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1. Introduction

The study convex sets is a branch of geometry and linear algebra which has many links to

other areas of mathematics and is useful in uniting many different mathematical phenomena. It

is also relevant to many areas of science and technology.

Although the convex set is defined in different settings [1], the most useful definitions are

based on the notion of middle. When E is an A space in which such a notion is defined, the

subset C of E is said to be convex provided that for each two points x and y of C, C covers

all points between x and y. The most supreme setting, and the only one to be discussed here,

is that in which E is a vector space over the real number field R or, in particular, is the N -

dimensional Euclidean space En, and the points between x and y are those of the line segment.

Thus Victor Klee in 1971 (see [2]) defined a subset C of a real vector space to be convex provided

that C contains every segment whose endpoints both belong to C. (For example, a cube in E3 is

convex, but its boundary is not, for the boundary does not contain the segment unless x and y lie

together in some 2-dimensional face of the cube.) The importance of the convexity stems from

the fact that convex sets arise frequently in many areas of mathematics and are often attributed

to rather elementary logic.

The systematic study of convexity was soon conducted by Minkowski (1864–1909), whose

works [3] contain, at least in germinal form, most of the important considerations of the subject.

The early events of convexity theory were: finite-dimensional and mainly directed towards the

solution of quantitative problems; a classic survey of them was made by Bonnesen and Fenchel [4]

in 1934. Since 1940, however, the mixed, qualitative, and dimension-free parts of the theory have

tended to predominate, perhaps because of their many applications in other areas of mathematics.
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In 2020, Chen et al. elaborated n-polynomial P -convex function with several types of con-

vexities [5], also in 2021 Chu et al. introduced two new classes of convex functions known as

GEH convex functions and GEH s-convex functions on the fractal domain [6]. A class of func-

tions which is based on the effect of an operator E on the sets and domain of definition of the

functions is called an E-convex function. Youness [7] introduced the concepts of an E-convex

set and an E-convex function. E-convexity is a basic notion in geometry, but also is widely used

in multiobjective programming problems [8], optimality criteria in E-convex programming [9],

epi-graph [10], duality [11] and generalized convexity [12]. It is often hidden in other areas of

mathematics: functional analysis, complex analysis, calculus of variations, graph theory, partial

differential equations, discrete mathematics, algebraic geometry, probability theory, coding the-

ory, crystallography and many other fields. E-convexity can play an important role also in areas

outside mathematics, such as physics, chemistry, biology and other sciences, but this is beyond

the scope of this note for consideration of these applications.

2. Definitions and preliminaries

Some definitions and examples are given:

Definition 2.1 The function g : I ⊂ R → R is a convex function on I, if the inequality

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

holds for all x, y ∈ I and t ∈ [0, 1]. We say that g is concave if −g is convex [13].

Let g : I ⊂ R → R be a convex function where a, b ∈ I with a < b. Then the following double

inequality holds:

g(
a+ b

2
) ≤

1

b− a

∫ b

a

g(x)dx ≤
g(a) + g(b)

2
.

This inequality is well-known in the literature as Hermite-Hadamard inequality [14].

Definition 2.2 A set N ⊂ Rn is said to be E-convex iff there is a map E : Rn → Rn such that

(1− t)E(x) + tE(y) ∈ N

for each x, y ∈ N and 0 ≤ t ≤ 1 (see [7]).

Definition 2.3 A function g : Rn → Rn is said to be E-convex on a set N ⊂ Rn, iff there is a

map E : Rn → Rn such that N is a convex set and

g(tE(x) + (1− t)E(y)) ≤ tg(E(x)) + (1− t)g(E(y))

for each x, y ∈ N and 0 ≤ t ≤ 1 on the other hand, if

g(tE(x) + (1− t)E(y)) ≥ tg(E(x)) + (1− t)g(E(y))

then g is called E-concave on N . If the inequality signs in the previous two inequalities are strict,

then g is called strictly E-convex and strictly E-concave, respectively [7].
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Definition 2.4 Let g : S → (0,∞) be continuous, where I is subinterval of (0,∞). Let N

and P be any two mean functions, T ⊂ R and there is a map E : R → R. Then we say g is

NP -E-convex (concave) on T if

g(N(E(x), E(y)) ≤ (≥)P (g(E(x), g(E(y))

for all x, y ∈ S.

Definition 2.5 The GG-E-convex functions are those functions g : S ⊆ R+ → R and there is

a map E : R → R such that x, y ∈ S and

t ∈ [0, 1] ⇒ g((E(x))1−t(E(y))t) ≤ (g(E(x))1−t(g(E(y))t.

Definition 2.6 The GG-E-concave functions are those functions g : S ⊆ R+ → R and there is

a map E : R → R such that x, y ∈ S and

t ∈ [0, 1] ⇒ g((E(x))1−t(E(y))t) ≥ (g(E(x))1−t(g(E(y))t.

Lemma 2.7 Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and x, y ∈ So

with a < b, and there is a map E :→ R. If g′ ∈ L([E(a)], [E(b)]), then the following identity

holds:

E(b)g(E(b))− E(a)g(E(a)) −

∫ E(b)

E(a)

g(E(u))du

= (lnE(x) − lnE(y))

∫ 1

0

((E(x))2t(E(a))2(1−t))g′((E(x))t(E(a))(1−t))dt−

(lnE(x) − lnE(b))

∫ 1

0

((E(x))2t(E(b))2(1−t))g′((E(x))t(E(b))(1−t))dt

for all E(x) ∈ [E(a), E(b)].

Lemma 2.8 Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with

α < β and E : R → R is a non decreasing function so E(α) < E(β). If g′ ∈ L([E(α)], [E(β)]). If

|g′| is GG-E-convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)], then the following inequality

holds:

(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))

= (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))g′(E(β)τ
′

E(γ)(1−τ ′)dτ ′+

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))g′(E(γ)τ
′

E(α)(1−τ ′)dτ ′.

Proof Let

J1 =

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))g′(E(β)τ
′

E(γ)(1−τ ′))dτ ′

and

J2 =

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))g′(E(γ)τ
′

E(α)(1−τ ′))dτ ′
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then we notice that

J1 =

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))g′(E(β)τ
′

E(γ)(1−τ ′))dτ ′

= (
1

lnE(β) − lnE(γ)
)

∫ 1

0

(E(β)2τ
′

E(γ)2(1−τ ′))g′(E(β)τ
′

E(γ)(1−τ ′))d(E(β)τ
′

E(γ)(1−τ ′)).

Now by the change of variable E(γ) = (E(β)τ
′

E(γ)(1−τ ′)) and integrating by parts, we have

J1 = (
1

lnE(β)− lnE(γ)
)
[

(E(β)2g(E(β)) − (E(γ)2g(E(γ))− 2

∫ E(β)

E(γ)

E(γ)g(E(γ))dE((γ))
]

.

Correspondingly, we have

J2 = (
1

lnE(γ)− lnE(α)
)
[

(E(γ)2g(E(γ))− (E(α)2g(E(α)) − 2

∫ E(γ)

E(α)

E(γ)g(E(γ))dE((γ))
]

.

Multiplying J1 by (lnE(β)− lnE(γ)) and J2 by (lnE(γ)− lnE(α)) and adding the results we

get the appealed identity.

The following examples illustrate our results.

Example 2.9 Let f : [0, π
2 ] → [0,∞) such that

f(x) = −

∫

√
x

0

ln(cos(t))dt

is not GG-convex on (0, π2 ) and there is a map E : [0,
√

π
2 ] → [0, π2 ] such that

E(x) = x2.

Then the function

f(E(x)) = −

∫ x

0

ln(cos(t))dt

is GG-E-convex function on (0, π
2 ).

Example 2.10 Let f : [0, π2 ] → [0,∞) such that

f(x) = ln(sinx)

is not GG-convex on (0, π2 ) and there is a map E : [0, π
2 ] → [0, π2 ] such that

E(x) =
π

2
− x.

Then the function

f(E(x)) = ln(sin(
π

2
− x)), f(E(x)) = ln(cosx)

is GG-E-convex function on (0, π
2 ).

Example 2.11 Let f : [1,∞) → [1,∞) such that

f(x) = Γ(x)

and there is a map E : [0,∞] → [1,∞] such that E(x) = x+ 1. Then the function

f(E(x)) = Γ(x+ 1)
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is GG-E-convex on [0,∞).

Example 2.12 Let f : [0, π2 ) → [0,∞) such that

f(x) = cot(x)

and there is a map E : [0, π
2 ] → [0, π2 ] such that E(x) = π

2 − x. Then the function

f(E(x)) = tan(x)

is GG-E-convex on [0, π2 ).

3. Main results

We have the following results based on the previous lemmas:

Theorem 3.1 Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So

with α < β and E : R → R is a non decreasing function so E(α) < E(β). Suppose g′ ∈

L([E(α)], [E(β)]). If |g′| is GG-E-convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)], then the

following inequality holds:

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α) − 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

≤ (lnE(β)− lnE(γ))L((E(β))3 |g′(E(β)|, (E(γ))3|g′(E(γ)|)+

(lnE(γ)− lnE(α))L(E(γ))3|g′(E(γ)|, E(α))3|g′(E(α)|).

Proof From Lemma 2.8, using the property of the modulus and GG-E-convexity of |g′|, we can

write
∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

≤ (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β))τ
′

(E(γ))(1−τ ′)|dτ ′+

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ))τ
′

(E(α))(1−τ ′)|dτ ′

≤ (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β)|τ
′

|g′(E(γ)|(1−τ ′)|dτ ′

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(α)|τ
′

|g′(E(β)|(1−τ ′)|dτ ′

= (lnE(β)− lnE(γ))(E(γ))3|g′(E(γ)|

∫ 1

0

(
(E(β))3|g′(E(β)|

(E(γ))3|g′(E(γ)|
)τ

′

dτ ′+

(lnE(γ)− lnE(α))(E(α))3 |g′(E(α)|

∫ 1

0

(
(E(γ))3|g′(E(γ)|

(E(α))3|g′(E(α)|
)τ

′

dτ ′.

Then we get the desired result. This theorem is applicable to all differentiable functions whose

first derivative is GG-E-convex function.

Theorem 3.2 Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So
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with α < β and E : R → R is a non decreasing function so E(α) < E(β). Suppose g′ ∈

L([E(α)], [E(β)]). If |g′|n is GG-E-convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)], then the

following inequality holds:

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α) − 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

≤ (lnE(β)− lnE(γ))((L((E(β))3m , (E(γ))3m))
1

m (L(|g′(E(β))|n, |g′(E(γ))|n)
1

n+

(lnE(γ)− lnE(α))((L((E(γ))3m, (E(α))3m))
1

m (L(|g′(E(γ))|n, |g′(E(α))|n)
1

n ,

where n > 1 and 1
m

+ 1
n
= 1.

Proof From Lemma 2.8, using the property of the modulus, GG-E-convexity of |g′|m and Holder

integral inequality, we can write

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

= (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β))τ
′

(E(γ))(1−τ ′)|dτ ′+

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ))τ
′

(E(α))(1−τ ′)|dτ ′

≤ (lnE(β)− lnE(γ))

∫ 1

0

((E(β)3τ
′mE(γ)3(1−τ ′)m)dτ ′)

1

m×

(

∫ 1

0

|g′((E(β))τ
′

(E(γ)))(1−τ ′)|ndτ ′
)

1

n

+

(lnE(γ)− lnE(α))

∫ 1

0

((E(γ)3τ
′mE(α)3(1−τ ′)m)dτ ′)

1

m×

(

∫ 1

0

|g′((E(γ))τ
′

(E(α)))(1−τ ′)|ndτ ′
)

1

n

≤ (lnE(β)− lnE(γ))((E(γ))3m
∫ 1

0

(
(E(β))3m

(E(γ))3m
)τ

′

dτ ′)
1

m×

(

∫ 1

0

|g′(E(β)|nτ
′

|g′(E(γ))|n(1−E(γ))dτ ′
)

1

n

+

(lnE(γ)− lnE(β))((E(β))3m
∫ 1

0

(
(E(γ))3m

(E(β))3m
)τ

′

dτ ′)
1

m×

(

∫ 1

0

|g′(E(γ))|nτ
′

|g′(E(β))|n(1−E(γ))dτ ′
)

1

n

.

Then we get the desired result. This theorem is applicable to all differentiable functions whose

first derivative and its powers are GG-E-convex function.

Theorem 3.3 Under the assumptions of Theorem 3.2, the following inequality holds:

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

≤ (lnE(β)− lnE(γ))((L((E(β))3n |g′(E(β))|n, (E(γ))3n|g′(E(γ))|n))
1

n+
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(lnE(γ)− lnE(α))((L((E(γ))3n |g′(E(γ)|n, (E(α))3n|g′(E(α))|n))
1

n ,

where n > 1 and 1
m

+ 1
n
= 1.

Proof From Lemma 2.8, using the property of the modulus, GG-E-convexity of |g′|n and Holder

integral inequality, we can write

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

= (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β))τ
′

(E(γ))(1−τ ′)|dτ ′+

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ))τ
′

(E(α))(1−τ ′)|dτ ′

≤ (lnE(β)− lnE(γ))
(

∫ 1

0

dτ ′
)

1

m

×

(

∫ 1

0

(E(β))3τ
′n(E(γ))3(1−τ ′)n|g′((E(β))τ

′

(E(γ)))(1−τ ′)|ndτ ′
)

1

n

+

(lnE(γ)− lnE(α))
(

∫ 1

0

dτ ′
)

1

m

×

(

∫ 1

0

(E(γ))3τ
′n(E(α))3(1−τ ′)n|g′((E(γ))τ

′

(E(α)))(1−τ ′)|ndτ ′
)

1

n

≤ (lnE(β)− lnE(γ))
(

∫ 1

0

dτ ′
)

1

m

×

(

∫ 1

0

(E(β))3τ
′n(E(γ))3(1−τ ′)n|g′(E(β)|nτ

′

|g′(E(γ))|n(1−τ ′)dτ ′
)

1

n

+

(lnE(γ)− lnE(α))
(

∫ 1

0

dτ ′
)

1

m

×

(

∫ 1

0

(E(γ))3τ
′n(E(α))3(1−τ ′)n|g′(E(γ)|nτ

′

|g′(E(α))|n(1−τ ′)dτ ′
)

1

n

,

If we calculate the above integral, we get the desired result. This theorem is generalization of

theorem 3.1. 2

Theorem 3.4 Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So

with α < β and E : R → R is a non-decreasing function so E(α) < E(β). Suppose g′ ∈

L([E(α)], [E(β)]). If |g′|n is GG-E-convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)], then the

following inequality holds:

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α) − 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

≤ (lnE(β)− lnE(γ))((L((E(β))3 , (E(γ))3))(1−
1

n
)×

(L(E(β))3(|g′(E(β))|n, (E(γ))3|g′(E(γ))|n)
1

n+

(lnE(γ)− lnE(α))((L((E(γ))3 , (E(α))3))(1−
1

n
)×

(L(E(γ))3(|g′(E(γ))|n, (E(α))3|g′(E(α))|n)
1

n
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for n ≥ 1.

Proof From Lemma 2.8, using the property of the modulus, GG-E-convexity of |g′|n and Power

mean integral inequality, we can write

∣

∣

∣
(E(β))2g(E(β)− (E(α))2g(E(α)− 2

∫ E(β)

E(α)

E(γ)g(E(γ))d(E(γ))
∣

∣

∣

= (lnE(β)− lnE(γ))

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β))τ
′

(E(γ))(1−τ ′)|dτ ′+

(lnE(γ)− lnE(α))

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ))τ
′

(E(α))(1−τ ′)|dτ ′

≤ (lnE(β)− lnE(γ))
[(

∫ 1

0

((E(β))3τ
′

(E(γ))3(1−τ ′))dτ ′
)(1− 1

n
)]

×

[(

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β))τ
′

(E(γ))(1−τ ′)|ndτ ′
)

1

n

]

+

(lnE(γ)− lnE(α))
[(

∫ 1

0

((E(γ))3τ
′

(E(α))3(1−τ ′))dτ ′
)(1− 1

n
)]

×

[(

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ))τ
′

(E(α))(1−τ ′)|ndτ ′
)

1

n

]

≤ (lnE(β)− lnE(γ))
[(

∫ 1

0

((E(β))3τ
′

(E(γ))3(1−τ ′))dτ ′
)(1− 1

n
)]

×

[(

∫ 1

0

(E(β)3τ
′

E(γ)3(1−τ ′))|g′(E(β)|nτ
′

|g′(E(γ))|n(1−τ ′)dτ ′
)

1

n

]

+

(lnE(γ)− lnE(α))
[(

∫ 1

0

((E(γ))3τ
′

(E(α))3(1−τ ′))dτ ′
)(1− 1

n
)]

×

[(

∫ 1

0

(E(γ)3τ
′

E(α)3(1−τ ′))|g′(E(γ)|nτ
′

|g′(E(α))|n(1−τ ′)dτ ′
)

1

n

]

.

If we calculate the above integral, we get the desired result. This theorem is a generalization of

Theorem 3.2 and applicable to all differentiable functions whose first derivative and its powers

are GG-E-convex functions.

4. Conclusion

This paper is generalization of [2]. If we take E(x) = x, then it shows the result of [13].
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