
Journal of Mathematical Research with Applications

Mar., 2023, Vol. 43, No. 2, pp. 150–160

DOI:10.3770/j.issn:2095-2651.2023.02.003

Http://jmre.dlut.edu.cn

Optimal L(2, 1, 1)-Labelings of Caterpillars
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Abstract An L(2, 1, 1)-labeling of a graphG is an assignment of non-negative integers (labels) to

the vertices of G such that adjacent vertices receive labels with difference at least 2, and vertices

at distance 2 or 3 receive distinct labels. The span of such a labeling is the difference between

the maximum and minimum labels used, and the minimum span over all L(2, 1, 1)-labelings of G

is called the L(2, 1, 1)-labeling number of G, denoted by λ2,1,1(G). In this paper, we investigate

the L(2, 1, 1)-labelings of caterpillars. Some useful sufficient conditions for λ2,1,1(T ) = ∆2(T ) =

maxuv∈E(T )(d(u) + d(v))) are given. Furthermore, we show that the sufficient conditions we

provide are also necessary for caterpillars with ∆2(T ) = 6.
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1. Introduction

Multilevel distance labeling can be regarded as an extension of distance two labeling, and

both of them are motivated by the channel assignment problem introduced by Hale [1]. The

channel assignment problem addresses the assignment of a channel, known as a frequency, to each

transmitter in a network. The channels assigned to transmitters must satisfy certain distance

restrictions to avoid interference between nearby transmitters. If there is high usage of wireless

communication networks, we have to find an appropriate channel assignment solution, so that

the range of channels used is minimized.

Griggs and Yeh [2] firstly proposed the notation of distance two labeling of a graph, and they

generalized it to p-levels of interference, specifically for given positive integers k1, k2, . . . , kp, an

L(k1, k2, . . . , kp)-labeling of a graph G is a function f from the vertices of G to non-negative

integers (labels), such that for each pair of distinct vertices u, v of G, |f(u) − f(v)| ≥ kt if

dist(u, v) = t, where dist(u, v) is the distance between u and v. The span of f is the maximum

difference f(u)− f(v) of any pair of vertices u, v of G. Without loss of generality, we will always

assume minv∈V (G) f(v) = 0. So the span of f is defined as maxv∈V (G) f(v). The L(k1, k2, . . . , kp)-

labeling number, denoted by λk1,k2,...,kp
(G), is the minimum span of all L(k1, k2, . . . , kp)-labelings

of G. If an L(k1, k2, . . . , kp)-labeling uses labels in the set {0, 1, . . . , k}, it will be called a k-

L(k1, k2, . . . , kp)-labeling.
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The L(k1, k2, . . . , kp)-labeling problem above is interesting in both theory and practical ap-

plications. For instance, when p = 1, k1 = 1, it becomes the ordinary vertex-coloring problem.

When p = 2, many interesting results [2–5] have been obtained for various families of finite graph-

s, especially for the case (k1, k2) = (2, 1). For more details, one may refer to the surveys [6, 7].

More recently, researchers began to investigate the L(k1, k2, k3)-labeling problem [8–13]. For

example, Zhou studied the problem for hypercubes Qn in [10]. The L(h, 1, 1)-labeling problem

for outer-planar graphs was investigated in [11]. Shao and Vesel [12] determined the L(3, 2, 1)-

labeling numbers for toroidal grids and triangular grids. In [13], King et al. studied the L(h, 1, 1)-

labeling problem for trees. They proved that ∆2(T )− 1 ≤ λ2,1,1(T ) ≤ ∆2(T ) and proposed the

following questions: To characterize finite trees T with diameter at least 3 such that λ2,1,1(T ) =

∆2(T ) (see [13, Question 10]). In addition, they conjectured that almost all trees have the

L(2, 1, 1)-labeling number attaining the lower bound. Recently, the result in [14, 15] asserted

that deciding whether a given tree has the L(2, 1, 1)-labeling number attaining the lower bound

is NP -complete. Therefore, providing some sufficient conditions for λ2,1,1(T ) = ∆2(T ) or giving

a characterization result for the subclass of trees becomes a meaningful topic.

Based on the above topics, some sufficient conditions for λ2,1,1(T ) = ∆2(T ) were provided

in [16]. Moreover, the sufficient conditions are also necessary for trees with diameter at most 6.

And in [17], the authors determined the L(2, 1, 1)-labeling numbers of caterpillars (as a subclass

of trees) with ∆2(T ) ≤ 5. But we found the case for ∆2(T ) ≥ 6 is more difficult than the case

for ∆2(T ) ≤ 5.

In this paper, we continue to study the L(2, 1, 1)-labelings of caterpillars. We provide some

sufficient conditions for λ2,1,1(T ) = ∆2(T ) in Section 2, which gives a partial answer in [13,

Question 10]. Furthermore, in Section 3, we show that the sufficient conditions we provide are

also necessary for caterpillars with ∆2(T ) = 6. This means that the problem of deciding whether

the L(2, 1, 1)-labeling number of a caterpillar T is ∆2(T )− 1 is polynomial when ∆2(T ) = 6.

2. Some sufficient conditions for λ2,1,1(T ) = ∆2(T )

In this paper, we always suppose that T is a finite tree with diameter at least 3. Define

∆2(T ) := maxuv∈E(T )(d(u)+d(v)), where d(u) is the degree of u. In the following, we abbreviate

∆2(T ) to ∆2. An edge e = uv is said to be heavy if d(u) + d(v) = ∆2, light if d(u) + d(v) < ∆2.

A vertex v is said to be bad if d(v) = ∆2 − 2.

King et al. [13] studied the L(2, 1, 1)-labelings of trees and gave the following result.

Lemma 2.1 ([13]) Let T be a finite tree with diameter at least 3. Then∆2−1 ≤ λ2,1,1(T ) ≤ ∆2.

For a vertex u in T , let N0(u) = {w|uw is light}, N1(u) = {w|uw is heavy} and d0(u) =

|N0(u)|, d1(u) = |N1(u)|. Then N(u) = N0(u) ∪ N1(u) and d(u) = d0(u) + d1(u). Let N [u] =

N(u)∪ {u}. For integers i and j with i ≤ j, we denote [i, j] as the set {i, i+1, . . . , j− 1, j}. Let

F = [0,∆2 − 1].

Before providing some sufficient conditions for λ2,1,1(T ) = ∆2, we give some useful lemmas

as follows.
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Lemma 2.2 ([16]) Let f be an L(2, 1, 1)-labeling of T with span ∆2−1. Let uv be heavy. Then

f(N(u)) ∪ f(N(v)) = F and |f(u)− f(v)| > 2.

Lemma 2.3 ([17]) Let f be an L(2, 1, 1)-labeling of T with span ∆2 − 1. If there exists a path

vuw in T such that d(u) = 2, uv is heavy and uw is light, then either f(v) = 0, f(w) = 1 and

f(N(v)) = [2,∆2 − 1], or f(v) = ∆2 − 1, f(w) = ∆2 − 2 and f(N(v)) = [0,∆2 − 3]. What is

more, if d(w) = d(v) − 1, then f(N(w)) = [3,∆2 − 1] or [0,∆2 − 4].

A tree is called a caterpillar if the removal of all vertices of degree 1 results in a path, called

the spline. In view of the above results, we now give some sufficient conditions for caterpillars

with ∆2 = 6.

Theorem 2.4 ([17]) Let T be a caterpillar with ∆2 = 6. If T contains one of the following

configurations, then λ2,1,1(T ) = 6.

(C1) There exist two bad vertices u and v such that dist(u, v) = 2 or 6;

(C2) There exist three bad vertices u, v and w such that dist(u, v) = dist(v, w) = 3.

Theorem 2.5 Let T be a caterpillar with ∆2 = 6. Let u and v be two consecutive bad vertices

with dist(u, v) = 10 and uu1u2 . . . u9v induce a path between u and v. If T contains one of the

following configurations, then λ2,1,1(T ) = 6.

(C1) d(ui) = 3 for each i ∈ {4, 5, 6};

(C2) d(ui) = 3 for each i ∈ {3, 4, 6, 7};

(C3) d(ui) = 3 for each i ∈ {2, 3, 4, 6} or {4, 6, 7, 8}.

Proof Suppose T contains one of the configurations (C1)–(C3). Let f be a 5-L(2, 1, 1)-labeling

of T . Then f(u) = 0 or 5 in view of Lemma 2.3. Without loss of generality, we assume that

f(u) = 0. This implies that f(u2) = 1. Therefore, f(u4) /∈ {1, 3, 4} since d(u4) = 3. By

symmetry, f(u6) /∈ {1, 4}.

(C1) By Lemma 2.3, |f(u4) − f(u5)| > 2 and |f(u5) − f(u6)| > 2 since u4u5 and u5u6 are

heavy. This means f(u5) /∈ {2, 3}. So f(u5) ∈ {0, 4, 5}. If f(u5) = 0, then f(u4) = 5, f(u6) = 4.

But it is impossible since f(u6) /∈ {1, 4}.

(C2) Firstly, we have f(u3) ∈ {3, 4, 5}. Next, we treat the following three cases to prove.

Case 1. If f(u3) = 3, then f(u4) = 0. Thus f(u5) ∈ {2, 4}. If f(u5) = 2, then f(u6) =

5, f(u7) = 1 and u6’s pendant neighbor must be labeled by 3. So f(u8) = 4. But now there is

no proper label for u7’s pendant neighbor. If f(u5) = 4, then f(u6) = 1, a contradiction.

Case 2. If f(u3) = 4, then f(u4) = 0. So f(u5) ∈ {3, 5} and f(u6) = 1, a contradiction.

Case 3. If f(u3) = 5, then f(u4) ∈ {0, 2}. In the case, if (f(u4), f(u5)) = (0, 2), then

u3’s pendant neighbor and u4’s pendant neighbor must be labeled by 3 and 4, respectively.

Now there is no proper label for u6. If (f(u4), f(u5)) = (0, 3) or (0, 4), then f(u6) = 1, a

contradiction. If (f(u4), f(u5)) = (2, 0), then f(u6) = 3. But there is no proper label for u7. If

(f(u4), f(u5)) = (2, 4), then f(u6) = 1, a contradiction.

(C3) Let d(ui) = 3 for each i ∈ {2, 3, 4, 6}. In the case, f(u4) ∈ {0, 2, 5}. If f(u4) = 5, then

there is no proper label for u3. If f(u4) = 2, then u3’s pendant neighbor must be labeled by 0
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and f(N(u4)) = {0, 4, 5}. It is a contradiction since any vertex in N(u4) is distance at most 3

with u3’s pendant neighbor. Thus f(u4) = 0 and u3’s pendant neighbor must be labeled by 2.

So f(N [u4]) = {0, 3, 4, 5}. Therefore, f(u6) ∈ {1, 2}. If f(u6) = 2, then f(N(u6)) = {0, 4, 5},

again a contradiction to f(u4) = 0. Thus f(u6) = 1. But it is impossible. A similar argument

can be made for d(ui) = 3 for each i ∈ {4, 6, 7, 8}. 2

v

u v

v

( )a

( )c

( )b
u

u

Figure 1 (a) for (C1), (b) for (C2), (c) for (C3)

Theorem 2.6 Let T be a caterpillar with ∆2 = 6. Let u and v be two consecutive bad vertices

with dist(u, v) = 4k+2 (k ≥ 3) and uu1u2 · · ·u4k+1v is the path between u and v. If T contains

all the following configurations, then λ2,1,1(T ) = 6.

(I) d(ui) = 3 for each i ∈ {4, 6, 8, . . . , 4k − 2};

(II) d(u2) = d(u3) = 3, or d(u5) = 3, or d(u7) = 3;

(III) d(u4k−5) = 3, or d(u4k−3) = 3, or d(u4k−1) = d(u4k) = 3;

(IV) d(ui) = 3, or d(ui+2) = 3, or d(ui+4) = 3 for all i ∈ {7, 11, . . . , 4k − 9}.

Proof Assume the following conditions hold.

(I) d(ui) = 3 for each i ∈ {4, 6, 8, . . . , 4k − 2};

(II′) Exactly one of d(u2) = d(u3) = 3, d(u5) = 3 and d(u7) = 3 holds;

(III′) Exactly one of d(u4k−5) = 3, d(u4k−3) = 3 and d(u4k−1) = d(u4k) = 3 holds;

(IV′) Exactly one of d(ui) = 3, d(ui+2) = 3 and d(ui+4) = 3 holds, for each i ∈ {7, 11, . . . , 4k−

9}.

It is enough to show the assumption derives λ2,1,1(T ) = 6, since any subgraph of T has the

L(2, 1, 1)-labeling number smaller than T .

Suppose f is a 5-L(2, 1, 1)-labeling of T . Without loss of generality, suppose f(u) = 0. Then

f(u2) = 1 by Lemma 2.3. Similarly, f(u4k) ∈ {1, 4}. Next, we have the following claims.

Claim 1. If d(u2) = d(u3) = 3 and d(u5) = d(u7) = 2, then f(u6) = 1 and f(u8) ∈ {0, 2}.

According to the proof of (C3) in Theorem 2.5, we have f(u6) = 1. So f(u8) ∈ {0, 2}.

Claim 2. If d(u5) = 3 and d(u2) = d(u3) = d(u7) = 2, then (a) f(u6) = 1 and f(u8) ∈ {0, 2};

or (b) f(u6) = 4 and f(u8) ∈ {3, 5}.

By Lemma 2.3, |f(u4) − f(u5)| > 2 and |f(u5) − f(u6)| > 2 since u4u5 and u5u6 are heavy.

Thus f(u5) /∈ {2, 3}. This means f(u5) ∈ {0, 4, 5}. If f(u5) = 0, then f(u4) = 5 in view of

f(u2) = 1. So f(u6) = 4 and f(u8) ∈ {3, 5}. If f(u5) = 4 or 5, then we have f(u6) = 1 and

f(u8) ∈ {0, 2}.
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Claim 3. If d(u7) = 3 and d(u2) = d(u3) = d(u5) = 2, then (a) f(u6) = 1 and f(u8) = 0; or

(b) f(u6) = 4 and f(u8) = 5.

By Lemma 2.3, |f(u6) − f(u7)| > 2 and |f(u7) − f(u8)| > 2 since u6u7 and u7u8 are heavy.

This means f(u7) ∈ {0, 1, 4, 5}. If f(u7) = 0, then {f(u6), f(u8)} ∈ {{3, 4}, {3, 5}, {4, 5}}.

Firstly, it is not difficult to see that {f(u6), f(u8)} 6= {3, 5}. Secondly, {f(u6), f(u8)} 6= {3, 4}.

Otherwise, u7’s pendant neighbor has no proper label. Thus {f(u6), f(u8)} = {4, 5}. If f(u6) =

5, f(u8) = 4, then u6’s and u7’s pendant neighbor must be labeled by 1 and 3, respectively.

Thus f(u5) = 2, f(u4) = 4, a contradiction. So f(u6) = 4, f(u8) = 5. By symmetry, f(u6) = 1,

f(u8) = 0 when f(u7) = 5. If f(u7) = 1, then {f(u6), f(u8)} = {4, 5}. If f(u6) = 5, f(u8) = 4,

then f(u4) = 3 and f(N(u4)) = {0, 1, 5}. It is a contradiction since any vertex in N(u4) is

distance at most 3 with u6. Thus f(u6) = 4, f(u8) = 5. By symmetry, we have f(u6) = 1,

f(u8) = 0 when f(u7) = 4.

Let i ∈ {7, 11, . . . , 4k − 9}. Then we have the following claims.

Claim 4. Suppose d(ui) = 2, f(ui−1) = 1 and f(ui+1) ∈ {0, 2}. If d(ui+2) = 3, d(ui+4) = 2,

then f(ui+3) = 1 and f(ui+5) ∈ {0, 2}. If d(ui+2) = 2, d(ui+4) = 3, then (a) f(ui+3) = 1 and

f(ui+5) = 0; or (b) f(ui+3) = 4 and f(ui+5) = 5.

If d(ui+2) = 3, then by Lemma 2.3, |f(ui+1) − f(ui+2)| > 2 and |f(ui+2) − f(ui+3)| > 2

since ui+1ui+2 and ui+2ui+3 are heavy. Thus f(ui+3) = 1 and f(ui+5) ∈ {0, 2}. Similarly,

if d(ui+2) = 2, d(ui+4) = 3, then (a) f(ui+3) = 1 and f(ui+5) = 0; or (b) f(ui+3) = 4 and

f(ui+5) = 5.

By symmetry, it is easy to obtain the following claim.

Claim 5. Suppose d(ui) = 2, f(ui−1) = 4 and f(ui+1) ∈ {3, 5}. If d(ui+2) = 3, d(ui+4) = 2,

then f(ui+3) = 4 and f(ui+5) ∈ {3, 5}. If d(ui+2) = 2, d(ui+4) = 3, then (a) f(ui+3) = 1 and

f(ui+5) = 0; or (b) f(ui+3) = 4 and f(ui+5) = 5.

Claim 6. Suppose d(ui) = 3, d(ui+3) = d(ui+5) = 2. If f(ui−1) = 1 and f(ui+1) = 0,

then f(ui+3) = 1 and f(ui+5) ∈ {0, 2}. If f(ui−1) = 4 and f(ui+1) = 5, then f(ui+3) = 4 and

f(ui+5) ∈ {3, 5}.

If f(ui−1) = 1 and f(ui+1) = 0, then ui’s pendant neighbor must be labeled by 2. Thus

f(N(ui+1)) = {3, 4, 5}. So f(ui+3) = 1 and f(ui+5) ∈ {0, 2}. Similarly, if f(ui−1) = 4 and

f(ui+1) = 5, then f(ui+3) = 4 and f(ui+5) ∈ {3, 5}.

We have another three claims.

Claim 7. Suppose d(u4k−5) = 2, f(u4k−6) = 1 and f(u4k−4) ∈ {0, 2}. If d(u4k−3) = 3,

d(u4k−1) = d(u4k) = 2, then f(u4k−2) = 1 and f(u4k) ∈ {0, 2}. If d(u4k−3) = 2, d(u4k−1) =

d(u4k) = 3, then f(u4k−2) = 1 and f(u4k) = 0.

According to the proof of Claim 4, we have f(u4k−2) = 1 and f(u4k) ∈ {0, 2}. If d(u4k−3) = 2,

d(u4k−1) = d(u4k) = 3, then f(u4k−2) = 1 and f(u4k) = 0 by the proof of Claim 5.

By symmetry, it is easy to obtain the following claim.

Claim 8. Suppose d(u4k−5) = 2, f(u4k−6) = 4 and f(u4k−4) ∈ {3, 5}. If d(u4k−3) = 3,

d(u4k−1) = d(u4k) = 2, then f(u4k−2) = 4 and f(u4k) ∈ {3, 5}. If d(u4k−3) = 2, d(u4k−1) =

d(u4k) = 3, then f(u4k−2) = 4 and f(u4k) = 5.
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Claim 9. Suppose d(u4k−5) = 3, d(u4k−3) = d(u4k−1) = d(u4k) = 2. If f(u4k−6) = 1 and

f(u4k−4) = 0, then f(u4k−2) = 1 and f(u4k) ∈ {0, 2}. If f(u4k−6) = 4 and f(u4k−4) = 5, then

f(u4k−2) = 4 and f(u4k) ∈ {3, 5}.

Using a similar argument to the proof of Claim 4, we have the results hold.

By Claims 1–9, we conclude that f(u4k−2) ∈ {1, 4}, which is a contradiction. Thus

λ2,1,1(T ) = 6. 2

3. A characterization result for caterpillars with ∆2 = 6

Let T be a tree with diameter at least 3. Then by the definition of ∆2, we have ∆2 ≥ 4.

For ∆2 = 4 and ∆2 = 5, we have given a complete characterization in [17]. In this section, we

always suppose T is a caterpillar with ∆2 = 6.

Theorem 3.1 ([17]) Let T be a caterpillar without bad vertex or with a unique bad vertex.

Then λ2,1,1(T ) = ∆2 − 1.

Now we consider that T is a caterpillar with at least two bad vertices.

Theorem 3.2 ([17]) Let T be a caterpillar with no bad vertices of distance 3 or 4k + 2 for

some integer k ≥ 0. Then λ2,1,1(T ) = ∆2 − 1.

In the following, we will give a complete characterization of caterpillars with ∆2 = 6.

Theorem 3.3 Let T be a caterpillar with ∆2 = 6. Then λ2,1,1(T ) = 6 if and only if one of the

followings holds.

(1) T contains one of the configurations (C1)–(C2) in Theorem 2.4;

(2) T contains one of the configurations (C1)–(C3) in Theorem 2.5;

(3) T contains all the configurations in Theorem 2.6.

Proof Sufficiency. Obviously, if one of (1)–(3) holds, then λ2,1,1(T ) = 6 by Theorems 2.4–2.6.

Necessity. Suppose that T has no configurations of Theorems 2.4 and 2.5. And suppose

for any two consecutive bad vertices u, v with dist(u, v) = 4k + 2 (k ≥ 3), we have one of the

followings holds:

(I) d(ui) = 2 for some i ∈ {4, 6, 8, . . . , 4k − 2};

(II) d(u2) = d(u5) = d(u7) = 2 or d(u3) = d(u5) = d(u7) = 2;

(III) d(u4k−5) = d(u4k−3) = d(u4k−1) = 2 or d(u4k−5) = d(u4k−3) = d(u4k) = 2;

(IV) d(ui) = d(ui+2) = d(ui+4) = 2 for some i ∈ {7, 11, . . . , 4k − 9},

where uu1u2 · · ·u4k+1v is the path between u and v.

Let v1, v2, . . . , vb be all bad vertices of T . For any bad vertex vj , let V
p
j be the set of vertices

on the vj − vj+1 path. Let Vj = V p
j ∪ N(V p

j ). For a 5-L(2, 1, 1)-labeling f on T , if f(vj) = 0,

f(vrj ) = 3 (or 4), then we call vj is of A-style, where vrj is the right-hand side neighbor of vj ; If

f(vj) = 5, f(vrj ) = 2 (or 3), then we call vj is of B-style. If there exists a 5-L(2, 1, 1)-labeling f

on G(Vj), such that vj is X-style under f and vj+1 is Y -style under f , then we call G(Vj) is of
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XY -style, for X,Y ∈ {A,B}. By symmetry of i and 5 − i, G(Vj) is of XY -style, if and only if

G(Vj) is of Y X-style.

Before giving a 5-L(2, 1, 1)-labeling of T , we first show that G(Vj) is of certain style, where

dist(vj , vj+1) = 4k + 2 for some k ≥ 3.

Case 1. If (I) holds, that is, d(ui) = 2 for some i ∈ {4, 6, 8, . . . , 4k− 2}, we give a 5-L(2, 1, 1)-

labeling on G(Vj) as follows, which implies G(Vj) is of AA-style (also BB-style by symmetry),

see Figure 2.
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Figure 2 ‘AA’ labeling style of the 4k + 2 segment in Case 1

(1) If i | 4, let f(vj)f(u1) · · · f(ui−1) = 0314051 · · · 40514, f(ui) = 2, and f(ui+1)f(ui+2) · · ·

f(u4k)f(u4k+1)f(vj+1) = 5041 · · · 504150;

If i ∤ 4, let f(vj)f(u1) · · · f(ui−1) = 0314051 · · · 4051405, f(ui) = 2, and f(ui+1)f(ui+2) · · ·

f(u4k)f(u4k+1)f(vj+1) = 41504 · · · 1504150.

(2) For j /∈ {2, i − 1, i + 1}, if f(uj) = 0 or 1, then label uj’s pendant neighbor by 3; If

f(uj) = 4 or 5, then label uj ’s pendant neighbor by 2.

(3) For j ∈ {i− 1, i+ 1}, if f(uj) = 4, then label uj’s pendant neighbor by 0; If f(uj) = 5,

then label uj’s pendant neighbor by 1; Label u2’s pendant neighbor by 5.

One can verify that it is a 5-L(2, 1, 1)-labeling on the segment between vj and vj+1.

Case 2. If (II) holds, that is, d(u2) = d(u5) = d(u7) = 2 or d(u3) = d(u5) = d(u7) = 2,

then we give a 5-L(2, 1, 1)-labeling on G(Vj) as follows, which implies G(Vj) is of AB-style (also
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BA-style by symmetry), see Figure 3.
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Figure 3 ‘AB’ labeling style of the 4k + 2 segment in Case 2

Case 3. If (III) holds, that is, d(u4k−5) = d(u4k−3) = d(u4k−1) = 2 or d(u4k−5) = d(u4k−3) =

d(u4k) = 2, we give a 5-L(2, 1, 1)-labeling on G(Vj) as follows, which implies G(Vj) is of AB-style

(also BA-style by symmetry), see Figure 4.
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Figure 4 ‘AB’ labeling style of the 4k + 2 segment in Case 3

Case 4. If (IV) holds, that is, d(ui) = d(ui+2) = d(ui+4) = 2 for some i ∈ {7, 11, . . . , 4k− 9},

we give a 5-L(2, 1, 1)-labeling on G(Vj) as follows, which implies G(Vj) is of AB-style (also

BA-style by symmetry), see Figure 5.
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Figure 5 ‘AB’ labeling style of the 4k + 2 segment in Case 4

Secondly, we show that G(Vj) is of certain style, where dist(vj , vj+1) = 4k, 4k+ 1, 4k+ 3 for

some k ≥ 1.

We can label G(Vj) as Figure 6, when dist(vj , vj+1) = 4k. This implies G(Vj) is of AA-style

(also BB-style by symmetry).

We can label G(Vj) as Figure 7, when dist(vj , vj+1) = 4k + 1. This implies G(Vj) is of

AB-style (also BA-style by symmetry).
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Figure 6 ‘AA’ labeling style of the 4k segment
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We can label G(Vj) as Figure 8, when dist(vj , vj+1) = 4k + 3. This implies G(Vj) is of

AB-style (also BA-style by symmetry).
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Figure 8 ‘AB’ labeling style of the 4k + 3 segment

Now we give a 5-L(2, 1, 1)-labeling of T by the following three steps.

Step 1. Label the vertices in the left-hand side of v1 as follows, such that v1 is of A-style, see

Figure 9.

Step 2. Suppose that G(V0 ∪V1 ∪ · · · ∪Vj) has an L(2, 1, 1)-labeling with span 5 such that vj

is of A or B-style, where V0 is the set of vertices on the left hand side of vr1 (include vr1). Then
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by the discussion above we can extend the f to G(V0 ∪ V1 ∪ · · · ∪ Vj ∪ Vj+1) such that vj+1 is of

A or B-style. Going on with the above process, we can extend f to G(V0 ∪ V1 ∪ · · · ∪ Vb).
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2 3 2

1 5 0 4
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Figure 9 Label the vertices in the left-hand side of v1 such that v1 is of A-style

Step 3. Label the vertices on the right hand side of vb as Figure 10, when vb is of A or

B-style.
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Figure 10 Label the vertices on the right hand side of vrb

Thus, f is a 5-L(2, 1, 1)-labeling of T . This completes the proof of Theorem 3.3. 2

4. Concluding remarks

Golovach et al. [14] asserted that deciding whether a given tree has the L(2, 1, 1)-labeling

number attaining the lower bound is NP -complete. Therefore, giving a characterization result

for the subclass of trees is a meaningful topic. In this paper, we completely characterize the

L(2, 1, 1)-labelings of caterpillars (as a subclass of trees) with ∆2(T ) = 6. We also try to charac-

terize the L(2, 1, 1)-labelings of caterpillars with ∆2(T ) ≥ 7. But we found it very difficult. This

leads us to the following question: what is the computational complexity of L(2, 1, 1)-labeling

for caterpillars?
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