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Abstract Let k be a commutative ring with finite weak dimension and let G be a group. In

this paper, we explore the criterion that a group G has finite Gorenstein homological dimension.

It is shown that the finiteness of the Gorenstein homological dimension of G coincides with the

finiteness of the Gorenstein weak dimension of the group ring kG. Furthermore, we give a Goren-

stein analogy of the Serre’s theorem. Some well-known results for the Gorenstein homological

dimension of G over the integer ring are also extended.
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1. Introduction

The cohomology theory of groups arose from both topological and algebraic sources. There

are many (co)homological dimensions assigned to a group. Let ZG be the integral group ring

of a group G. The cohomological dimension cdZG of G over Z is the projective dimension of

the trivial ZG-module Z. The well-known Serre’s theorem says that if Γ is a torsion-free group

and Γ′ is a subgroup of finite index, then cdZΓ
′ = cdZΓ (see [1, Theorem 8.3.1]). Asadollahi

et al studied the Gorenstein cohomological dimension GcdZG (see [2]) of G over Z which is the

Gorenstein projective dimension of the trivial ZG-module Z. It was shown that GcdZG is closely

related to the spliZG (the supremum of the projective dimensions of the injective ZG-modules).

For example, GcdZG < ∞ if and only if spliZG < ∞ if and only if any ZG-module has finite

Gorenstein projective dimension. Asadollahi et al. [3] considered the Gorenstein homological

dimension GhdZG of a group G, i.e., the Gorenstein flat dimension of the trivial ZG-module Z,

and showed that this invariant is tightly related to the sfliZG (the supremum of the flat lengths

of injective modules) and reflects several properties of the underlying group G. More recently,

Emmanouil [4] generalized many properties of cohomological dimension of G over a commutative

ring to Gorenstein cohomological dimension.

Motivated by this, in the present paper, we consider the Gorenstein homological dimension

GhdkG of a group G (the Gorenstein flat dimension of the trivial kG-module k) over a commu-

tative ring k with finite weak dimension. This paper is organized as follows. Section 3 is devoted

to show that GhdkG < ∞ if and only if sflikG < ∞ if and only if the Gorenstein weak dimension

Received February 21, 2022; Accepted August 19, 2022

Supported by the Natural Science Foundation of Hunan Province (Grant No. 2021JJ30536) and the Scientific
Research Foundation of Hunan Provincial Education Department (Grant No. 21A0493).

E-mail address: xymls999@126.com



192 Yueming XIANG

Gw.dimkG < ∞. Consequently, if k is a commutative ring with finite global dimension, then

GcdkG < ∞ if and only if GhdkG < ∞ and P(kG) = F(kG) (where P(kG) (resp., F(kG)) is the

class of modules that have finite projective dimensions (resp., finite flat dimensions)). In Section

4, we prove the following results:

(1) Let R be a commutative ring, and let G be a group. Then GhdRG = 0 if and only if G

is finite.

(2) Let k be a commutative ring with finite weak dimension and (Gα) a directed family

of subgroups of a group G such that G is the direct limit of the Gα. If GhdkG is finite, then

GhdkG = sup{GhdkGα}.

(3) Let k be a commutative ring with finite weak dimension and let H be a normal subgroup

of a group G. Then GhdkG ≤ GhdkH +Ghdk(G/H).

(4) If k is a commutative ring with finite weak dimension and H is a subgroup of a group G

of finite index, then GhdkH = GhdkG.

Furthermore, we give an affirmative answer to Question 4.11 raised in [5].

2. Preliminaries

We set notations and discuss several basic facts which will be useful in the sequel. Unless

otherwise stated, R denotes an associative ring with identity and modules are left R-modules.

fdRM denotes the flat dimension of an R-module M . We write w.dimR for the weak dimension

of a ring R. More concepts and notations refer to [1, 6, 7].

A complete flat resolution is an exact sequence of flat R-modules

· · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · · ,

which remains exact after tensoring by arbitrary injective right R-module. An R-module M is

called Gorenstein flat [8] if M ∼= Ker(F 0 −→ F 1). The Gorenstein flat dimension GfdRM is at

most n if there is an exact sequence

0 −→ Gn −→ Gn−1 −→ · · · −→ G1 −→ G0 −→ M −→ 0

with every Gi Gorenstein flat.

A ring R is called left (right) GF -closed [9] if the class of all Gorenstein flat left (right)

R-modules is closed under extensions. Lately, Šaroch et al proved that any ring is left (right)

GF -closed [10]. Thus, we can restate Theorems 2.8 and 2.11 in [9] as follows.

Proposition 2.1 Let R be an arbitrary ring, and let M be an R-module with finite Gorenstein

flat dimension. Then the following are equivalent:

(1) GfdRM ≤ n;

(2) TorRi (L,M) = 0 for all right R-modules L with finite injective dimension, and all i > n;

(3) TorRi (I,M) = 0 for all injective right R-modules I, and all i > n;

(4) For every exact sequence

0 −→ Kn −→ Gn−1 −→ · · · −→ G1 −→ G0 −→ M −→ 0,
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where G0, . . . , Gn−1 are Gorenstein flat, then so is Kn.

Proposition 2.2 Let R be an arbitrary ring and consider a short exact sequence of R-modules

0 −→ A −→ B −→ C −→ 0. Then the following statements hold.

(1) If any two of the modules A, B, or C have finite Gorenstein flat dimension, then so has

the third.

(2) GfdRA ≤ sup{GfdRB,GfdRC − 1} with equality if GfdRB 6= GfdRC.

(3) GfdRB ≤ sup{GfdRA,GfdRC} with equality if GfdRC 6= GfdRA+ 1.

(4) GfdRC ≤ sup{GfdRB,GfdRA+ 1} with equality if GfdRB 6= GfdRA.

Proposition 2.3 Let R be a ring and consider an exact sequence of R-modules

0 −→ Fn −→ · · · −→ F1 −→ F0 −→ F −→ 0.

Then we have GfdRF ≤ max{i+GfdRFi, i = 0, 1, . . . , n}.

Proof Similar to the proof of Lemma 2.8 in [4], it is shown by applying the propositions above. 2

Recall that the left Gorenstein weak dimension of a ring R is defined as

l.Gw.dimR = sup{GfdRM | M is a left R-module}.

Similarly, we have the concept of right Gorenstein weak dimension. According to [11, Theorem

6], the left Gorenstein weak dimension of a ring R is equal to its right Gorenstein weak dimension.

Thus, we denote the common value by Gw.dimR.

Let H be a subgroup of G. Following [12], for an RH-module M , we define the induced

module M ↑GH := RG ⊗RH M with RG acting on the left side and the coinduced module

HomRH(RG,M). Moreover, every RG-module N can be viewed as an RH-module. It can

be verified that the induced functor and the restricted functor also preserve Gorenstein flat

modules.

3. Finite Gorenstein homological dimension

An R-module N is called projectively coresolved Gorenstein flat [10] if there exists an exact

sequence of projective R-modules

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · · ,

which remains exact after tensoring by any injective right R-module, and N ∼= Ker(F 0 −→ F 1).

By the definition, every projectively coresolved Gorenstein flat module is Gorenstein flat. First

of all, we have the following result.

Lemma 3.1 Let k be a commutative ring with finite weak dimension and let G be a group.

Then any projectively coresolved Gorenstein flat kG-module is projective as a k-module.

Proof By [10, Theorem 4.4], every projectively coresolved Gorenstein flat module is Gorenstein

projective. So the result follows from [4, Proposition 1.1]. 2
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Proposition 3.2 Let k be a commutative ring with finite weak dimension and let G be a group.

Then, for any kG-module M with finite Gorenstein flat dimension, there exists an exact sequence

of kG-modules

0 −→ M −→ N −→ L −→ 0,

where L is projectively coresolved Gorenstein flat and fdkGN = GfdkGM . Moreover, the exact

sequence above is k-split.

Proof Suppose that GfdkGM = n < ∞. We proceed by induction on n.

(1) The case n = 0 follows from [10, Theorem 4.11].

(2) Let n > 0. Choose a short exact sequence of kG-modules

0 −→ K −→ F −→ M −→ 0

with F flat and GfdkGK = n − 1 by Proposition 2.2. Applying the induction hypothesis, we

have a short exact sequence

0 −→ K −→ F ′ −→ Q −→ 0

with fdkGF
′ = n− 1 and Q projectively coresolved Gorenstein flat. Thus, one gets the following

pushout diagram:

0

��

0

��

0 // K

��

// F ′

��

// Q // 0

0 // F

��

// F ′′

��

// Q // 0

M

��

M

��

0 0

Diagram 1 The pushout diagram

where F ′′ is Gorenstein flat since all rings are GF -closed. Then, in view of [10, Theorem 4.11]

again, there is a short exact sequence of kG-modules

0 −→ F ′′ −→ P −→ L −→ 0

with P flat and L projectively coresolved Gorenstein flat. Thus, we have another pushout

diagram:

The right column is desired. To see this we must show that fdkGN = n. The class of

Gorenstein flat modules is projective resolving [9, Theorem 2.3], so if N is flat, then M is
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Gorenstein flat, a contradiction. Thus, fdkGN > 0, and it implies fdkGN = fdkGF
′ + 1 = n.

Moreover, by Lemma 3.1, L is k-projective, and hence the corresponding exact sequence is k-

split. 2

0

��

0

��

0 // F ′ // F ′′

��

// M

��

// 0

0 // F ′ // P

��

// N

��

// 0

L

��

L

��

0 0

Diagram 2 The pushout diagram

The proposition above implies immediately.

Corollary 3.3 Let k be a commutative ring with finite weak dimension and let G be a group

such that GhdkG < ∞. Then, there exists a k-split exact sequence of kG-modules

0 −→ k −→ N −→ L −→ 0,

and fdkGN = GhdkG.

Following [13], an exact sequence of R-modules

0 −→ A′ −→ A −→ A′′ −→ 0

is pure exact if, for any right R-module B,

0 −→ B ⊗R A′ −→ B ⊗R A −→ B ⊗R A′′ −→ 0

is also exact. It is easy to see that every split exact sequence is pure exact. The first exact

sequence above is pure exact if and only if A′′ is flat.

Let R be a commutative ring and G a group, and let V and W be RG-modules. Then V ⊗RW

becomes an RG-module under the diagonal action g(v ⊗w) = (gv)⊗ (gw) for all v ∈ V , w ∈ W

and g ∈ G. It is trivial that V ⊗R W ∼= W ⊗R V . Let A and B be a right RG-module and a left

RG-module, respectively. We set A⊗RB as a right RG-module with (a⊗b)g = ag⊗g−1b, where

a ∈ A, b ∈ B, g ∈ G (see [14]). Now we have the following assertion which is crucial for our

considerations.

Proposition 3.4 Let R be a commutative ring, and let G be a group. If there exists an R-pure

exact sequence of RG-modules

0 −→ R −→ N −→ L −→ 0 (3.1)
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with fdRGN = n < ∞, then for any R-flat RG-module M , we have GfdRGM ≤ fdRGN .

Proof We consider an R-flat RG-module M and its left RG-flat resolution

· · · −→ F1 −→ F0 −→ M −→ 0

with Mi the ith yoke module and M0 = M . To complete the proof, it is enough to prove that

the RG-module Mn is Gorenstein flat in the light of Proposition 2.1. Noting that N is R-flat,

we have an exact sequence of RG-modules

· · · −→ F1 ⊗R N −→ F0 ⊗R N −→ M ⊗R N −→ 0.

Similar to [5, Lemma 3.2], we can prove that the exact sequence above is a flat resolution of

the RG-module M ⊗R N and its ith yoke module is Mi ⊗R N . On the other hand, in view

of [5, Lemma 3.3], fdRG(M ⊗R N) ≤ fdRGN = n. Thus, the RG-modules Mi ⊗R N are flat for

all i ≥ n and hence Mn ⊗R A⊗R N is RG-flat for any R-flat RG-module A.

Now tensoring the exact sequence (3.1) with the RG-modules Mn⊗RL⊗j , where L⊗j denotes

the jth tensor power of L over R, we obtain short exact sequences of RG-modules

0 −→ Mn −→ Mn ⊗R N −→ Mn ⊗R L −→ 0,

0 −→ Mn ⊗R L −→ Mn ⊗R L⊗R N −→ Mn ⊗R L⊗2 −→ 0,

· · ·

Splicing these exact sequences, one gets an exact sequence

0 −→ Mn −→ Mn ⊗R N −→ Mn ⊗R L⊗R N −→ Mn ⊗R L⊗2 ⊗R N −→ · · · .

Furthermore, we obtain a doubly infinite exact sequence of flat RG-modules

F ◦ : · · · −→ Fn+1 −→ Fn −→ Mn ⊗R N −→ Mn ⊗R L⊗R N −→ · · · .

For the moment, it suffices to show that the complex E ⊗RG F ◦ is exact for any injective right

RG-module E. Noting that there is a split exact sequence of right RG-modules

0 −→ E −→ E⊗RN −→ E⊗RL −→ 0,

it is enough to prove that the complex (E⊗RN)⊗RG F ◦ is exact. In fact, we have

(E⊗RN)⊗RG F ◦ ∼= (E⊗RN)⊗RG (R⊗R F ◦)

∼= ((E⊗RN)⊗RG R)⊗R F ◦ ∼= (E ⊗RG N)⊗R F ◦ (using [14,Lemma3.1])

∼= E ⊗RG (N ⊗R F ◦) ∼= E ⊗RG (F ◦ ⊗R N).

Since F ◦ ⊗R N is exact and the yoke modules Mi ⊗R N (i ≥ n) and Mn ⊗R L⊗j ⊗R N (j ≥ 1)

are RG-flat, E ⊗RG (F ◦ ⊗R N) is exact, as desired. 2

Corollary 3.5 Let R be a commutative ring, and let G be a group. If there exists an R-pure

exact sequence of RG-modules

0 −→ R −→ N −→ L −→ 0
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with fdRGN < ∞, then for any RG-module M , we have GfdRGM ≤ fdRGN + fdRM .

Proof Assume fdR(M) = m < ∞. We proceed by induction on m.

(1) The case m = 0 follows from Proposition 3.4.

(2) Let n > 0. We consider a short exact sequence of RG-modules

0 −→ K −→ F −→ M −→ 0,

where F is RG-flat, and hence F is R-flat. So fdRK ≤ m− 1. By the induction hypothesis,

GfdRGK ≤ fdRGN + (m− 1).

Therefore, Proposition 2.2 implies GfdRGM ≤ GfdRGK + 1 ≤ fdRGN +m. 2

Now we establish the main result in this section.

Theorem 3.6 Let k be a commutative ring with finite weak dimension and let G be a group.

Then the following statements are equivalent:

(1) Gw.dimkG < ∞;

(2) sflikG < ∞;

(3) GhdkG < ∞;

(4) There exists a k-split exact sequence of kG-modules

0 −→ k −→ N −→ L −→ 0

with fdkGN < ∞;

(5) There exists a k-pure exact sequence of kG-modules

0 −→ k −→ N −→ L −→ 0

with fdkGN < ∞.

Proof (1) ⇔ (2) follow from [15, Theorem 5.3] because the group ring kG is isomorphic with

its opposite ring.

(1) ⇒ (3) and (4) ⇒ (5) are trivial.

(3) ⇒ (4) follows from Corollary 3.3 and (5) ⇒ (1) follows from Corollary 3.5. 2

Remark 3.7 In the theorem above, Gw.dimkG = sflikG by [15, Theorem 5.3]. If F is a field,

it is shown that Gw.dimFG = GhdFG (see [5, Proposition 4.2]). However, Gw.dimRG need not

to be equal to GhdRG over a commutative ring R. For example, let G be a finite group and

R = Z, then GhdZG = 0 but Gw.dimZG = 1. Moreover, we have the following result which is a

Gorenstein state of [16, Proposition 4].

Corollary 3.8 Let R be a commutative ring, and let G be a group. Then Gw.dimRG ≤

GhdRG+w.dimR.

Proof We assume that GhdRG = m and w.dimR = n are finite. By Corollary 3.3, there is an
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R-split short exact sequence of RG-modules

0 −→ R −→ N −→ L −→ 0,

and fdRGN = GhdRG = n. So, in view of Corollary 3.5, we have

GfdRGM ≤ fdRGN + fdRM ≤ m+ n

for any RG-module M . 2

Remark 3.9 By Corollary 3.8, if k is a von Numann regular ring, then Gw.dimkG = GhdkG.

We do not know whether Gorenstein projective modules are Gorenstein flat modules. The

well-known Govorov-Lazard theorem says that a module is flat if and only if it is a direct limit of

finitely generated projective modules. Holm [17] constructed an algebra which has no Gorenstein

analogue of the Govorov-Lazard Theorem. However, we have the following result over a ring with

finite Gorenstein weak dimension, which is an independent interest.

Proposition 3.10 Let R be a ring (unnecessarily commutative) with Gw.dimR < ∞, and let

M be an R-module. Then the following are equivalent:

(1) M is Gorenstein flat;

(2) There is a direct system (Mi) of finitely generated Gorenstein projective R-modules such

that M ∼= lim−→Mi.

Proof (2) ⇒ (1). By [15, Theorem 5.3] and [18, Proposition 9], every Gorenstein projective

R-module is Gorenstein flat. Thus, in view of [19, Lemma 3.1], M is Gorenstein flat because any

ring is GF -closed.

(1) ⇒ (2). If M is Gorenstein flat, there exists an exact sequence of flat R-modules

F ◦ : · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

such that E⊗RF ◦ is exact for any injective right R-module E and M ∼= Z(F ◦) (Ker(F 0 −→ F 1).

By [20, Lemma 8.4], F ◦ ∼= lim−→P ◦
i , where all P

◦
i are exact sequences of finitely generated projective

R-modules. Set Mi := Z(P ◦
i ). Since Gw.dimR is finite, every injective R-module has finite flat

dimension. It implies that TorRn (I,Mi) = 0 for all n > 0 and any injective R-module I. Thus, all

Mi are finitely generated, projectively coresolved Gorenstein flat, and hence all Mi are finitely

generated Gorenstein projective. Moreover, M ∼= Z(lim−→P ◦
i )

∼= lim−→Mi by [21, Proposition 3.4].

We complete the proof. 2

Let P(R) (resp., F(R)) be the class consisting of the R-modules with finite projective dimen-

sion (resp., finite flat dimension).

Proposition 3.11 Let k be a commutative ring with finite global dimension and let G be a

group. Then the following conditions are equivalent:

(1) GcdkG < ∞;

(2) GhdkG < ∞ and P(kG) = F(kG).

Proof It follows from Theorem 3.6, [4, Theorem 1.7] and [4, Corollary 4.11]. 2
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4. Analogy of Serre’s theorem

In this section, we generalize some well-known results about Gorenstein homological dimen-

sions of groups over ordinary integer rings onto commutative coefficient rings.

Lemma 4.1 Let R be a commutative ring, and let G be a group. Then GhdRG ≤ GhdZG.

Proof If GhdZG is infinite, there is nothing to prove. Now let GhdZG = n < ∞. By Theorem

3.6, there exists a Z-pure exact sequence of ZG-modules

0 −→ Z −→ N −→ L −→ 0

with fdZGN ≤ n. Then we have an exact sequence of RG-modules

0 −→ R −→ R⊗Z N −→ R⊗Z L −→ 0.

Noting that R ⊗Z L is also R-flat, the exact sequence above is R-pure. Choose a left ZG-flat

resolution of N

0 −→ Fn −→ · · · −→ F1 −→ F0 −→ N −→ 0.

Since N is Z-flat, we obtain an exact sequence of RG-modules

0 −→ R⊗Z Fn −→ · · · −→ R ⊗Z F1 −→ R⊗Z F0 −→ R ⊗Z N −→ 0

with all RG-modules R⊗ZFi (i = 0, 1, 2, . . . , n) being flat, and hence fdRG(R⊗ZN) ≤ n. Thus,

in view of Proposition 3.4, GhdRG = GfdRGR ≤ fdRG(R⊗Z N) ≤ n. 2

Proposition 4.2 Let R be a commutative ring, and let G be a group. Then GhdRG = 0 if and

only if G is finite.

Proof If G is finite, in view of [3, Proposition 4.12], GhdZG = 0, and hence GhdRG = 0 by

Lemma 4.1. Conversely, if GhdRG = 0, the trivial RG-module R is Gorenstein flat, and hence

HomRG(R,F ) 6= 0 for some flat RG-module F . By the Govorov-Lazard theorem, F ∼= lim−→Pi,

where Pi is finitely generated projective. Thus,

lim−→HomRG(R,Pi) ∼= HomRG(R, lim−→Pi) ∼= HomRG(R,F ) 6= 0.

Then HomRG(R,Pi) 6= 0 for some i, and hence G is finite. 2

Remark 4.3 (1) There is another way to partially prove the proposition above. If G is a finite

group, there is an R-split exact sequence of RG-modules

0 −→ R −→ RG −→ B −→ 0,

where B = RG/Ru, u =
∑

g∈G g. Thus, in view of Proposition 3.4,

GhdRG = GfdRGR ≤ fdRGRG = 0.

(2) Let R be a commutative ring and G be a infinite cyclic group. Then

Gw.dimRG = GhdRG = 1.
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Proposition 4.4 Let k be a commutative ring with finite weak dimension and let H be a

subgroup of a group G. Then GhdkH ≤ GhdkG.

Proof Assume GhdkG = n < ∞. By Corollary 3.3, there exists a k-split exact sequence of

kG-modules

0 −→ k −→ N −→ L −→ 0

with fdkGN = n. Noting that it is also a k-split exact sequence of kH-modules with fdkHN ≤

fdkGN = n by [14, Proposition 2.2 (2)]. Thus, in view of Proposition 3.4, GhdkH = GfdkHk ≤

fdkHN ≤ n. 2

Proposition 4.5 Let k be a commutative ring with finite weak dimension and (Gα) a directed

family of subgroups of a group G such that G is the direct limit of the Gα. If GhdkG is finite,

then GhdkG = sup{GhdkGα}.

Proof By Proposition 4.4, we also have GhdkGα ≤ GhdkG. Conversely, since G is the direct

limit of Gα, it follows that kG is the direct limit of the kGα. Thus, in view of [6, Chapter VI,

Exercise 17],

TorkG∗ (I, k) = lim−→TorkGα

∗ (I, k)

for any injective right kG-module I. Therefore, the result follows from Proposition 2.1. 2

Remark 4.6 Let k be a commutative ring with finite weak dimension and G a group.

(1) If GhdkG = n, then there exists a finitely generated subgroup H such that GhdkH = n.

(2) If G is locally finite such that GhdkG is finite, then GhdkG = 0, and hence G is finite.

Let H be a normal subgroup of a group G. We now establish the estimate for the Gorenstein

homological dimension of G by the corresponding values of H and G/H . The following lemma

is needed.

Lemma 4.7 Let R be a commutative ring and let H be a normal subgroup of a group G. Then,

for any flat R(G/H)-module F , we have GfdRGF ≤ GhdRH .

Proof Similar to the proof of [14, Proposition 2.5 (1)], we can prove that if M is Gorenstein flat

as an RH-module then M ↑GH is Gorenstein flat as an RG-module. Now let GhdRH = n < ∞.

Then there is an exact sequence of RH-modules

0 −→ Gn −→ · · · −→ G1 −→ G0 −→ R −→ 0,

where Gi is Gorenstein flat for all i. Furthermore, there is an exact sequence of RG-modules

0 −→ Gn ↑GH−→ · · · −→ G1 ↑GH−→ G0 ↑GH−→ R ↑GH−→ 0

and Gi ↑
G
H is Gorenstein flat for all i. So GfdRG(R ↑GH) ≤ n. It is known that R ↑GH

∼= R(G/H).

Thus, in view of [9, Proposition 2.10], GfdRGQ ≤ n for any free R(G/H)-module Q. For any

flat R(G/H)-module F , by the Govorov-Lazard theorem, F ∼= lim−→Qi with Qi finitely generated

free. Since the direct limit is an exact functor and Gorenstein flat modules are closed under
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direct limits, GfdRGF is finite. Therefore,in view of Proposition 2.1 and [13, Theorem 8.11],

GfdRGF ≤ n. 2

Theorem 4.8 Let k be a commutative ring with finite weak dimension and let H be a normal

subgroup of a group G. Then GhdkG ≤ GhdkH +Ghdk(G/H).

Proof We assume that GhdkH = m and Ghdk(G/H) = n. By Theorem 3.6, there exists a

k-pure exact sequence of k(G/H)-modules

0 −→ k −→ N −→ L −→ 0,

where N is k-flat and fdk(G/H)N ≤ n. Thus, there is a left k(G/H)-flat resolution of N ,

0 −→ Fn −→ · · · −→ F1 −→ F0 −→ N −→ 0.

By Lemma 4.7, GfdkGFi ≤ GhdkH = m for all i. So, GfdkGN ≤ m + n by Proposition 2.3.

Moreover, Proposition 3.2 infers a k-split exact sequence of kG-modules

0 −→ N −→ A −→ B −→ 0,

where fdkGA = GfdkGN . Thus, [22, Example 4.84 (e)] implies a k-pure exact sequence of

kG-modules

0 −→ k −→ A −→ C −→ 0.

Therefore, GhdkG = GfdkGk ≤ fdkGA ≤ m+ n by applying Proposition 3.4. 2

By Propositions 4.2, 4.4 and Theorem 4.8, we have the next result immediately.

Corollary 4.9 Let k be a commutative ring with finite weak dimension, and let H be a normal

subgroup of a group G. If G/H is finite, then GhdkH = GhdkG.

Remark 4.10 Unfortunately, we do not know whether GhdkG = Ghdk(G/H) provided the

normal subgroup H is finite.

A group G is called Polycyclic-by-finite if there is a finite subnormal series for G,

{1} = G0 � G1 � · · · � Gn = G,

where Gi+1/Gi is either infinite cyclic or finite.

Corollary 4.11 If k is a commutative ring with finite weak dimension and G is Polycyclic-by-

finite, then GhdkG is finite.

Proof We proceed by induction on i.

(1) The case i = 0 is trivial.

(2) Suppose that i > 0 and GhdkGi = m is finite. If Gi+1/Gi is finite, then GhdkGi+1 =

GhdkGi = m is finite by Corollary 4.9. If Gi+1/Gi is infinite cyclic, Remark 4.3 involves

GhdkGi+1/Gi = 1. Thus, GhdkGi+1 ≤ m+ 1 is finite by Theorem 4.8.

As Gn = G, GhdkG is finite from the principle of induction. 2

We conclude with the following theorem which is a Gorenstein analogy of the Serre’s theorem.
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Theorem 4.12 If k is a commutative ring with finite weak dimension and H is a subgroup of

a group G of finite index, then GhdkH = GhdkG.

Proof By Proposition 4.4, it suffices to prove GhdkG ≤ GhdkH . Now let GhdkH = n < ∞

and consider a left kG-flat resolution of k

0 −→ Kn −→ Fn−1 · · · −→ F1 −→ F0 −→ k −→ 0,

where Kn is the nth yoke module. To complete the proof, it suffices to show that Kn is Goren-

stein flat as a kG-module. The exact sequence above is also an exact sequence of kH-modules.

Proposition 2.1 implies that Kn is Gorenstein flat as a kH-module. By [10, Theorem 4.1], there

exists a short exact sequence of kH-modules

0 −→ Kn −→ F −→ L −→ 0,

where F is flat and L is projectively coresolved Gorenstein flat. It is known that the kG-

monomorphism F −→ HomkH(kG, F ) is kH-split, and HomkH(kG, F ) ∼= kG⊗kH F is a flat kG-

module by [23, Lemma 9.2]. Thus, there is a flat kH-module U such that HomkH(kG, F ) ∼= F⊕U .

Consequently, one has the short exact sequence of kG-modules

0 −→ Kn −→ HomkH(kG, F ) −→ L′ −→ 0,

where L′ ∼= L⊕U is Gorenstein flat as a kH-module. We repeat the argument with L′ replacing

Kn and in this way we get a right kG-flat resolution of Kn

0 −→ Kn −→ F ′

0 −→ F ′

1 −→ F ′

2 −→ · · · .

Splicing the left kG-flat resolution of Kn, we obtain a doubly infinite exact sequence of flat

kG-modules

F ◦ : · · · −→ Fn+1 −→ Fn −→ F ′

0 −→ F ′

1 −→ F ′

2 −→ · · ·

and

Kn
∼= Ker(F ′

0 −→ F ′

1).

Now it is enough to show that E ⊗kG F ◦ is exact for any injective right kG-module E. Noting

that E is a direct summand of HomkH(kG,E), it is sufficient to prove HomkH(kG,E)⊗kG F ◦ is

exact. Indeed, we have

HomkH(kG,E)⊗kG F ◦ ∼= (E ⊗kH kG)⊗kG F ◦ ∼= E ⊗kH F ◦.

Since E is injective as a kH-module and every yoke module of F ◦ is Gorenstein flat as a kH-

module, E ⊗kH F ◦ is exact, as desired. 2

Remark 4.13 In [5, Proposition 4.9], the conditions thatK[G] is right coherent andGwD(K[G])

is finite can be omitted. In [3, Theorem 4.18], the condition that silfΓ is finite can be omitted.
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