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Abstract This letter is focused on proposing an arbitrarily high-order energy-preserving method

for solving the charged-particle dynamics. After transforming the original Hamiltonian energy

functional into a quadratic form by using the invariant energy quadratization method, symplectic

Runge-Kutta method is used to construct a novel energy-preserving scheme to solve the Lorentz

force system. The new scheme is not only energy-preserving, but also can be arbitrarily high-

order. Numerical experiments are conducted to demonstrate the notable superiority of the new

method with comparison to the well-known Boris method and another second-order energy-

preserving method in the literature.
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1. Introduction

In recent years, the plasma physics has developed rapidly, which provides new technologies

and processes for the further development of sciences such as information, materials, environmen-

tal space, energy, geophysics, space physics and so on. Plasma is a collection of charged particles

interacting with electromagnetic field, whose source can be outside or inside the plasma. The

most basic physical process in the collective dynamics of magnetized plasma is the movement of

charged particles under the influence of electromagnetic field [1].

Several important phenomena in plasma can be understood and analyzed in light of the

single particle motion satisfying the Lorentz force equation, which can be cast into a Hamiltonian

formulation [2,3]. The development of long-term numerical simulations on trajectories of charged

particles has greatly facilitated the research of plasma dynamics. Among these efficient numerical

simulations, non-geometric methods are always acting unsatisfactory, i.e., they cannot track the

trajectory accurately during a long computation. Many works show that the standard fourth-

order Runge-Kutta (RK) method, a popular explicit integrator, may lead to a wrong solution
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trajectory due to its error accumulation after many time steps [4]. The application of geometric

numerical methods to handle the dynamics of charged particles is a recent great advance, which

often reveals better performance in long-term numerical simulations compared with traditional

methods. The most representative methods are volume-preserving methods [5, 6], including the

popular Boris method [7], symmetric multistep methods [8], variational symplectic methods [9]

and symplectic methods [10, 11].

Numerical methods are called geometric methods or structure-preserving methods if they

can conserve the intrinsic geometric properties of the system [12]. Feng and his collaborators

found that the structures preserved above also contain physical conservation laws and algebraic

properties in addition to geometric structure, which triggered the interest of many scholars

[13, 14]. It could be generally stated that the energy is the most noticeable structure of a

Hamiltonian system, i.e., the Hamiltonian function itself. This paper aims to construct an

arbitrarily high-order energy-preserving algorithm for the Lorentz force system.

In recent years, there have been so many methods to construct energy-preserving algorithms

for ordinary differential equations (ODEs), including discrete gradient methods [15,16], discrete

variational methods [17], discrete line integral methods [18, 19], Hamiltonian boundary value

methods [20, 21] and line integral methods [22]. In view of the core idea of Baida [23] and

Guillen [24] in the processing of the liquid crystal model, (invariant) energy quadratization

(IEQ) method emerged as the times require, which created an interesting and meaningful topic

when applying it to Hamiltonian system for getting an efficient and exactly energy-preserving

algorithm. Please refer to [25, 26] and the references there in.

For the plasma physics, the conservation of energy remains crucial [27, 28], which motivates

us to construct an energy-preserving scheme. In this paper, we will combine the IEQ method and

the symplectic Runge-Kutta (RK) method to solve the Lorentz force system. First, introducing

an auxiliary variable, the original Hamiltonian energy functional can be changed into a quadratic

form. Then, applying the symplectic RK method for the new system obtained above yields a

novel scheme. Compared with the EPIEQ scheme, a second-order energy-preserving scheme was

proposed in [28], the new scheme proposed here is not only energy-preserving, but also can be

arbitrarily high-order, which can simulate the motion of charged particles more efficiently.

The context of the paper is as follows. In Section 2, we transform the dynamics of charged

particles in the electromagnetic field as a Hamiltonian system. In Section 3, an arbitrarily high-

order energy-preserving scheme is obtained. We also prove the conservation of energy strictly

afterwards. Numerical experiments are conducted in Section 4 in order to confirm the theoretical

results of the proposed new scheme. The conclusion is given in Section 5 finally.

2. The motion under the Lorentz force system

In this section, we will briefly review the motion equation of the single charged particle first.

A charged particle in an electromagnetic field is in accordance with the equation of motion
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associated with the Lorentz force

mẍ = q(E + ẋ×B), x ∈ R
3, (2.1)

where x represents the position of the charged particle, m and q denote the mass and charge,

respectively. For the sake of simplicity, we assume that B and E are both static, so B = ∇×A

and E = −∇ϕ, where A and ϕ are the potentials.

Denote transformation

G : (x,p) −→ (x,v), ẋ = v,v =
1

m
(p− qA(x)),

and then the system (2.1) can be cast into






ẋ = v,

v̇ =
q

m
(E(x) + v ×B(x)).

(2.2)

If we denote z = (xT,vT)T, the system (2.2) can be rewritten as

ż = K(z)∇H(z), (2.3)

with the Hamiltonian H(z) =
m

2
vTv + qϕ(x). The skew-symmetric matrix

K(z) =





0 1

m
I

− 1

m
I q

m2 B̂(x)





shows that the system is a Hamiltonian system with

B̂(x) =











0 B3(x) −B2(x)

−B3(x) 0 B1(x)

B2(x) −B1(x) 0











defined by B(x) = [B1(x), B2(x), B3(x)]
T.

3. Invariant energy quadratization method for the Lorentz force system

It is well known that the IEQ method wants to transform the free energy into a quadratic

form about a new variable by changing variables and the novel, equivalent system still retains a

similar energy conservation law in terms of the new variables, which opens up new possibilities

for constructing an energy-preserving scheme.

In this section, we will introduce how to use the the IEQ method and the symplectic RK

method to solve the Hamiltonian system (2.3) for developing an arbitrarily high-order energy-

preserving scheme in detail.

3.1. Invariant energy quadratization reformulation

Choose a suitable constant C0 such that qϕ(x)+C0 > 0 and we denote H1(z) =
m

2
vTv−C0,

H2(z) = qϕ(x)+C0, then H(z) = H1(z)+H2(z). Introducing a Lagrange multiplier or auxiliary
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variable r(t; z) =
√

H2(z) =
√

qϕ(x) + C0, we recast the system (2.3) as the IEQ reformulated

system














zt = K
(

z)(∇H1(z) +
r

√

H2(z)
∇H2(z)

)

,

rt =
1

2
√

H2(z)
∇H2(z)

Tzt,
(3.1)

where the consistent initial condition is r|t=0 =
√

H2(z(0)) =
√

qϕ|t=0 + C0.

Next, the relevant properties of the system will be given as follows.

Proposition 3.1 The corresponding modified energy is

H̃(z, r) =
m

2
vTv + r2 − C0 = H1(z) + r2,

which can be preserved by the above system (3.1), i.e.,

d

dt
H̃(z, r) = 0.

Proof According to the definition of energy H̃(z, r) and the form of system (3.1), we have

d

dt
H̃(z, r) =

d

dt
(H1(z) + r2) = ∇H1(z)

Tzt + 2rrt

= ∇H1(z)
TK(z)(∇H1(z) +

r
√

H2(z)
∇H2(z)) + 2r

1

2
√

H2(z)
∇H2(z)

Tzt

= ∇H1(z)
TK(z)

r
√

H2(z)
∇H2(z) +

r
√

H2(z)
∇H2(z)

TK(z)∇H1(z)

= 0,

due to the skew-symmetry of the matrix K(z). 2

Remark 3.2 According to Proposition 3.1 and the definition of the energy above, we have

H̃(z(t), r(t)) ≡ H̃(z(0), r(0)) = H1(z(0)) +H2(z(0)) = H(z(0)) ≡ H(z(t))

in continuous state. So, H̃(z, r) is also the energy of the original Hamiltonian system (2.3).

3.2. Invariant energy quadratization Runge-Kutta method

After the introduction of the IEQ method, we will derive the symplectic RK method for the

IEQ reformulated system (3.1) to get the arbitrarily high-order structure-preserving scheme.

Let bi, aij (i, j = 1, . . . , s) be real numbers and ci =
∑s

j=1
aij . For given (zn, rn), the

intermediate values Zi and Ri are first calculated by

Zi = zn + τ

s
∑

j=1

aijkj ,

Ri = rn + τ

s
∑

j=1

aij lj ,

(3.2)

where ki = K(Zi)(∇H1(Zi) +
Ri

√

H2(Zi)
∇H2(Zi)) and li =

1

2
√

H2(Zi)
∇H2(Zi)

Tki, respec-
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tively. Then (zn+1, rn+1) is updated via

zn+1 = zn + τ

s
∑

i=1

biki,

rn+1 = rn + τ

s
∑

i=1

bili.

(3.3)

Remark 3.3 The s-stage RK coefficients are usually displayed by a Butcher table [18]:

c A

bT
,

where A ∈ R
s and c = Al with l = (1, 1, . . . , 1)T ∈ R

s.

Remark 3.4 The new proposed schemes (3.2) and (3.3) are called the IEQ-RK scheme here.

We call an RK method the symplectic RK method if it can preserve quadratic first integrals,

which is indeed its advantage. An RK method whose coefficients satisfy the following Lemma

3.5 is symplectic.

Lemma 3.5 ([18, Theorem 4.3 in Chapter VI]) (S-conservative condition or symplectic condi-

tion). An RK scheme is S-conservative if and only if the symmetric coefficient matrix M with

elements

mij = biaij + bjaji − bibj , i, j = 1, 2, . . . , s (3.4)

is the zero matrix.

Theorem 3.6 The IEQ-RK schemes (3.2) and (3.3) preserve the energy H̃(z, r) of the Lorentz

force system.

Proof Denote ki = ((kx
i )

T, (kv
i )

T)T, then according to z = (xT,vT)T and Eqs. (3.2) and (3.3),

we get

Xi = xn + τ

s
∑

j=1

aijk
x
j ,

Vi = vn + τ
s

∑

j=1

aijk
v
j ,

Ri = rn + τ
s

∑

j=1

aij lj

(3.5)

and

xn+1 = xn + τ

s
∑

i=1

bik
x
i ,

vn+1 = vn + τ
s

∑

i=1

bik
v
i ,

rn+1 = rn + τ

s
∑

i=1

bili,

(3.6)
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where

kx
i = Vi,

kv
i = − Ri

√
q

m
√

ϕ(Xi)
∇ϕ(Xi) +

q

m
B̂(Xi)Vi,

li =

√
q

2

(∇ϕ(Xi))
TVi

√

ϕ(Xi)
.

(3.7)

Because of Eq. (3.5), we have

H̃(zn+1, rn+1)− H̃(zn, rn) = H1(z
n+1)−H1(z

n) + (rn+1)2 − (rn)2

=
m

2
(vn+1)Tvn+1 − m

2
(vn)Tvn + (rn+1)2 − (rn)2. (3.8)

The two terms on the right of the Eq. (3.8) are

m

2
(vn+1)Tvn+1 − m

2
(vn)Tvn =

m

2

(

vn + τ

s
∑

i=1

bik
v
i

)T(

vn + τ

s
∑

i=1

bik
v
i

)

− m

2
(vn)Tvn

=
m

2
τ

s
∑

i=1

bi(v
n)Tkv

i +
m

2
τ

s
∑

j=1

bj(v
n)Tkv

j +
m

2
τ2

s
∑

i=1

s
∑

j=1

bibj(k
v
i )

Tkv
j

=
m

2
τ

s
∑

i=1

bi

(

Vi − τ

s
∑

j=1

aijk
v
j

)T

kv
i +

m

2
τ

s
∑

j=1

bj

(

Vj − τ

s
∑

i=1

ajik
v
i

)T

kv
j+

m

2
τ2

s
∑

i=1

s
∑

j=1

bibj(k
v
i )

Tkv
j

= mτ

s
∑

i=1

bi(Vi)
Tkv

i +
mτ2

2

s
∑

i=1

s
∑

j=1

(bibj − biaij − bjaji)(k
v
i )

Tkv
j ,

(rn+1)2 − (rn)2 =
(

rn + τ
s

∑

i=1

bili

)2

− (rn)2

= τ

s
∑

i=1

bir
nli + τ

s
∑

j=1

bj ljr
n + τ2

s
∑

i=1

s
∑

j=1

bibjlilj

= τ

s
∑

i=1

bi

(

Ri − τ

s
∑

j=1

aij lj

)

li + τ

s
∑

j=1

bj lj

(

Rj − τ

s
∑

i=1

ajili

)

+ τ2
s

∑

i=1

s
∑

j=1

bibj lilj

= 2τ

s
∑

i=1

biRili + τ2
s

∑

i=1

s
∑

j=1

(bibj − biaij − bjaji)lilj ,

respectively. Then, substituting Eq. (3.7) into these two formulas above, we have

H̃(zn+1, rn+1)− H̃(zn, rn) = τ2
s

∑

i=1

s
∑

j=1

(bibj − biaij − bjaji)(
m

2
(kv

i )
Tkv

j + lilj).

When the S-conservative condition is satisfied, the IEQ-RK schemes (3.2) and (3.3) exactly

preserves the energy, i.e.,

H̃(zn+1, rn+1) = H̃(zn, rn). 2
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4. Numerical experiments

Here, numerical experiments are conducted to indicate the efficiency of our proposed IEQ-

RK scheme. Say concretely, we choose s = 2 and s = 3 in symplectic RK method and compare

the scheme with the well-known Boris method [7] and the second-order EPIEQ method [28] to

demonstrate the practicability, accuracy as well as energy conservation property of our proposed

scheme.

Example 4.1 We will consider the 2D dynamics of the charged particle in an electromagnetic

field which is static and non-uniform. By theoretic analysis, we know that the orbit of the

charged particle is a spiral circle with constant radius. The larger circle corresponds to the ∇·B
drift and the E × B drift of the steering center, and the smaller circle is the fast scale rotary

motion [5].

For the charged-particle dynamics (2.1), we consider the scalar potential

ϕ(x) =
1

100
√

x2
1 + x2

2

and the filed

B(x) = ∇× 1

3

(

− x2

√

x2
1 + x2

2, x1

√

x2
1 + x2

2, 0
)T

.

The initial values are chosen as x0 = (0,−1, 0)T and v0 = (0.1, 0.01, 0)T.

First, we make a comparison among the Boris method [7], the EPIEQ method [28] and the

IEQ-RK method we proposed. We choose the stepsize h = π/10 and the results are shown in

Figures 1–3.
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Figure 1 The numerical results of Boris method with step h = π/10. (a) The orbit in the 100th turn;

(b) Errors of the angular momentum pξ, the magnetic moment µ and the energy H for t ∈ [0, 5× 105h].

Figures 1–3 show the 100th turn and the errors of the angular momentum pξ, the magnetic

moment µ and the energy H for t ∈ [0, 5 × 105h] by these three methods, respectively. By

comparing the three figures, we can see that the 100th turn by the three methods shows excellent

agreement. For invariants’ conservation, the IEQ-RK scheme proposed here and the EPIEQ

method [28] both can exactly preserve energy while the Boris method [7] just can keep the error

of energy between 10−5 ∼ 10−4. What’s more, the angular momentum pξ and the magnetic
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moment µ can keep stable oscillation even reach 10−6 via the IEQ-RK scheme, which shows a

better behaviour than the EPIEQ method [28].
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Figure 2 The numerical results of EPIEQ method with step h = π/10. (a) The orbit in the 100th turn;

(b) Errors of the angular momentum pξ, the magnetic moment µ and the energy H for t ∈ [0, 5× 105h].
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Figure 3 The numerical results of IEQ-RK scheme with step h = π/10. (a) The orbit in the 100th turn;

(b) Errors of the angular momentum pξ, the magnetic moment µ and the energy H for t ∈ [0, 5× 105h].

Then, in order to compute the order of convergence of the IEQ-RK scheme proposed here, we

choose different stepsizes h = 1/2j, where j = 2, 3, 4, 5. Here, the numerical solution of stepsize

h = 1/25 is chosen as the exact solution because of the lack of analytical solution. We define the

errors as follows

‖e(x)‖∞ = max
1≤i≤3

|xi
N − xi

N1
|,

‖e(v)‖∞ = max
1≤i≤3

|viN − viN1
|,

where xi
N and viN are the numerical solutions in t = T with the stepsizes h = 1/2j, where

j = 2, 3, 4. xi
N1

and viN1
are solutions in t = T with stepsize h = 1/25. Then we use the following

formulas to calculate the order of convergence

orderx =
log(error1x/error

2
x)

log 2
,

orderv =
log(error1v/error

2
v)

log 2
,

where errorix and erroriv (i = 1, 2) represent the corresponding errors of x and v, respectively.
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We display the results in Table 1.

Table 1 confirms that the IEQ-RK scheme we proposed has fourth-order and six-order conver-

gence when we choose s = 2 and s = 3, respectively. In fact, the IEQ-RK scheme can be arbitrary

high-order as long as we take the bigger value of s, which shows that the order of convergence of

IEQ-RK scheme we proposed is higher than the Boris method [7] and the EPIEQ method [28],

since the Boris method and the EPIEQ method are both of second-order convergence.

h 1/22 1/23 1/24

s = 2

‖e(x)‖∞ 5.1875× 10−6 3.2394× 10−7 1.9068× 10−8

orderx — 4.0012 4.0865

‖e(v)‖∞ 5.2490× 10−6 3.2777× 10−7 1.9294× 10−8

orderv — 4.0013 4.0865

s = 3

‖e(x)‖∞ 2.3415× 10−9 3.6645× 10−11 5.6402× 10−13

orderx — 5.9977 6.0217

‖e(v)‖∞ 2.3644× 10−9 3.7003× 10−11 5.6952× 10−13

orderv — 5.9977 6.0217

Table 1 Convergence order of the proposed IEQ-RK scheme for T = 10s

Remark 4.2 The numerical scheme (3.2)-(3.3) we proposed has the arbitrary high-order accura-

cy. In fact, the convergence order of our scheme is dependent on the order of the used symplectic

RK method, that is, the order of implicit RK method which satisfies the S-conservative condi-

tion. While, if the s-stage implicit RK method based on Gauss quadrature formula is chosen,

the Gauss Method has the 2s order according to [18,29], whose orders of 4 and 6 are utilized in

the above numerical experiments. The results of 2s − 1 or 2s − 2 order can be obtained if we

choose the Radau Method or the Lobatto Method [18]. So, as we take bigger and bigger s, then

the convergence order of our method gets higher and higher, which means that we can get the

arbitrary high-order convergence.

All of the results indicate that the IEQ-RK scheme we proposed has excellent invariants-

conservation property and a higher order of convergence.

Example 4.3 We consider the charged-particle dynamics (2.1) with another scalar potential [27]

ϕ(x) =
1

5
(x4

1 + x4
2 + x4

3)

and the filed

B(x) = ∇× 1

4
(x2

3 − x2
2, x

2
3 − x2

1, x
2
2 − x2

1)
T =

1

2
(x2 − x3, x1 + x3, x2 − x1)

T.

What’s more, we choose the initial values as x0 = (0, 1, 0)T and v0 = (0.09, 0.55, 0.3)T and

the problem is calculated in the interval [0, T ]. Same as Example 1, we take the step length

h = π/10 and set T = 5× 105h. Figure 4 shows the energy errors of IEQ-RK scheme, where (a)

corresponds to s = 2 and (b) corresponds to s = 3.
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In this case, we find the Hamiltonian H(z) is not quadratic, but the energy still can be

conserved very well using the proposed scheme IEQ-RK here. It is easy to see that the errors

of energy oscillate near zero in the scale 10−14 ∼ 10−11 and 10−15 ∼ 10−12 for s = 2 and

s = 3 calculated via the proposed IEQ-RK scheme, which indicates that the IEQ-RK scheme we

proposed can preserve the energy conservation very well again.
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Figure 4 The energy errors of IEQ-RK scheme. (a) s = 2; (b) s = 3.

5. Conclusions

Several important phenomena in plasma can be described in the light of the single particle

motion satisfying the Lorentz force equation, which can be expressed as a Hamiltonian formu-

lation. In this paper, a new energy-preserving method is proposed to solve the Lorentz force

system by combining the invariant energy quadratization method and the symplectic Runge-

Kutta method. The proposed scheme is energy-preserving and can be arbitrarily high-order,

which can efficiently simulate the motion of charged particles. Numerical results conducted ver-

ify the theoretical research.
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