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Abstract In this paper, we study the fourth-order problem with the first and second deriva-
tives in nonlinearity under nonlocal boundary value conditions of Sturm-Liouville type involving
Stieltjes integrals. Some inequality conditions on nonlinearity are presented that guarantee the
existence of positive solutions to the problem by the theory of fixed point index on a special
cone. Some examples are provided to support the main results under mixed boundary con-
ditions containing multi-point with sign-changing coefficients and integral with sign-changing
kernel.
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1. Introduction

In this paper, we investigate the existence of positive solutions for fourth-order boundary
value problem (BVP) with dependence on the first and second derivatives in nonlinearity subject
to boundary conditions of Stieltjes integral type

{ u®(t) = h(t) f(t,u(t), ' (£), u" (1), € (0,1), 1)

u(0) = u(1) = fi[u], au”(0) —bu"(0) + B2lu] = 0, cu”(1) 4+ du" (1) + Bs[u] = 0,
where a,b, ¢, d are nonnegative constants with § = ad + be + ac # 0, 5;lu] = fol u(t)dB;(t) is
Stieltjes integral with B; of bounded variation (i = 1,2, 3).

For the case where B; = 0 (i = 1,2,3), BVP (1.1) is investigated respectively by [1] with h =1
and f(t,u) which relies on a nonlinear alternative of Leray-Schauder type, and by [2] with & sign-
changing and f(u,u”) which applies the Avery-Peterson fixed point theorem in a cone. In fact,
in [1,2] they consider the more general conditions au” (&) —bu'"'(§1) = 0, cu”(&2) + du'" (&) = 0,
0<& <& <1

For the case where a = ¢ = 1, b = d = 0, the existence of positive solutions to BVP (1.1) is
also studied by [3] with h = 1, By = Bs and f(¢,u,u”) in which the method of fixed point index
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is used, by [4] with A = 1 and f(¢,u,”), and by [5] in which the computations of fixed point
index in [6] are applied.

Let E be a real Banach space with the zero element denoted by . A nonempty closed convex
set P C FE is called a cone if it satisfies the following two conditions: (i) Az € P for z € P and
A > 0; (ii) £ € P implies * = 6. For the properties of cones and fixed point index we refer
to [7-10]. Denote Ry = [0,00) and R_ = (—o00,0]. A functional « : P — Ry is called to be
sublinear if a(tx) < ta(z) for all z € P, t € [0, 1].

Lemma 1.1 ([6]) Let P be a cone in E and Q be a bounded open subset relative to P with
6 cQ,S:Q— P bea completely continuous operator. Suppose that a : P — R is a continuous
and sublinear functional with a(8) =0, a(z) # 0 for x # 0. If Sx # x and a(Sz) < a(z) for all
x € 09, then the fixed point index i(S,Q), P) = 1.

Lemma 1.2 ([6]) Let P be a cone in E and Q) be a bounded open subset relative to P with
6 cQ,S:Q— P bea completely continuous operator. Suppose that a : P — R is a continuous
and sublinear functional with a(f) = 0, a(z) # 0 for x # 0, and inf,ycpq a(x) > 0. If Sz # x,
a(Sz) > a(x) for all x € 0L, then the fixed point index i(S, 2, P) = 0.

2. Preliminaries

Take y1(t) = 1, 72(t) = g5t(1 — £)(2c + 3d — ct) and 3(t) = g5t(1 —t)(a + 3b+ at), they are

the solutions to u(* (t) = 0, respectively, subject to following boundary conditions:

w(0) = u(1) =1, au”(0) —bu""(0) =0, cu”(1) + du''(1) = 0;

w(0) = u(1) =0, au’(0) —bu""(0) +1 =0, cu’(1) + du(1) = 0;
w(0) = u(1) =0, au”(0) —bu""(0) =0, cu” (1) + du"'(1) +1 = 0.
Let .
Golt.s) = | Galt.€)Ga(e, o). 2.1)
0
where
) E(—t), 0<E<t <,
Gl(t,é){ (16, 0<i<é<l, (2.2)
_ 1) (as+d)(c(1-§+d), 0<s<{<1,
G2(&:9) = 5{ (@€ +0b)(c(1—s)+d), 0<E&<s<1. 23)

Go(t, s) is the Green’s function associated with
u®(t) =0, telo,1],
u(0) = u(l) =0, au”(0) —bu"'(0) =0, cu”(1) 4+ du"'(1) = 0.
We assume that
(C1) f:[0,1] x Ry x R x R_ — R, is continuous and h € L'(0,1) with h(t) > 0 and
[ h(t)dt > 0.
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(C2) For each i € {1,2,3}, B; is of bounded variation and
1
Ki(s) ::/ Go(t,s)dB;(t) >0, Vse[0,1].
0
(C3) Bilvj] >0 (¢,7 =1,2,3) and for the 3 x 3 matrix

Bilml Bilval  Bilvsl
(Bl = | Balna] B2lre] Balrs] |-
B3] Bsly2]l B3[s]

its spectral radius r([B]) < 1.
Let E = C?[0,1] be the Banach space consisting of all twice continuously differentiable

functions on [0, 1] with the norm

lullc> = max{lulle, [vllo; [[u"llc},

where ||ullc = max{[u(t)| : ¢ € [0,1]} for u € C[0,1]. Define an operator in C2[0, 1] as
(Tu)(t) = iﬁi[u]%(t) + /0 1 Golt, s)h(s)f (s, u(s),u'(s),u" (s))ds,
where fi[u] = [} u(t)dBi(t) (i = 1,2,3). We set
(Bu)(t) = ii;ﬂz-[u]%(t), (Fu)(t) =: /0 1 Go(t, s)h(s)f(s,u(s),u'(s),u" (s))ds,

so (Tu)(t) = (Bu)(t) + (Fu)(t). Writing (8,7) = 2?21 Bivi for the inner product in R3, we
define the operator S in C?[0,1] as

(Su)(t) = ((I = [B]) "' BLFul, v (1)) + (Fu)(?),
where B[Fu] = (B1[Fu), B2[Ful, B3[Fu])T is the transposed vector. Similar to [11] we have the

following lemmas.

Lemma 2.1 Suppose that (Cy) holds. Then BVP (1.1) has a solution if and only if there exists
a fixed point of T in C?|0, 1].

Lemma 2.2 Suppose that (Cy)-(Cs) hold. Then S can be written as

(Su)(t) = ((I — B)"' Fu)(t)

=/ (I = [B)T'K(s),7(1)) + Golt, $))h(s) f (s, uls), u' (s),u"(s))ds

0
=: ; Gs(t,s)h(s)f(s,u(s),u'(s),u”(s))ds, (2.4)
where K(s) = (K1(s), Ka(s), K3(s))7, i.e.,
3
Gs(t,s) = ((I = [B)T'K(s),7(t)) + Golt,s) = Zﬁi(s)%(t) + Go(t, s) (2.5)

and r;(s) is the ith component of (I — [B])~*K(s).
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Lemma 2.3 Let I' = max{max;c[o,1) 71(t), max;e[o,1] v2(t), maxsepo,1] v3(t)}. If (C2) and (C3)
hold, then k;(s) >0 (i =1,2,3),

Gs(0,s) = Gs(1,s) = Kk1(s), (2.6)
and for t,s € [0, 1],
co(t)Po(s) < Gs(t,s) < Po(s), (2.7)
where
3 1
Bs) =T w9+ [ Ga(EGae, i, 28)
colt) = min{ (1), T1a(t), ys(0), 1,1 — 1), (29)
2 s
c1(t)®q1(s) < —aGasit(;’) < Py (s), (2.10)
where . .
Dq(s) = 5 max{a + b, c + d}(ka(s) + r3(s)) + S(GS +b)(c(l—s)+d), (2.11)

min{c(1 —t) + d, at + b}
max{a + b,c+ d}

ci(t) = (2.12)

Proof By [11], we have r;(s) > 0 (i = 1,2,3), and (2.6) holds from (2.5). It follows from
(2.2) that G1(t,€) < G1(&,€) for t,£ € [0, 1], then from (2.1) we have Gg(t,s) < ®p(s). Since
G1(t, &) > min{t, 1 — t}G1(§,€), by (2.1) we have Gy(t,s) > min{t,1 — ¢} fol G1(£,6)G2 (&, s)dE,

and thus
3

Moreover,

2 s 3 ) )
- aG@Sit(;’) == mils)V/(8) - P Go(t, )

%((c(l — 1)+ d)ra(s) + (at + b)rs(s)) + Galt, s) < Bi(s).

As for m > ¢1(t)®1(s), it can be checked easily. O

Define a cone P in E as follows:
P={ue B:u(0) =u(l), ult) > co®llule,
—u"(t) > )|, YVt € [0,1]; Bilu] >0 (i = 1,2,3)}. (2.13)
By the method due to Webb and Infante [11] we have the following lemma.

Lemma 2.4 Suppose that (Cy)—(Cs) hold. Then S : P — P is a completely continuous operator,
S and T have the same fixed points in P. As a result, BVP (1.1) has a positive solution if and
only if S has a fixed point in P.
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3. Main results

Take 7 € (0,1/2) such that f t)dt > 0 and denote

ho = max { /0 1 Do (H)h(1)dt, /0 1 <I>1(t)h(t)dt},

1—71 1—71
h, = min {/ Do (H)h(1)dt, / <I>1(t)h(t)dt}.
Lemma 3.1 If (Cy) and (Cs3) hold, define a functional oo : P — Ry as

— "
au) = max{_max [u(t)], max [o"(2)]}

then « is a continuous and sublinear functional with a(0) = 0, a(u) # 0 for u # 6.

Denote several constants by

o= g ol a= g al) o= g o) a= g al)

and ¢ = I’Ilil’l{EQ7 El}.
Theorem 3.2 Suppose that (Cy)-(Cs) are satisfied. If there exist constants a; and by with
0 < b1 < ay satisfying by < a1 min{¢oc,, €1¢; }, such that

b1

[t 21, 22,23) < . (3.1)
0
for (t,$1,$2,$3) S D1 = [0,1] X [O,bl/EQ] X [—51/51751/51] X [—51/51,0], and
a
[t 21, 22,23) > _hl (3.2)

for (t,x1,x9,x3) € Do U D3, where
Dy =10,1] X [¢ya1, a1] X [—a1/€1,a1/C1] x [—a1,0],
D5 =[0,1] x [0,a1] x [—a1/¢1,a1/C1] X [—a1, —¢;a1],
then BVP(1.1) has at least one positive solution.
Proof Obviously, Dy N (Ds U D3) = () since by < a1 min{cycy, ¢1c;}. Let
O ={ueP: au)<b}, Q={ueP: o(u) <a}.

It is clear that Q1 C Q9, both Q1 and Qs are open sets in P with 6 € Q;.
If u € Q9, by Lemma 2.3, we have

a1 > max [fut)] = ( max co(t))|ufc ="collufc,

ap > max |u”(t)] = ( max a(t))|u”]lc =alu"]c.

T<t<l—7 T<t<l—7

Since u(0) = u(1), there exists € (0,1) such that «'(n) = 0 and thus

HWM*%%W(K&%h/W'M4QWH<—
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Therefore, Q3 is bounded. Similarly, |ul|lc < b1/, ||v/|lc < b1/, ||[u”||c < b1/E for u € .
If u € 984, then a(u) = by. From Lemma 2.3 and (3.1) it follows that

max |(Su)(t)] < ﬁ/O Do (s)h(s)ds < by,

T<t<l—7 ho
max |(Su)”(t)] < b 1 Oy (s)h(s)ds <b
T<t<l—7 ~ ho 0 ! =b

and hence a(Su) < a(u). So by Lemma 1.1 the fixed point index
i(S,0,P) =1 (3.3)

if Su # u for u € 9.
If u € 08, then a(u) = a; and by Lemma 2.3 for t € [1,1 — 7],

> > > i >
a1 2 u(t) 2 co)llulle = ( _min co(®)lule 2 ¢ max fu(®)l, (3.4)
> _ " > i > . i > " . .
a2 —u'(t) 2 a®)|u’llc 2 ( min a@®)u’llc 2 max |u’()] (3.5)

When a(u) = a1 = max,;<;<1—- |u(t)|, it follows from Lemma 2.3, together with (3.2) and (3.4),
that

/OGs(t,s)h(s)f(s,u(s),u'(s),u”(s))ds

e (BWOl= g

> ( max co(t))/ _T<I>0(s)h(s)f(s,u(s),u'(s),u”(s))ds

T<t<l—7
1—7 1—7

o x L Do (s)h(s)ds > T x —L Bo(s)h(s)ds > a1,

ch, J, chr ).

1 82G (t75) ’ "
/0 T h(s)F (s, uls), w/ (5),u” (s))ds

Y

" _
e (BWTOI= g

1—7

= (T;?infl(t))/ D1 (s)h(s)f (s, uls), u'(s),u"(s))ds
o Dy (s)h(s)ds > ¢ x EGTI o B, (s)h(s)ds > ay,

> 7 x
G x —L
zaxg- |
and hence a(Su) > a(u); when a(u) = a1 = max.<i<1—, [u”(t)], it similarly follows from
Lemma 2.3, together with (3.2) and (3.5), that a(Su) > a(u). So by Lemma 1.2 and since

inf,ep0, a(u) = ar > 0, the fixed point index
1(5,Q2,P)=0 (3.6)

if Su # u for u € 9.
From (3.3) and (3.6) it follows that S has at least one fixed point, and hence BVP (1.1) has

at least one positive solution by Lemma 2.4. O

Theorem 3.3 Suppose that (Cy)-(Cs) are satisfied. If there exist constants as and by with
0 < be < ag satisfying bs < EhThglag, such that

f(t,l'l,l’g,l’3) (37)

> 2
ch,
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for (t,x1,xe,x3) € Dy U D5, where
D4 = [0, ].] X [QObQ,bQ] X [71)2/51,()2/61] X [7b2,0:|,

D5 = [O, 1] X [O,bg] X [—bg/@l,bg/ﬁl] X [—bg, —leg],

a
S_Q
ho

for (t,$1,$2,$3) S D6 = [0, 1] X [0,&2/50] X [—ag/El,ag/El] X [—ag/El,O], then BVP(l.l) has at

least one positive solution.

f(t @1, 22, 23) (3.8)

Proof Obviously, Dy U D5 C Dg due to ¢y < 1 and ¢ < 1; however (3.7) and (3.8) are well-
posed since by < Ch,hylaz. Let Q1 = {u € P : a(u) < b}, Qo = {u € K : a(u) < as},
we know from the proof of Theorem 3.2 that €; and 5 are bounded open sets in P with
0 € Q and Q; C Q. Moreover, |ullc < ba/Co, ||t|lc < bo/e1, W |l < ba/T1 for u € Q;
lulle < az/Co, ||v||c < az/c, ||u”]|c < az/c for u € Q.

If uw € 08y, then a(u) = be and by Lemma 2.3 for t € [1,1 — 7],

b > ult) > eolt)ulle > (_min_eot)lulle > ollule > max fu®)l,  (3.9)
b > () > ) ullo > (_min_a)ulc>e max (0l (310)

When a(u) = by = max,<i<1—- |u(t)|, it follows from Lemma 2.3, as well as (3.7) and (3.9), that

1
— I "
s lswol = _apas | [ G961 0(6) 0506
1—7
> (o) [ o(sh(f (s uls). ol (5). ' (9)ds
sax 2 [ e on(s)ds s ex 22 [ dy(s)h(s)ds > b
=~ Cp EhTT ols s)as =~ ¢ EhTT ols s)ds =~ 02,
L 92Gi(t, s)
" o ) / "
L (500 = _mac | [ EE ) s, us). 0 s). (9)ds
1-7
> (max a®) [ @b uls)u(5) ' (9)ds
cax 2 [ e onds s ex 22 [ @y (s)h(s)ds > b
=~ C1 EhT i 1S s)as =~ ¢ Eh/T T 1S s)das =~ 02,
and hence a(Su) > «o(u); when a(u) = by = max,<;<i— [t/ (t)], it similarly follows from

Lemma 2.3, together with (3.7) and (3.10), that «(Su) > a(u). So by Lemma 1.2 and since
inf,ep0, a(u) =be > 0, the fixed point index

i(S,,P)=0 (3.11)

if Su # u for u € 9.
If u € 08, then a(u) = ag and from Lemma 2.3 and (3.8) it follows that

max |(Su)(t)] < % / Do (s)h(s)ds < as,

T<t<l—7 0 Jo
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max  |(Su)" ()] < 22 /O B3 (s)h(s)ds < a,

7<t<l—7 h,()
and hence a(Su) < a(u). So by Lemma 1.1 the fixed point index
i(S, 0, P) =1 (3.12)

if Su # u for u € 9.
From (3.11) and (3.12) it follows that S has at least one fixed point, and hence BVP (1.1)

has at least one positive solution by Lemma 2.4. O

Remark 3.4 Ifa=c=1, b=d=0,BVP(l.1) is

{ u® (t) = h(t) f(t,u(t),u' (t),u"(t), te(0,1), (3.13)
w(0) = u(l) = fifu], "(0) + B2[u] = 0, w"(1) + B3[u] =
then 6 =1, 1 () = 1, 72(t) = gt(1 —1)(2—¢), y3(t) = ¢t(L —t)(1 +¢) and I = 1,
co(t) = min{%t(l —1)(2 —1), %t(l —t)(1+1)}, c1(t) = min{t, 1 —t}.
Then ¢y = 1=, &1 =1, ¢ =¢7(1 =7)(1+7), ¢ =7, ¢ = & for 7 € (0,3). For this case we

can see [5] and [4, Remark 3.2].

Now as the examples we consider fourth-order problems under mixed boundary conditions

involving multi-point with sign-changing coefficients and integral with sign-changing kernel

u® (t) - \/t(ll—_t)f(ta u(t),u’(t),u”(t)), te (Oa 1)7
0 =) =t~ ) (3.14)

that is, S1u] = Fu(2) — Hu(2), Balu] = —fo ) cos(2mt)dt, Bsfu] = Su(3) — tu(2), and
a=b=c=d=1,6=3,n(t)=1, 72(1?)— st - )(5—t) W) = gt(l—t)(A+1), T =1,
Golt. s) 1| =8B —1t)(1+s)—3s?), 0<s<t<l,
,8) = =75
0 18 | #(5—9s+3s% — 6t — 22 + s(5+ 3t +12)), 0<t<s<l.
Hence for s € [0, 1],
1,1 1,3
< = - —_ _— — —
0 —Kl(s) 4G0(475) 12G0(475)
Lo B .5 N
736" T 576" ' 576° =7=p
{1l 1o 19 87 1 _ .3
720 327 11527 ' 4608’ 4 T~ 4
L S s<
144”72 157="
1 2
1 2+ 25 — 25%) — cos(2
Ka(s) = / Go(t,5) cos(amtydt — LE T = ) = cos@ms) o,
0 Y
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1 1 1 3
< = _ — z
O_’Cg(s) 2G0(2,S) 4G0(4,S)
1, 31 31 1
——t —— s+ —— <s< -
52° T 1536° " 1536’ Oss=3
= 353—1524——1275—1—i 1<s<§
96 8 1536 512" 2 -4’
o 1o B 7T 3.5<1
96 32 1536 2567 4 -
and the 3 x 3 matrix
1 5 1
Bilvi] Bilvel  Bilvys) 6 576 144
1 1
[B] = = S
Ba[m1]  Balr2] B2l 0 52 5

31 29
1536 1536

1
4
Tts spectral radius is 7([B]) ~ 0.1787 < 1. This means that (Cz) and (Cs) are satisfied. Moreover,
/@1(3) ~ 1.2026’C1(S) + OOlO?’CQ(S) + 00087163(5)7
Ka(s) & 0.0039K, (5) + 1.0131Ka(s) + 0.0131/K(s),
k3(s) & 03065/, (5) + 0.0236Ka(s) + 1.0217K3(s),

3 3
1 . 2 1
Po(s) = ;ni(s) + o (l+s— 253 + 5%), By (s) = 3 ;”i(s) +5(1+s)(2—s),
o1 1 1 .
co(t) = mm{Et(l -5 1), Et(l A+t e(t) = 3 min{2 —¢,1 + t}.
Take 7=1/4 and then¢o = &, 61 = 2, ¢y = 35, ¢, = 3, €= 1,

1 1
ho = max {/ @ (t)h(t)dt, (I)l(t)h(t)dt} ~ max{0.4658,2.3121} = 2.3121,
0 0

3/4
h, = min{/ Bo(H)h(1)dt, / <I>1(t)h(t)dt} ~ min{0.1737,0.8105} = 0.1737.
1/4 1/4

Example 3.5 If f(t,21,22,73) = 12322 + t22 + 23, then BVP (3.14) has a positive solution.

Proof For a; = 384, by = 3 x 1075, it is clear that b; < a; min{¢pcy, C¢1¢;} = }—g = 1.0625.

Moreover,

b
ft, w0, 23) <123 x (48 x 107%)% 42 x (4 x 107%)? ~ 0.2834 x 1076 < h—l ~ 1.2975 x 107°
0

for (t,x1,22,23) € D1 =1[0,1] x [0,48 x 1075] x [-4 x 1076,4 x 1076] x [—4 x 107%,0];

toxy, o, ws) > 123 x 172 = 35547 > 1 ~ 35371.3
I
chr

for (t,21, 29, 23) € Dy = [0,1] x [17,384] x [—512,512] x [—384,0];

F(t 21, 20, 23) > (—240)% = 57600 > ;Tl ~ 35371.3

T
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for (t,x1,22,23) € D3 = [0,1] x [0,384] x [—512,512] x [—384,—240]. Then BVP (3.14) has a
positive solution by Theorem 3.2. O

Example 3.6 If f(t,21,22,23) = 123000(1 —

solution.

), then BVP (3.14) has a positive

1
14a?+te3+a2

Proof For ay = 284400, by = 0.384, it is clear that by < EhThalag =~ 1335.37. Moreover,

ba
— m) ~ 35.5367 > % ~ 35.3713

for (t, 21,22, 3) € Dy = [0,1] x [0.017,0.384] x [—0.512,0.512] x [—0.384, 0];

f(t, T1,x2, Ig) > 123000(1

b
F(t, @1, 2, m3) > 123000(1 — ) ~ 6698.94 > C—2 ~ 35.3713

1+ 0.242 h,
for (t,21,x2,23) € D5 = [0,1] x [0,0.384] x [—0.512,0.512] x [—0.384, —0.24];

F(t, 21, 29, 3) < 123000 < % ~ 123005
0

for (t,x1, 72, 23) € Dg = [0, 1] x [0, 4550400] x [—379200, 379200] x [—379200, 0]. Then BVP (3.14)

has a positive solution by Theorem 3.3. O
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