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Abstract Let H be a subgroup of a finite group G and p a prime divisor dividing the order of

G. We say H is cp-supplemented in G if there exists a supplement T to H in G containing HG

such that H ∩ T/HG is a p′-group, where HG is the core of H in G. A CSp-group is a group in

which every p-subgroup is cp-supplemented. In this paper, we characterize the p-solvability and p-

supersolvability of groups G with some certain p-subgroups being cp-supplemented. Furthermore,

we give some equivalent conditions of CSp-group in p-solvable universe. Finally, we give some

criteria of CSp-groups for the direct product of two CSp-groups. Our results extend some recent

conclusions.
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1. Introduction

In this paper, all groups are assumed to be finite. The symbol G always means a group. For

convenience, we denote by |G| the order of group G, π(G) the set of prime divisors dividing |G|

and Exp(G) the exponent of G. For some fixed p ∈ π(G), Gp stands for the Sylow p-subgroup

of G meanwhile Gp′ stands for the Hall p′-subgroup of G. Further, we denote by Sylp(G) the set

of all Sylow p-subgroups of G. Other unspecified notions and natation are standard as in [1, 2].

As a generalization of normality, a subgroup H of G is called a c-normal subgroup of G if

G = HT and H ∩T ≤ HG (see [3]), where T is a normal subgroup of G and HG is the core of H

in G. There are many extensions of c-normality, a subgroup H is called c-supplemented in G if

G = HT and H ∩T ≤ HG for which T is a subgroup of G and HG is the core of H in G (see [4]).

Following Li et al.[5], G is called a CN -group if all of whose subgroups are c-normal. In [4], G

is called a c-supplemented group if all of whose subgroups are c-supplemented. Recently, many

results involving the structure of a CN -group or c-supplemented group are investigated [5–7].

On the other hand, the authors in [8] extended the c-normality from a quantitative aspect:

a subgroup H is said to be cp-normal in G if there exists a normal supplement T to H in G

such that HG ≤ T and H ∩ T/HG is a p′-group, where p ∈ π(G). G is called a CNp-group
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if all of whose p-subgroups are cp-normal. Following this idea, we can extend the concepts of

c-supplemented subgroup and CNp-group:

Definition 1.1 Let p ∈ π(G) be a fixed prime and let H be a subgroup of G.

(1) H is said to be cp-supplemented in G if G = HT and H ∩ T/HG is a p′-group, where

HG ≤ T ≤ G. We also call T the cp-supplement to H in G;

(2) G is said to be a CSp-group if all of whose p-subgroups are cp-supplemented in G.

Obviously, a c-supplemented subgroup or a cp-normal subgroup is cp-supplemented and a

CNp-group or a c-supplemented group is a CSp-group, but the converse is not true in general,

see Examples 1.2–1.4.

Example 1.2 Let G = A5 = 〈(1, 2, 3), (1, 2, 4), (1, 2, 5)〉 and H = 〈(1, 2)(3, 4), (2, 3)(4, 5)〉 ∼=

D10. Then HG = 1 and H has proper supplemented subgroups Ti (i = 1, 2, 3, 4, 5) in G,

where T1 = 〈(3, 4, 5), (2, 4)(3, 5)〉, T2 = 〈(1, 4, 5), (1, 4)(3, 5)〉, T3 = 〈(2, 3, 4), (1, 3)(2, 4)〉, T4 =

〈(1, 2, 3), (1, 3)(2, 5)〉, T5 = 〈(1, 2, 5), (1, 4)(2, 5)〉. Note that H ∩ Ti
∼= C2 (i = 1, 2, 3, 4, 5), so H

is c5-supplemented in G but H is neither c-supplemented nor c5-normal in G.

Example 1.3 Let G = S4, the symmetric group of degree 4. It is well known that every

element in Syl2(G) and Syl3(G) is not normal in G. Let p = 3. Clearly, G is a CS3-group. Let

H ∈ Syl3(G). Assume that H is c-normal in G. Then there is a T ∈ Syl2(G) and T � G such

that G = HT and H ∩ T = 1. The contradiction indicates that G is not a CN3-group.

Example 1.4 Let G = A4, the alternating group of degree 4. Let p = 3. Then every 3-subgroup

of G is c-supplemented, so G is a CS3-group. Let C2
∼= H ≤ G. Then H is not c-supplemented

in G since G has no subgroup of order 6. So G is not a c-supplemented group.

Remark 1.5 In [8], the authors obtained some results about p-solvable groups under the

assumption of some maximal subgroups being cp-normal, for example, a group G is p-solvable if

and only if in which every maximal subgroup of G is cp-normal in G (see [8, Corollary 3.3]). But

the following two simple groups indicate we cannot weaken the condition to cp-supplemented

subgroup.

Example 1.6 (1) Let G = A5 be the alternating group of degree 5. Clearly, every subgroup of

G is c5-supplemented in G.

(2) Let G = PSL(3, 2) be the simple group of order 168. Note that all maximal subgroups

of G are complemented. Then they are c2-supplemented in G.

In Section 2, we first give some elementary properties of cp-supplemented subgroup and then

some preliminary results we need. In Section 3, we first discuss the structure of G with some

minimal subgroups cp-supplemented (or, c-supplemented), then characterize the structure of

CSp-groups and give some criteria for a group to be a CSp-group. Many of our results may be

regarded as the generalizations of results in [5, 7, 8] in p-solvable universe.
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2. Preliminaries

In this section, we give some basic results which are essential in the sequel.

Lemma 2.1 Let G be a group and p ∈ π(G) be a fixed prime. Let N,H,K be subgroups of G.

(1) If H ≤ K and H is cp-supplemented in G, then H is cp-supplemented in K.

(2) Assume that N is normal in G and N ≤ H . Then H is cp-supplemented in G if and only

if H/N is cp-supplemented in G/N .

(3) If H is a c-supplemented subgroup of G, then H is cq-supplemented in G for every

q ∈ π(G).

(4) If H is a p-group, then H is c-supplemented in G if and only if H is cp-supplemented in

G.

(5) Assume that N is a normal p′-subgroup of G and H is a cp-supplemented p-subgroup of

G. Then HN/N is cp-supplemented in G/N .

(6) Let P ∈ Sylp(G). Then P is complemented in G if and only if P is cp-supplemented in

G.

(7) Let M ≤ G and H ≤ Φ(M). If H is a cp-supplemented p-subgroup of G, then H � G

and H ≤ Φ(G).

Proof (1) Assume that H is cp-supplemented in G and T is a cp-supplement to H in G. Then

H ∩ T/HG is a p′-group. Note that K = H(T ∩K). Now we have

K = HHK(T ∩K) = H(HKT ∩K) = H(T0 ∩K),

where T0 = HKT . Furthermore, HK ≤ T0 ∩ K and H ∩ (T0 ∩ K)/HK = (HKT ∩ H)/HK =

(H ∩ T )HK/HK
∼= (H ∩ T )/(HK ∩ T ). Since HG ≤ K and HG ∩ T ≤ HK ∩ T , it follows that

HG = HG∩T �HK ∩T . So (H ∩T )/(HK ∩T ) ≤ (H ∩T )/(HG∩T ) = (H ∩T )/HG is a p′-group.

Therefore, H ∩ (K ∩ T0)/HK is a p′-group, that is, H is cp-supplemented in K.

(2) Assume first that H is cp-supplemented in G and T is a cp-supplement to H in G.

Then H ∩ T/HG is a p′-group. Note that G/N = H/N · T/N and (H/N ∩ T/N)/(H/N)(G/N) =

((H ∩T )/N)/(HG/N) ∼= (H ∩T )/HG is a p′-group. Therefore, H/N is cp-supplemented in G/N .

Conversely, let (H/N)G/N ≤ T/N ≤ G/N such that G/N = H/N · T/N and ((H/N) ∩

(T/N))/(H/N)(G/N) is a p′-group. Then G = HT and HG ≤ T . Since

((H/N) ∩ (T/N))/(H/N)G/N = ((H ∩ T )/N)/(HG/N) ∼= H ∩ T/HG,

H ∩ T/HG is a p′-group. Hence H is cp-supplemented in G.

(3) Assume that H is c-supplemented in G. There then exists a supplement T to H in G

such that H ∩ T ≤ HG. Denote T0 = THG, then G = HT0 and HG ≤ T0. Note that

H ∩ T0/HG = H ∩HGT/HG = (H ∩ T )HG/HG = 1,

so H is cq-supplemented in G for any q ∈ π(G).

(4) If H is c-supplemented in G, then H is cp-supplemented in G by (3). Now assume that

H is cp-supplemented in G. Then there exists a subgroup HG ≤ T such that G = HT and
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H ∩ T/HG is a p′-group, so H ∩ T = HG since H is a p-group. We have H is c-supplemented in

G.

(5) It follows from (4) and [4, Lemma 2.1(3)].

(6) If P is complemented in G, then P is c-supplemented in G. So P is cp-supplemented in

G by (4). Now if P is cp-supplemented in G, then we have a subgroup PG ≤ T of G such that

G = PT and P ∩ T/PG is a p′-group. So P ∩ T = PG. Note that

|G : P | = |PT : P | = |T : P ∩ T | = |T : PG|,

thus PG ∈ Sylp(T ). Now by Schur-Zassenhaus Theorem, T = PGTp′ . So G = PT = PPGTp′ =

PTp′ , P is complemented in G.

(7) It follows from [4, Lemma 2.1(4)] and (4). 2

Lemma 2.2 ([9, Lemma 2.6], [10, Lemma 2.9]) Let G be a group and let P ∈ Sylp(G), where

p = minπ(G). Then G is p-nilpotent if every cyclic subgroup of P of order p and 4 (if p = 2) is

c-supplemented in G.

Lemma 2.3 ([1]) Let p ∈ π(G). Then G is p-nilpotent if each element of G of order p lies in

Z(G) and in addition, each element of G of order 4 still lies in Z(G) when p = 2.

As a special case of [11, Lemma 2.4], we have

Lemma 2.4 Let N be a minimal normal p-subgroup of a group G. Then |N | = p if N has a

subgroup H such that |H | = p and H is c-supplemented in G.

Lemma 2.5 ([7, Corollary 3.1]) Assume that P is a c-supplemented 2-group. Then |P :

CP (Φ(P ))| ≤ 2.

Lemma 2.6 ([7, Theorem 3.5]) Let G be a c-supplemented p-group and a ∈ G. If p > 2, then

ga = g for any g ∈ Φ(G). If p = 2, then either ga = g for any g ∈ Φ(G) or ga = g−1 for any

g ∈ Φ(G).

Recall that G is a p-complemented group if every p-subgroup of G is complemented [8].

Lemma 2.7 ([8, Lemma 2.8]) Assume that G is a p-solvable group for some prime p ∈ π(G).

Then G is a p-complemented group if and only if G is p-supersolvable and every Sylow p-subgroup

of G is elementary abelian.

Lemma 2.8 Let G be a p-solvable group. Then G has a Hall p′-subgroup, say Gp′ . In addition,

if Gp′ is solvable, then G is solvable.

Proof Since G is p-solvable, then G is p-separable. Hence G is p′-separable. By [2, Theorem

3.5], G possesses a Hall p′-subgroup Gp′ .

Note that every chief factor of G is either an elementary abelian p-group or a p′-group. If

Gp′ is solvable, then every non-p-chief factor of G is an elementary abelian q-group for some

q ∈ π(G). So G is solvable. 2
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3. Main results

In the literature, people usually assume that p = minπ(G) to obtain the p-nilpotence or

p-solvability of G, here we extend this discussion to the second minimal prime in π(G).

Theorem 3.1 Let G be a group and π(G) = {p1, p2, . . . , pn} with pn > · · · > p2 > p1. If every

subgroup of G of order p and 4 (if p = 2) is cp-supplemented (c-supplemented) in G, then G is

p-solvable, where p ∈ {p1, p2}.

Proof If p = p1, by Lemma 2.2, obviously, G is p-solvable. Henceforth we may assume that

p = p2 is odd. Let K < G. If p1 6∈ π(K) or p1 ∈ π(K) and p 6∈ π(K), obviously, K is p-solvable.

If {p1, p} ⊆ π(K), then by Lemma 2.1, K satisfies our hypothesis. Hence K is p-solvable by

induction. Therefore, we may suppose that G is a non-p-solvable group all of whose proper

subgroups are p-solvable. Pick H ≤ G and |H | = p. By hypothesis, H is either normal in G

or complemented in G. Assume that G has a complemented subgroup H with order p. Then

G = HT and H ∩ T = 1 for some T ≤ G. So |G : T | = p and G/TG . Sp. Thus G/TG is

solvable since |G/TG| = pα1 p
β
2 for which α, β are nonnegative integers. If TG > 1, then TG is

p-solvable. It follows that G is p-solvable, a contradiction. If TG = 1, obviously, G is p-solvable,

a contradiction again. This implies that every subgroup of G of order p is normal in G. Now

assume that G has a subgroup H of order prime p such that H � Z(G). Then CG(H) < G and

G/CG(H) is solvable. It follows that G is p-solvable, a contradiction. Therefore, we may assume

that Z(G) contains every subgroup of G of order p. By Lemma 2.3, G is p-nilpotent, contrary

to the choice of G. 2

Theorem 3.2 Let G be a group and π(G) = {p1, p2, . . . , pn} with pn > · · · > p2 > p1.

Assume that G is a CSp-group for which p = min(π(G) \ {r}). Then G is p-supersolvable and

Φ(G)p = Φ(Gp).

Proof Clearly, G is a p-solvable group by Theorem 3.1. Let N be a minimal normal subgroup

of G. We have N is either an elementary abelian p-group or a p′-group. It follows from Lemma

2.1 that G/N inherits our conditions, therefore, G/N is p-supersolvable. Hence we may assume

N is unique and N is an elementary abelian p-group. Let x ∈ N and |x| = p. By hypothesis,

H = 〈x〉 is c-supplemented in G. Then |N | = p by Lemma 2.4. Thus G is p-supersolvable.

We now prove that Φ(G)p = Φ(Gp). SinceG is p-solvable, we can writeG = GpGp′ by Lemma

2.8. We first claim that Φ(G)p ≤ Φ(Gp). If Φ(G)p � Φ(Gp), note that Φ(G)p ≤ Gp, there then

exists a subgroup T⋖Gp such that Gp = Φ(G)pT . Hence G = GpGp′ = Φ(G)pTGp′ = TGp′ < G,

a contradiction. We now prove that Φ(Gp) ≤ Φ(G)p. Let M = Gp and H = Φ(Gp) in Lemma

2.1. Then Φ(Gp) ≤ Φ(G) since G is a CSp-group. Hence, Φ(Gp) ≤ Φ(G)p. 2

Corollary 3.3 Let G be a group and π(G) = {p1, p2, . . . , pn} with pn > · · · > p2 > p1. Assume

that there exists a subgroup M ⋖ G such that |G : M | = p and every p-subgroup of M is c-

supplemented in G, where p ∈ {p1, p2}. Then G is p-supersolvable.
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Proof Clearly, M is a CSp-group by Lemma 2.1. By Theorem 3.2, M is p-supersolvable. So

G is p-solvable since G/MG . Sp, where p ∈ {p1, p2}. Let N be a minimal normal subgroup of

G. Then N is either an elementary abelian p-group or a p′-group. Assume that N ≤ M . Then

G/N inherits our conditions by Lemma 2.1. Hence G/N is p-supersolvable by induction on the

order of G. If p 6∈ π(N), obviously, G is p-supersolvable. If p ∈ π(N), then N is an elementary

abelian p-group. By Lemma 2.4, we have that |N | = p. So G is p-supersolvable. Assume now

that N � M . Then G = MN and |N | = p since |G : M | = p. So G is p-supersolvable since

G/N ∼= M is p-supersolvable. 2

Now we give some characterizations of CSp-groups, the following theorem is a local vision of

[4, Theorem 3.3].

Theorem 3.4 The following statements are pairwise equivalent for a p-solvable group G.

(1) G is a CSp-group;

(2) Every p-subgroup of G is c-supplemented in G;

(3) G is p-supersolvable. Let M ≤ G and L ≤ Φ(M) be a p-subgroup of G. Then L � G

and L ≤ Φ(G);

(4) G is p-supersolvable, every element in Sylp(G/Φ(G)) is elementary abelian and every

p-subgroup of Φ(G) is normal in G;

(5) G/Φ(G) is a p-complemented group in which every p-subgroup of Φ(G) is normal in G.

Proof (1)⇔(2). It is obvious.

(2)⇒(3). The proof of p-supersolvability is similar to Theorem 3.2. Furthermore, if L ≤

Φ(M) ≤ G, then by Lemma 2.1, L � G and L ≤ Φ(G).

(3)⇒(4). By hypotheses every p-subgroup of Φ(G) is normal in G. Since Φ(P ) ≤ Φ(G), we

have PΦ(G)/Φ(G) is elementary abelian.

(4)⇒(5). It follows from Lemma 2.7.

(5)⇒(1). Let H ≤ G be a p-subgroup. Then G/Φ(G) = HΦ(G)/Φ(G) · T/Φ(G) and

HΦ(G)/Φ(G) ∩ T/Φ(G) = 1̄ since G/Φ(G) is p-complemented. So G = HT and H ∩ T ≤ Φ(G).

By hypothesis, H ∩ T ≤ HG. Denote K = HGT , then G = HK and H ∩K = HG. Hence, G is

a CSp-group. 2

Corollary 3.5 Let G be a group. Then the following statements are pairwise equivalent.

(1) G is a CSp-group for any p ∈ π(G);

(2) G is a group whose every p-subgroup is c-supplemented for every p ∈ π(G);

(3) G is a group whose every cyclic p-subgroup is c-supplemented in G for every p ∈ π(G);

(4) G is supersolvable. Let L ≤ Φ(G) ≤ G. Then L � G;

(5) G is supersolvable, every subgroup of Φ(G) is normal in G and every element of

Sylp(G/Φ(G)) is elementary abelian for every p ∈ π(G);

(6) G/Φ(G) is p-complemented in which every subgroup of Φ(G) is normal in G for every

p ∈ π(G).

Proof The proofs of (4) ⇒ (5) ⇒ (6) ⇒ (1) ⇒ (2) ⇒ (3) follow from Theorem 3.4. Applying
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the similar arguments as in [11, Theorem 2.8], we have (3) ⇒ (4). 2

Denote by GEπ the smallest normal subgroup N of G such that every Sylow p-subgroup of

G/N is elementary abelian, where p ∈ π. In particular, if π = {p} for some p ∈ π(G), we denote

GE{p} = GEp .

Theorem 3.6 The following statements are pairwise equivalent for a nilpotent group G.

(1) G is a CSp-group;

(2) Gp is a c-supplemented group;

(3) c-supplemented property is a transitive relationship in Gp;

(4) Every subgroup of Φ(Gp) is normal in Gp;

(5) Every subgroup of G
Ep

p is normal in Gp.

Proof (1) ⇔ (2). Assume that G is a CSp-group. Clearly, by Lemma 2.1, Gp is a c-supplemented

group. Conversely, assume that Gp is a c-supplemented group. Let H be any p-subgroup of G.

Then H ≤ Gp. By hypothesis, there exists a subgroup HGp
≤ T ≤ Gp such that Gp = HT and

H∩T = HGp
. DenoteK = Gp′T , then G = GpGp′ = HK andH∩K = H∩TGp′ = H∩T = HGp

.

Note that

HG =
⋂

g∈G

Hg =
⋂

x∈G\Gp,y∈Gp

Hxy =
⋂

y∈Gp

Hy = HGp
,

then H is c-supplemented in G. Hence, G is a CSp-group.

(2) ⇔ (3). It follows from [7, Theorem 3.3].

(2) ⇔ (4). Since Gp/Φ(Gp) is an elementary abelian p-group, then Gp/Φ(Gp) is a comple-

mented group. So the assertion follows from Theorem 3.4.

(4) ⇔ (5). We only need to prove that Φ(Gp) = G
Ep

p . By Theorem 3.4, G
Ep

p ≤ Φ(Gp). On

the other hand, since Φ(Gp/G
Ep

p ) = 1, we have Φ(Gp) ≤ G
Ep

p . 2

Let A,B be two CSp-groups. Now we give some criteria of the direct product A×B to be a

CSp-group. First, we give a local vision of [7, Theorem 3.7] in the p-solvable universe.

Theorem 3.7 Let A,B be two p-solvable CSp-groups. Then A×B is a CSp-group if and only

if every p-subgroup of Φ(A)× Φ(B) is normal in A×B.

Proof By Theorem 3.4, A×B is a CSp-group if and only if A×B/Φ(A×B) is a p-complemented

group and every p-subgroup of Φ(A× B) is normal in A× B. Since Φ(A×B) = Φ(A)× Φ(B),

then A × B/Φ(A ×B) ∼= A/Φ(A) × B/Φ(B). Hence A × B is a CSp-group if and only if every

p-subgroup of Φ(A) × Φ(B) is normal in A×B. 2

Applying the similar arguments as in [8, Theorem 4.5], we have

Theorem 3.8 Assume that A × B is a p-solvable CSp-group, where p ∈ π(Φ(A)) ∩ π(Φ(B))

and p is odd. Denote pe = Exp(Φ(A)p), p
f = Exp(Φ(B)p). Then one of the following statements

holds:

(1) Φ(A)p × Φ(B)p ≤ Z(A×B);

(2) Φ(A)p ≤ Z(A) and Φ(B)p centralizes Bp′ and e < f ;
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(3) Φ(B)p ≤ Z(B) and Φ(A)p centralizes Ap′ and f < e.

Theorem 3.9 Assume that A×B is a CS2-group, where 2 ∈ π(Φ(A)) ∩ π(Φ(B)). Then one of

the following statements holds:

(1) Φ(A)2 × Φ(B)2 ≤ Z(A×B);

(2) Φ(A)2 × Φ(B)2 ≤ Z(A)× Z(Φ(B)2);

(3) Φ(A)2 × Φ(B)2 ≤ Z(Φ(A)2)× Z(B).

Proof By Lemma 2.1 and Theorem 3.1, A×B is solvable. Furthermore, A,B are CS2-groups

by Lemma 2.1. By Theorem 3.4, Φ(A)2 � A. So Φ(A)2A2′ is 2-nilpotent by Theorem 3.2

since Φ(A)2A2′ is a CS2-group. Therefore, A2′ centralizes Φ(A)2. Similarly, B2′ centralizes

Φ(B)2. On the other hand, since A×B is a CS2-group, then A2, B2 are c-supplemented groups.

By Lemma 2.5, we have |A2 : CA2
(Φ(A2))| ≤ 2 and |B2 : CB2

(Φ(B2))| ≤ 2. Now Theorem

3.2 implies that Φ(A)2 = Φ(A2) and Φ(B)2 = Φ(B2), therefore, |A2 : CA2
(Φ(A)2)| ≤ 2 and

|B2 : CB2
(Φ(B)2)| ≤ 2. If |A2 : CA2

(Φ(A)2)| = |B2 : CB2
(Φ(B)2)| = 1, then Φ(A)2 ≤ Z(A2) and

Φ(B)2 ≤ Z(B2). Hence, (1) holds. If |A2 : CA2
(Φ(A)2)| = 1 and |B2 : CB2

(Φ(B)2)| = 2, then

Φ(A)2 ≤ Z(A2) and Φ(B)2 ≤ Z(Φ(B2)). Hence Φ(B)2 = Z(Φ(B)2). So (2) holds. Similarly, we

have (3) if |A2 : CA2
(Φ(A)2)| = 2 and |B2 : CB2

(Φ(B)2)| = 1. 2

Theorem 3.10 Let A,B be two p-solvable CSp-groups, p ∈ π(Φ(A)) ∩ π(Φ(B)). Denote

pe = Exp(Φ(A)p), p
f = Exp(Φ(B)p). Then A×B is a CSp-group if one of the following holds:

(1) Φ(A)p × Φ(B)p ≤ Z(A×B);

(2) If p > 2, either Φ(A)p ≤ Z(A) and Φ(B)p centralizes Bp′ and e < f or Φ(B)p ≤ Z(B)

and Φ(A)p centralizes Ap′ and f < e;

(3) If p = min(π(A) ∪ π(B)), min{e, f} ≤ 1.

Proof Obviously, A × B is a CSp-group if (1) holds by Theorem 3.7. In case (2), its proof is

similar to [8, Theorem 4.6].

(3) Obviously, p ∈ π(A) ∩ π(B). So p = min(π(A)) and p = min(π(B)). Without loss of

generality, we may assume e ≤ 1. Then Φ(A)p ≤ Z(Ap) since A is a CSp-group. Note that B

is a CSp-group, then Φ(B)p � B by Theorem 3.4 and Bp′ centralizes Φ(B)p by Theorem 3.2,

respectively. Similarly, Ap′ centralizes Φ(A)p. So Φ(A)p ≤ Z(A). If p is odd and f ≤ 1, then

Φ(B)p ≤ Z(Bp), this is case (1). If p is odd and f ≥ 2, this is case (2). So we may assume

that p = 2. By Theorem 3.7, we only need to prove that 〈ab〉 � A × B for any a ∈ Φ(A)2 and

b ∈ Φ(B)2. Note that 〈a〉 � A and 〈b〉 � B by Theorem 3.4. Assume o(b) = 2. It is easy to

see that b ∈ Z(B) and 〈ab〉 � A × B. So we may assume that b ∈ Φ(B)2\Z(B2) and o(b) ≥ 4.

By Theorem 3.2, b ∈ Φ(B2). In order to prove 〈ab〉 � A × B, we can pick x ∈ B2 and claim

that (ab)x ∈ 〈ab〉 since B2′ centralizes Φ(B)2 = Φ(B2). By Lemma 2.6, if bx = b, obviously,

(ab)x = axbx = ab ∈ 〈ab〉. If bx = b−1, then (ab)x = axbx = ab−1 = (ab)−1 since e ≤ 1. So in

any case, we have 〈ab〉 � A×B for any ab ∈ Φ(A)2 × Φ(B)2. 2
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