^{\#}$ by Proposition 2.6. \square

The proof of the following proposition can be given similarly.

Proposition 2.9 Let $a, c \in R$. Then $a \in {}_{c}R^{\#}$ if and only if $a \in R^{\#}$ and $aR \subseteq cR$.

We next examine under what conditions the right (resp., left) c-group inverse of a right (resp., left) c-group invertible element is unique.

Theorem 2.10 Let $a, c \in R$. If $a \in R_c^{\#} \cap {}_cR^{\#}$ such that $a_c^{\#} = {}_ca^{\#}$, then a has at most one right (resp., left) c-group inverse.

Proof If $a_c^{\#} = {}_c a^{\#}$, then there is $x \in R$ such that a = axca = acxa and xcax = x = xacx. If y is also a right c-group inverse of a with $x \neq y$. Then y = ycay = yacy. It follows that

$$y=ycay=ycaxcay=aycaxcy=axcy=xcay,\\$$

$$x = xacx = xacyacx = xcyaacx = xcyacxa = xcya = xacy.$$

Then we deduce that

$$ya = xcaya = axcya = axacy = ax,$$

 $y = yacy = yacxacy = yacx.$

It follows that y = yacx = axcx = xcax = x. Therefore, a has at most one right c-group inverse. Similarly, we can show the uniqueness of left c-group inverse. \Box

Note that the condition in Theorem 2.10 is not superfluous. In fact, if a is right c-group invertible, then a need not be left c-group invertible by the following example.

Example 2.11 Let $R = M_2(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F} . Take

$$a = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R.$$

Then it is clear that

$$a = a^2 \begin{pmatrix} 0 & p \\ 1 & q \end{pmatrix} c = \begin{pmatrix} 0 & m \\ 1 & n \end{pmatrix} ca^2 \in a^2Rc \cap Rca^2$$

for $p,q,m,n\in\mathbb{F}$. Therefore, a is right c-group invertible by Proposition 2.6. However,

$$a^2c = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

This implies that $a \notin a^2 cR \cap cRa^2$, that is, a is not left c-group invertible by Corollary 2.7.

Remark 2.12 In view of Example 2.5 and Theorem 2.10, we observe that in general the right and left c-group inverses of an element a are not unique. However, $a_c^{\#}ca$ and $ac_ca^{\#}$ are unique. In fact, if $x, y \in R$ are two right c-group inverses of a, then we have

$$xc = xcaxc = xcaycaxc = xcaaycxc = aycxc = ycaxc.$$

Therefore, xca = ycaxca = yca. Similarly, we can show that $ac_ca^{\#}$ is also unique.

We next discuss some further properties related to right c-group invertible elements.

Proposition 2.13 Let $a, c \in R$. If $a_c^{\#} = {}_c a^{\#}$, then $(a_c^{\#})_c^{\#}$ and ${}_c ({}_c a^{\#})^{\#}$ exist. In this case, a is both a left c-group inverse of ${}_c a^{\#}$ and a right c-group inverse of $a_c^{\#}$.

Proof If $a_c^{\#} = {}_c a^{\#}$, then $a_c^{\#}$ is unique by Theorem 2.10. Let $x = a_c^{\#} = {}_c a^{\#}$. Then a = axca = acxa, x = xcax = xacx, axc = xca and cxa = acx. Then we conclude that

$$xa = xcaxa = axcxa = ax$$
.

$$axc = xca = xcacxa = axccxa = axcacx = acx.$$

Let y = a. Then we have

$$ycxy = acxa = a = y$$
, $xycx = xacx = x$, $xyc = xac = axc$, $ycx = acx$.

Since acx = axc, we get xyc = ycx. Therefore, $(a_c^{\#})_c^{\#}$ exists and a is a right c-group inverse of $a_c^{\#}$. Similarly, we conclude that

$$yxcy = axca = a = y$$
, $xcyx = xcax = x$,

$$cyx = cax = cxa = acx, \quad xcy = xca = axc.$$

Since acx = axc, we get xcy = cyx. This implies that $_c(_ca^\#)^\#$ exists and a is a left c-group inverse of $_ca^\#$. \square

Corollary 2.14 Let $a, c \in R$. If $a_c^{\#} = {}_c a^{\#}$ such that $(a_c^{\#})_c^{\#} = {}_c ({}_c a^{\#})^{\#}$, then $((a_c^{\#})_c^{\#})_c^{\#} = {}_c ({}_c ({}_c a^{\#})^{\#})^{\#} = {}_c a^{\#} = a_c^{\#}$.

If R is a ring with an involution *, then we have the following lemma.

Lemma 2.15 Let $a, c \in R$. If $a \in R_c^{\#}$, then $a^* \in {}_{c^*}R^{\#}$.

The following theorem shows that if an element a is right c-group invertible, then a^* may be left c-group invertible under some mild conditions.

Theorem 2.16 Let $a, c \in R$ such that $(ca^2)^* = ca^2$. If $a \in R_c^\#$, then $a^* \in {}_cR^\#$.

Proof If $a \in R_c^{\#}$, then by Proposition 2.6, there exist $m, n \in R$ such that $a = a^2mc = nca^2$.

Next, it suffices to show $a^* \in (a^*)^2 cR \cap cR(a^*)^2$ by Corollary 2.7. Since $(ca^2)^* = ca^2$ and $an^* = nca^2n^*$, an^* is symmetrical, thus $(an^*)^* = an^* = na^*$. Then we have

$$a = nca^2 = n(ca^2)^* = na^*a^*c^* = an^*a^*c^* = a(can)^*.$$

This implies that $a^* = cana^*$. Since $a^* = c^*m^*(a^*)^2$, we conclude that $a^* = cana^* = canc^*m^*(a^*)^2 \in cR(a^*)^2$. Furthermore, since $a = nca^2$, we have

$$a^* = (a^*)^2 c^* n^* = a^* a^* c^* n^* = (a^*)^2 a^* c^* n^* c^* n^*$$

$$= (a^*)^2 canc^* m^* (a^*)^2 c^* n^* c^* n^*$$

$$= (a^*)^2 canc^* m^* a^* c^* n^* \in (a^*)^2 cR,$$

proving a^* is left c-group invertible. \square

3. Strongly clean decompositions for right c-group invertible elements

In this section, we study the strongly clean decompositions of right c-group invertible elements. A ring R is abelian if every idempotent element is central. An element a in a ring R is called clean [8] if a = e + u where $e^2 = e$ and $u \in U(R)$, and an element a is strongly clean if a = e + u where $e^2 = e$, $u \in U(R)$ and eu = ue. Note that an element a is strongly regular if and only if there is an idempotent $e \in R$ and $ext{def}(a)$ such that $ext{def}(a)$ such that $ext{def}(a)$ such that $ext{def}(a)$ is zero.

Lemma 3.1 An element $a \in R^{\#}$ if and only if a = ue, ue = eu for some $u \in U(R)$ and idempotent $e = e^2$. In this case, $u = a - 1 + a^{\#}a$.

Proof If $a \in \mathbb{R}^{\#}$, then a is strong regular. By [2, Lemma 3.5], we have a = ue, ue = eu and $u = a - 1 + a^{\#}a$. Conversely, since ue = eu and $u \in U(\mathbb{R})$, we get

$$a = ue = ueueu^{-1} = a^2u^{-1} \in a^2R$$
, $a = u^{-1}eueu = u^{-1}a^2 \in Ra^2$.

This implies that $a \in a^2R \cap Ra^2$. Therefore, $a \in R^{\#}$. \square

The following theorem shows that an element is group invertible if and only if it is both left c-group invertible and right c-group invertible.

Theorem 3.2 Let $a, c \in R$. Then the following statements are equivalent:

- (1) $a \in R_c^\# \cap {}_c R^\#;$
- (2) $a \in R^{\#}$;
- (3) There exist $c \in U(R)$ and $e = e^2$ such that a = ce and ce = ec.

In this case, $c = a - 1 + a^{\#}a$ is unique.

Proof (1) \Rightarrow (2). If $a \in R_c^{\#} \cap {}_cR^{\#}$, then $a \in Rca^2 \subseteq Ra^2$ and $a \in a^2cR \subseteq a^2R$ by Propositon 2.6 and Corollary 2.7. It follows that $a \in Ra^2 \cap a^2R$.

- $(2) \Leftrightarrow (3)$ is clear by Lemma 3.1. Since $a^{\#}$ is unique, c is unique.
- $(3) \Rightarrow (1)$. Since a = ce = ec, we have $Ra \subseteq Rc$ and $aR \subseteq cR$. Combining with $a \in R^{\#}$, we get $a \in R_c^{\#} \cap {}_cR^{\#}$ by Proposition 2.8 and Corollary 2.9. \square

By Proposition 4.4, Lemma 2.15 and Theorem 3.2, we can give the following corollary immediately which shows the equivalence of right c-group invertible elements and group invertible elements.

Corollary 3.3 If R is a ring with involution and $a^* = a$, then $a \in R_{a-1+a^{\#}a}^{\#}$ if and only if $a \in R^{\#}$.

The next result shows the relationship between right c-group invertible elements and strongly clean elements.

Theorem 3.4 Let $a, c \in R$. Then the following statements are equivalent:

- (1) $a \in R_n^{\#}$:
- (2) $a \in R^{\#}$ and there exist $c \in U(R)$ and $f = f^2$ such that a = c + f is a strongly clean element.

In this case, $c = a - 1 + a_c^{\#} ca$.

Proof (1) \Rightarrow (2). Since $a \in R_c^{\#}$, it is clear that $a \in R^{\#}$ and there is $x \in R$ such that xcax = x. It follows that xcaxca = xca. Let e = xca. Then $e^2 = e$ is an idempotent element. Since $a = axca = xca^2$, we have a = ae = ea. Let c = a - 1 + xca. Then c is a unit since

$$(a-1+xca)(xc-1+xca) = (xc-1+xca)(a-1+xca) = 1.$$

Therefore, a = c + 1 - xca = c + 1 - e. Let f = 1 - e. Then $f^2 = f = 1 - e$ is an idempotent element. This implies that a = c + f is a clean element. Since a = ae = ea, we have

$$af = a(1 - e) = a - ae = a - ea = (1 - e)a = fa.$$

It follows that cf = (a - f)f = af - f = fa - f = f(a - f) = fc. Therefore, a = c + f is a strongly clean element.

 $(2) \Rightarrow (1)$. Since a=c+f is a strongly clean element, we get $a^2=a(c+f)=ac+af$. Also since $a\in R^\#$, there is $y\in R$ such that $a=ya^2$. This implies that

$$a = y(ac + af) = yac + yaf = yac + yafc^{-1}c = (ya + yafc^{-1})c \in Rc.$$

By Proposition 2.8, we get $a \in R_c^{\#}$. \square

Corollary 3.5 Let $a, c \in R$. Then the following statements are equivalent:

- (1) $a \in {}_{c}R^{\#}$;
- (2) $a \in \mathbb{R}^{\#}$ and there exist $c \in U(\mathbb{R})$ and $e = e^2$ such that a = c + e is a strongly clean element

In this case, $c = a - 1 + ac_c a^{\#}$ and $c^{-1} = c_c a^{\#} - 1 + ac_c a^{\#}$.

An element $a \in R^{\#}$ if and only if there is $e^2 = e \in R$ and $u \in U(R)$ such that a = e + u, ae = ea and eae = 0. Accordingly, we have the following theorem for $a \in R_c^{\#}$.

Theorem 3.6 Let $a, c \in R$. Then the following statements are equivalent:

- (1) $a \in R_c^{\#};$
- (2) There exist $c \in U(R)$ and $e = e^2$ such that a = e + c, ec = ce and $aR \cap eR = \{0\}$;

(3) There exist $c \in U(R)$ and $e = e^2$ such that a = e + c, ec = ce and ae = ea = 0.

Proof (1) \Rightarrow (3). Let $c = a - 1 + a_c^{\#} ca$ and $e = 1 - a_c^{\#} ca$. By Theorem 3.4, we have $ae = a - aa_c^{\#} ca = a - a_c^{\#} ca^2 = ea = 0, a = e + c, ec = ce$.

(3) \Rightarrow (1). Since there exist $c \in U(R)$ and $e = e^2$ such that a = e + c and ec = ce, a is strongly clean. Also since ea = ae = 0, we get ae = e + ce = e + ec = 0. It follows that

$$a^{2} = (e+c)^{2} = e + 2ec + c^{2} = ec + c^{2} = (e+c)c = ac.$$

Thus, $a=a^2c^{-1}\in a^2R$. Analogously, we get $a=c^{-1}a^2\in Ra^2$. Then $a\in R^\#$. Therefore, $a\in R_c^\#$ by Theorem 3.4 again.

- $(2) \Rightarrow (3)$. Since ae = e + ce = e + ec = ea, we have $ae \in aR \cap eR = \{0\}$. Thus, ae = 0 = ea.
- $(3) \Rightarrow (2)$. Let $x \in aR \cap eR$. Then there exist $s, t \in R$ such that x = as = et. It follows that ex = eas = 0 since ea = 0. Thus, x = et = ex = 0. Then $aR \cap eR = \{0\}$. \square

We conclude this section by showing a particularly nice behaviour of the uniqueness of right c-group inverse on abelian rings.

Proposition 3.7 Let $c \in R$. Then every right c-group invertible element of R has a unique right c-group inverse if and only if R is abelian.

Proof If R is abelian and $a \in R$ is right c-group invertible, then there exist $x, y \in R$ such that a = axca = ayca, xcax = x and yca = ayc with $x \neq y$. Since cax is an idempotent element, it follows that

$$x = xcax = xcaycax = xcaaycx = aycx = ycax = caxy.$$

Moreover, because axc, cax and yca are idempotent elements, we also have

$$y = y cax cay = (ayc)ax cy = (axc)y ayc = y aycaxc$$

= $caxy ayc = caxy(yca) = caxy cay = caxy = x$.

Therefore, every right c-group invertible element has a unique right c-group inverse in an abelian ring.

Conversely, suppose that every right c-group invertible element of R has a unique right c-group inverse. If R is not abelian, then there is $e^2 = e \in R$ such that e is not central. Then $ex \neq xe$ for some $x \in R$, and thus $ex(1-e) \neq 0$. This implies that $e \neq e + ex(1-e)$. Let c = e. Then e is right e-group invertible with a right e-group inverse e. Moreover, we have

$$(e + ex(1 - e))e(e + ex(1 - e)) = e + ex(1 - e),$$

 $e(e + ex(1 - e))e = e = (e + ex(1 - e))e.$

This shows that e + ex(1 - e) is also a right e-group inverse of e, a contradiction. \Box

4. Relationships of various generalized inverses

In this section, we investigate the relationships between right c-group inverses and other various generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual

core inverses, one-sided (b,c)-inverses and (b,c)-inverses. Some work has already been done in this topic (for example, see [3]). We start with the following result which shows that $a \in R^\# \cap R^\dagger$ implies $a \in R^\#_{aa^\#} \cap {}_{aa^\#}R^\#$ under some conditions.

Theorem 4.1 Let $a \in R$. Then the following statements are equivalent:

- (1) $a \in R^{\#} \cap R^{\dagger}$;
- (2) There exist $x, y \in R$ such that x is a right $aa^{\#}$ -group inverse of a, y is a left $aa^{\#}$ -group inverse of a and ax, ya are projections.

Proof (1) \Rightarrow (2). If $a \in R^{\#} \cap R^{\dagger}$, then $a^{\#}$ and a^{\dagger} exist. Let $x = a^{\#}aa^{\dagger}$. Then we have

$$xaa^{\#}ax = a^{\#}aa^{\dagger}aa^{\#}aa^{\#}aa^{\dagger} = a^{\#}aa^{\dagger} = x,$$

$$axaa^{\#}a = aa^{\#}aa^{\dagger}aa^{\#}a = a, \quad xaa^{\#}a = a^{\#}aa^{\dagger}aa^{\#}a = a^{\#}a,$$

$$axaa^{\#} = aa^{\#}aa^{\dagger}aa^{\#} = aa^{\#} = a^{\#}a.$$

This implies that x is a right $aa^{\#}$ -group inverse of a. Since $ax = aa^{\#}aa^{\dagger} = aa^{\dagger}$ and $axax = aa^{\dagger}aa^{\dagger} = aa^{\dagger} = ax$, it follows that ax is a projection. Similarly, if we let $y = a^{\dagger}aa^{\#}$, then

$$aaa^{\#}ya = aaa^{\#}a^{\dagger}aa^{\#}a = a, \ yaaa^{\#}y = y, \ aa^{\#}ya = aaa^{\#}y.$$

This shows that y is a left $aa^{\#}$ -group inverse of a. Since $ya = a^{\dagger}aa^{\#}a = a^{\dagger}a$ and yaya = ya, ya is also a projection.

 $(2) \Rightarrow (1)$. If x is a right $aa^{\#}$ -group inverse of a, then $a = axaa^{\#}a = axa$. Also, if y is a left $aa^{\#}$ -group inverse of a, then $a = aaa^{\#}ya = aya$. Combining with $(ax)^* = ax$ and $(ya)^* = ya$, we have $a \in R^{\dagger}$ by [9, Lemma 2.18]. Therefore, $a \in R^{\#} \cap R^{\dagger}$. \square

Proposition 4.2 If $a \in R^{\dagger}$, then the following statements are equivalent:

- (1) $a \in R^{EP}$;
- (2) There is $x \in R$ such that x is a right aa^{\dagger} -group inverse of a with xa = ax.

Proof (1) \Rightarrow (2). Since $a \in R^{EP}$, $aa^{\dagger} = a^{\dagger}a$. Let $x = a^{\dagger}$. Then we have xa = ax and

$$xaa^{\dagger}ax = a^{\dagger}aa^{\dagger} = a^{\dagger} = x$$
, $axaa^{\dagger}a = a$,

$$xaa^{\dagger}a = xa = a^{\dagger}a = aa^{\dagger} = axaa^{\dagger}$$
.

Therefore, we deduce that x is a right aa^{\dagger} -group inverse of a.

 $(2) \Rightarrow (1)$. If x is a right aa^{\dagger} -group inverse of a such that ax = xa, then we have

$$axaa^{\dagger} = xaa^{\dagger}a = xa, \ a = ax(aa^{\dagger})a = axa, \ xaa^{\dagger}ax = xax = x.$$

This implies that x is the group inverse of a and $xa=aa^{\dagger}$. Therefore, $a^{\#}a=aa^{\dagger}$, that is, $a\in R^{EP}$. \square

Corollary 4.3 Let $a \in R$. If $a \in R^{\#}_{aa^{\dagger}} \cap_{aa^{\dagger}} R^{\#}$ such that $a^{\#}_{aa^{\dagger}} = {}_{aa^{\dagger}} a^{\#}$, then a is an EP element.

Proof Since $a_{aa^{\dagger}}^{\#} = {}_{aa^{\dagger}}a^{\#}$, there exists $x \in R$ such that $x = a_{aa^{\dagger}}^{\#} = {}_{aa^{\dagger}}a^{\#}$. Then we have

$$a = axaa^{\dagger}a = axa, \quad x = xaa^{\dagger}ax = xax,$$

$$axaa^{\dagger} = xaa^{\dagger}a = xa$$
, $aa^{\dagger}xa = aaa^{\dagger}x = a^2a^{\dagger}x$.

It follows that $xa = axaa^{\dagger} = aa^{\dagger}$, thus $a^2a^{\dagger} = axa = a$ and $aa^{\dagger}xa = aa^{\dagger}$. Then $a^2a^{\dagger}x = ax = aa^{\dagger}$. Hence, $ax = aa^{\dagger} = xa$. It follows that a is an EP element by Proposition 4.2. \square

If $a^* = a$, then the next proposition shows that a being right c-group invertible implies the EP property of a.

Proposition 4.4 If $a = a^*$, then a is EP if and only if there is $c \in R$ such that a is right c-group invertible. In this case, $c = aa^{\#} = aa^{\#} = aa^{\#} = aa_{\#}$.

Proof If a is EP, then a is right aa^{\dagger} -group invertible by Proposition 4.2. Let $c = aa^{\#} = aa^{\dagger} = aa^{\#} = aa^{\#} = aa_{\#} = aa_{\#} \in R$. Then a is right c-group invertible. Conversely, if a is right c-group invertible, then there is $x \in R$ such that axc = xca and xcax = x. Since $a^* = a$, we have $(axc)^* = (xc)^*a = (xca)^* = a(xc)^*$. It follows that $[a(xc)^*xc]^* = a(xc)^*xc = (xc)^*xca$. Since $a = axca = xca^2$, we have $a(xc)^*xca = (xc)^*xca^2 = (xc)^*a$. Then $[(xc)^*a]^* = (xc)^*a = axc = xca$. Therefore, we have $(xc)^*a(xc) = xcaxc = xc$. Thus $(xc)^* = xc$. Let z = xc. Then we have

$$(za)^* = (xca)^* = axc = xca = za, \quad (az)^* = (axc)^* = xca = axc = az,$$

 $aza = a, \quad zaz = z.$

Therefore, $z=a^{\dagger}$. Moreover, it is clear that xc is the group inverse of a. Then $a \in R^{\#} \cap R^{\dagger}$ and $xc=a^{\#}=a^{\dagger}$, that is, a is EP. \square

Corollary 4.5 Let $a \in R$ such that $a = a^*$. Then a is EP if and only if there is $c \in R$ such that a is left c-group invertible. In this case, $c = aa^\# = aa^\# = aa_\#$.

Proposition 4.4 together with Corollary 4.5 implies the following corollary valid in the rings with an involution.

Corollary 4.6 Let $a \in R$ such that $a = a^*$. Then there is $c \in R$ such that $a \in R_c^{\#}$ if and only if $a \in {}_cR^{\#}$.

When $a^* = a$ and $c = aa^{\dagger}$, we next show that $a \in R^{EP}$ is equivalent to $a \in R_c^{\#} \cap {}_c R^{\#}$.

Proposition 4.7 If $a^* = a$, then a is an EP element if and only if $a \in R_{aa^{\dagger}}^{\#} \cap_{aa^{\dagger}} R^{\#}$. In this case, a^{\dagger} is both a left aa^{\dagger} -group inverse of a and a right aa^{\dagger} -group inverse of a.

Proof If $a \in R^{EP}$, then a is right aa^{\dagger} -group invertible by Proposition 4.2. Let x be a right aa^{\dagger} -group inverse of a. Then we have

$$axaa^{\dagger}a=axa=a, \quad xaa^{\dagger}ax=xax=x,$$

$$xaa^{\dagger}a=xa=axaa^{\dagger}.$$

Hence $xa=aa^{\dagger}$ and $a=xa^2$. Since $a^*=a$ and $a\in R^\#_{aa^{\dagger}}$, we conclude that a is left aa^{\dagger} -group invertible by Lemma 2.15. Suppose that $y\in R$ is a left aa^{\dagger} -group inverse of a. Then $a=aaa^{\dagger}ya$ and $aa^{\dagger}ya=aaa^{\dagger}y=ay$ since a is an EP element. Thus $a=a^2y$. This implies that $a=a^2y=a^2(aa^{\dagger})y=(aa^{\dagger})xa^2$. By Corollary 2.7, we get $xay=xaa^{\dagger}xa=aa^{\dagger}a^{\dagger}aa^{\dagger}=a^{\dagger}$.

Therefore, a^{\dagger} is a left aa^{\dagger} -group inverse of a. Also since

$$a = a^2 y = a^2 y (aa^{\dagger}) = xa^2 = x(aa^{\dagger})a^2,$$

we have xay is also a right aa^{\dagger} -group inverse of a by Proposition 2.6. This implies that $a \in R^{\#}_{aa^{\dagger}} \cap_{aa^{\dagger}} R^{\#}$ and a^{\dagger} is both a left aa^{\dagger} -group inverse of a and a right aa^{\dagger} -group inverse of a. Conversely, since $a \in R^{\#}_{aa^{\dagger}} \cap_{aa^{\dagger}} R^{\#}$, a is an EP element by Proposition 4.4 and Corollary 4.5. \square

We need the following lemma, which is closely related to EP elements and has been investigated in [3, Theorem 3.1].

Lemma 4.8 Let $a \in R^{\#} \cap R^{\dagger}$. Then:

- (1) a is EP if and only if $a^{\#} = a^{\dagger} = a^{\#} = a_{\#}$;
- (2) a is EP if and only if $aa^{\#} = aa^{\dagger} = aa^{\#} = aa_{\#}$.

If $c=aa^{\dagger}$, then the following theorem not only gives a new characterization of EP elements, but also reveals the relations between $a^{\#}$, a^{\dagger} , a^{\oplus} , $a_{\oplus}^{\#}$, $a_{c}^{\#}$, $ca^{\#}$ and EP elements.

Theorem 4.9 Let $a \in R^{\dagger}$ and $a^* = a$. Then the following statements are equivalent:

- (1) $a \in R^{EP}$;
- (2) $a \in R^{\#} \cap_{aa^{\dagger}} R^{\#}$ and $a^{\#}$ is a left aa^{\dagger} -group inverse of a;
- (3) $a \in R^{\#} \cap R^{\#}_{aa^{\dagger}}$ and $a^{\#}$ is a right aa^{\dagger} -group inverse of a;
- (4) $a \in R^{\oplus} \cap_{aa^{\dagger}} R^{\#}$ and a^{\oplus} is a left aa^{\dagger} -group inverse of a;
- (5) $a \in R_{\oplus} \cap R_{aa^{\dagger}}^{\#}$ and a_{\oplus} is a right aa^{\dagger} -group inverse of a;
- (6) $a \in R^{\#} \cap R^{\dagger}$ and a^{\dagger} is a left aa^{\dagger} -group inverse of a;
- (7) $a \in R^{\#} \cap R^{\dagger}$ and a^{\dagger} is a right aa^{\dagger} -group inverse of a;
- (8) $a \in R^{\#} \cap R^{\dagger}$ and $a \in R^{\#}_{aa^{\dagger}} \cap_{aa^{\dagger}} R^{\#}$.

Proof $(1) \Leftrightarrow (8)$ is clear by Proposition 4.7.

- (1) \Rightarrow (2)-(7). Since $a \in R^{EP}$, a^{\dagger} is both a left aa^{\dagger} -group inverse of a and a right aa^{\dagger} -group inverse of a by Proposition 4.7. By Lemma 4.8, we get $a^{\dagger} = a^{\oplus} = a_{\oplus} = a^{\#}$. The other implications are clear by Proposition 4.7 and [3, Theorem 3.1].
- $(7) \Rightarrow (1)$. Since a^{\dagger} is a right aa^{\dagger} -group inverse of a, $a^{\dagger}aa^{\dagger} = a^{\dagger}$ is the group inverse of a, we deduce that $a^{\dagger} = a^{\#}$. Hence $a \in R^{EP}$.
- (6) \Rightarrow (1). Since a^{\dagger} is a left aa^{\dagger} -group inverse of a, $aa^{\dagger}a^{\dagger}$ is the group inverse of a. Thus $aa^{\dagger}a^{\dagger}=a^{\#}$. It follows that $(a^{\#})^*=(a^{\dagger})^*aa^{\dagger}$, thus $(a^{\#})^*a=(a^{\dagger})^*a$. Since $a^*=a$, we get $aa^{\#}=aa^{\dagger}$. By Lemma 4.8, we get $a\in R^{EP}$.
- $(5) \Rightarrow (1)$. Since $a \in R_{aa^{\dagger}}^{\#}$, a is group invertible. Combining with $a \in R^{\dagger}$, we have $a \in R^{\#} \cap R^{\dagger}$. If a_{\oplus} is a right aa^{\dagger} -group inverse of a, then $a_{\oplus}aa^{\dagger} = a^{\#}$. Therefore, $aa^{\dagger} = aa^{\#}$, that is, $a \in R^{EP}$.
- $(4)\Rightarrow (1)$. If a^{\oplus} is a left aa^{\dagger} -group inverse of a, then $aa^{\dagger}a^{\oplus}=a^{\#}$. Since $a^{*}=a$, we deduce that $(aa^{\#})^{*}=[a(aa^{\dagger})a^{\oplus}]^{*}=(a^{\oplus})^{*}aa^{\dagger}a=(a^{\oplus})^{*}a=(aa^{\oplus})^{*}$. Thus $aa^{\#}=aa^{\oplus}$, that is, $a\in R^{EP}$ by Lemma 4.8.

- (3) \Rightarrow (1). If $a^{\#}$ is a right aa^{\dagger} -group inverse of a, then $a^{\#}aa^{\dagger}=a^{\#}$. It follows that $aa^{\#}=aa^{\dagger}$, thus $a\in R^{EP}$.
- (2) \Rightarrow (1). If $a^{\#}$ is a left aa^{\dagger} -group inverse of a, then $aa^{\dagger}a^{\#} = a^{\#} = (aa^{\dagger})^*a^{\#} = (a^{\dagger})^*aa^{\#}$. Therefore, $aa^{\#} = a^{\#}a = (a^{\dagger})^*a = aa^{\dagger}$ since $a^* = a$, that is, $a \in R^{EP}$. \square

Now, we study the relationship between right c-group inverses and one-sided (b, c)-inverses.

Proposition 4.10 Let $a, c \in R$ such that $a = a^*$. Then a is right c-group invertible if and only if a is left (a, c)-invertible and $Ra \subseteq Rc$.

Proof Since a is right c-group invertible, there is $y \in R$ such that $a = a^2yc \in Rc$ and $a = yca^2 \in Rca^2$. This implies that a is left (a,c)-invertible. Conversely, if a is left (a,c)-invertible, then there is $x \in R$ such that $a = xca^2 \in Ra^2$. It follows that $a = a^2(xc)^* \in a^2R$ since $a^* = a$. Therefore, $a \in Ra^2 \cap a^2R$, that is, $a \in R^\#$. Since $Ra \subseteq Rc$, a is right c-group invertible by Proposition 2.8. \square

Corollary 4.11 Let $a, c \in R$ such that $a = a^*$. Then a is left c-group invertible if and only if a is right (c, a)-invertible and $aR \subseteq cR$.

In particular, we have the following corollary which is related to (b, c)-inverses.

Corollary 4.12 If $a \in R$ such that $a = a^*$, then the following statements are equivalent:

- (1) a is right (resp., left) a-group invertible;
- (2) a is (a, a)-invertible;
- (3) $a \in R^{\#}$.

Over a directly finite ring R, the following proposition shows that 1 may be the unique right c-group inverse of a for some $a, c \in R$.

Proposition 4.13 Let $a, c \in R$. Then the following statements are equivalent:

- (1) R is a directly finite ring;
- (2) If ac = 1, then 1 is the unique right c-group inverse of a;

Proof $(1) \Rightarrow (2)$. If ac = 1, then ca = 1 since R is directly finite. Therefore, we have

$$a = a(ca)ca$$
, $ca = cacaca$, $caca = acac = 1$.

This implies that ca=1 is a right c-group inverse of a. Let any $x \in R$ such that x is a right c-group inverse of a. Then we have a=axca=ax. Since ac=ca=1, we have $a \in U(R)$. It follows that x=1, and thus 1 is the unique right c-group inverse of a.

(2) \Rightarrow (1). It suffices to show ca=1. In fact, since 1 is the unique right c-group inverse of a, we have ca=(1c)a=a(1c)=ac=1, as desired. \square

We conclude this section by giving a new characterization of directly finite rings.

Theorem 4.14 Let $a, c \in R$. Then the following statements are equivalent:

- (1) R is a directly finite ring;
- (2) If ac = 1, then $a_c^{\#} = c_a^{\#}$.

- **Proof** (1) \Rightarrow (2). If R is a directly finite ring and ac=1, then 1 is the unique right c-group inverse of a by Proposition 4.13. Moreover, since ca=ac=1, 1 is also the unique right a-group inverse of c again by Proposition 4.13. Therefore, we have $a_c^\#=c_a^\#=1$.
- $(2)\Rightarrow (1)$. Let $x\in R$ be a right c-group inverse of a. Since $a_c^\#=c_a^\#$ and ac=1, we have axc=xca, cxa=x. Therefore, we get cxac=cx=xc. Then axca=acxa=xa=a, and hence xac=ac=1. This implies that ca=cxa=xac=1. \square

References

- [1] M. P. DRAZIN. Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly, 1958, 65(7): 506–514.
- [2] Cang WU, Liang ZHAO. Central drazin inverses. J. Algebra Appl., 2019, 18(4): 1950065.
- [3] D. S. RAKIĆ, N. Č. DINČIĆ, et al. Group, moore-penrose, core and dual core inverse in rings with involution. Linear Algebra Appl., 2014, 463: 115–133.
- [4] M. P. DRAZIN. A class of outer generalized inverses. Linear Algebra Appl., 2012, 436(7): 1909–1923.
- [5] J. J. KOLIHA, D. DJORDJEVIĆ, D. CVETKOVIĆ. Moore-penrose inverse in rings with involution. Linear Algebra Appl., 2007, 426(2-3): 371–381.
- [6] M. P. DRAZIN. Left and right generalized inverses. Linear Algebra Appl., 2016, 510: 64–78.
- [7] Ruju ZHAO, Hua YAO, Long WANG, et al. Some characterizations of right c-regularity and (b, c)-inverse. Turkish J. Math., 2018, 42(6): 3078–3089.
- [8] W. K. NICHOLSON. Strongly clean rings and fitting's lemma. Comm. Algebra, 1999, 27(8): 3583–3592.
- [9] Huihui ZHU, Jianlong CHEN, P. PATRÍCIO. Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra, 2015, 64(3): 393–403.