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Abstract Recently, Zhang and Li presented five mock theta functions as q-hypergeometric

double sums by using a Bailey pair. In this paper, employing the same Bailey pair, we further

establish two new mock theta double sums in terms of Appell-Lerch sums and theta series.

Indeed, identities between a new mock theta function and classical mock theta functions are

obtained.
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1. Introduction

The mock theta functions were introduced by Ramanujan in his letter to Hardy [1], in which

he gave seventeen mock theta functions of order three, five and seven. Since then, mock theta

functions have attracted the attention of lots of mathematicians. For instance, Andrews and

Hickerson [2] provided proofs of 11 sixth order mock theta function identities found in Ramanu-

jan’s “lost” notebook [1] using the Bailey pairs. These functions include

φ(q) =
∑

n≥0

(−1)nqn
2

(q; q2)n
(−q)2n

, σ(q) =
∑

n≥0

q(
n+2

2 )(−q)n
(q; q2)n+1

,

µ(q) =
∑

n≥0

∗ (−1)n(q; q2)n
(−q)n

, γ(q) =
∑

n≥0

qn
2

(q)n
(q3; q3)n

.

By means of the Bailey pairs, the following two mock theta functions of the sixth order are

defined by Berndt and Chan [3].

φ−(q) =
∑

n≥1

qn(−q)2n−1

(q; q2)n
, ψ−(q) =

∑

n≥1

qn(−q)2n−2

(q; q2)n
.
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In [4], Lovejoy obtained families of q-hypergeometric mock theta multisums by constructing

classes of Bailey pairs. Other mock theta functions have been found by many authors using a

variety of methods [5–13].

We also note that the Bailey pairs play an important role in the study of mock theta double

sums. Lovejoy and Osburn [14, 15] constructed a number of new q-hypergeometric double sums

which are mock theta functions. Subsequently, Gu and Liu [16] derived many families of mock

theta functions by constructing generalized Bailey pairs with more parameters. Recently, Zhang

and Li [17] deduced five mock theta double sums by establishing the following Bailey pair relative

to 1,

α2n = −(1− q4n)q4n
2−2n+ 1

2

n−1
∑

j=−n

q−2j2−j , (1.1)

α2n+1 = (1− q4n+2)q4n
2+2n+ 1

2

n
∑

j=−n

q−2j2+j (1.2)

and

βn = − 1

(
√
q)n

n
∑

j=1

(−1)jq(
j

2)+
1
2

(q)n−j(q)j−1(1 + qj−
1
2 )
. (1.3)

In [18], Patkowski discussed and offered some double sum q-series, with new relationships

among classical mock theta functions.

In this note, we obtain two new mock theta double sums by utilizing the above Bailey pair

(1.1)–(1.3).

Theorem 1.1 The following mock theta functions are true.

M1(q) :=
∑

n≥1

∑

n≥j≥1

(−1)n+j(−√
q)nq

(j2)

(q)n−j(q)j−1(1 + qj−
1
2 )

=
(q; q2)∞
2(q2; q2)∞

f1,3,1(−q2,−q, q)

=q−1m(−1, q8, q) +m(−q4, q8, q−1) +
J2,4J8,16J2,8J4,16

J1,1J1,8J3,8

, (1.4)

M2(q) :=
∑

n≥1

∑

n≥j≥1

(−1)j(−1)nq
(n+1

2 )+(j2)

(
√
q)n(q)n−j(q)j−1(1 + qj−

1
2 )

=− 2(−q)∞
(q)∞

f1,2,1(q
4, q3, q2)

=2m(q2, q6, q−1). (1.5)

Meanwhile, identities between the mock theta double sumM2(q) and the classical mock theta

functions are established.

Theorem 1.2 We have

M2(q) =φ(q
2) +

2J3
6J

2

1,6

J2
1,6J0,6J2,6

,
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M2(q) =− 2
(

σ(q) − J2
2J

3
6

J3
1,6J3,6

)

,

M2(q) =µ(q) +
J1,2J1,3

2J1,4

+
2J3

6J
2

1,6

J2
1,6J0,6J2,6

,

M2(q) =
2

3

(

γ(q2)−
J2
2,4

J2,6

+
3J3

6J
2

3,6

J2
1,6J

2

2,6

)

,

M2(q) =− 2
(

φ−(q
2) + q2

J
3

6,24

J2J2,8

−
J3
6J

2
3,6

J2
2J

2
1,6

)

.

The rest of the paper is arranged as follows. In Section 2, we collect some useful tools and

results on q-series and mock theta functions. We prove Theorems 1.1 and 1.2 in Sections 3 and

4, respectively.

2. Preliminaries

Here and throughout the paper, we adopt the standard notation for q-shifted factorials in [19]:

(a; qk)n = (1 − a)(1− aqk)(1− aq2k) · · · (1− aq(n−1)k) (a; qk)∞ =

∞
∏

m=0

(1− aqmk).

When k = 1 we usually write (a)n and (a)∞ instead of (a; q)n and (a; q)∞, respectively.

Firstly, we briefly review the Bailey pair and Bailey lemma. Let α = (α0, α1, . . .) and

β = (β0, β1, . . .). The pair of sequences (αn, βn) is called a Bailey pair with respect to a if

βn =

n
∑

r=0

αr

(q)n−r(aq)n+r
,

for all n ≥ 0. Bailey’s lemma says that if (αn, βn) is a Bailey pair relative to a, then

∞
∑

n=0

(ρ)n(σ)n(aq/ρσ)
nβn =

(aq/ρ, aq/σ)∞
(aq, aq/ρσ)∞

∞
∑

n=0

(ρ)n(σ)n(aq/ρσ)
n

(aq/ρ)n(aq/σ)n
αn. (2.1)

The classical theta series is defined by

j(x; q) :=

∞
∑

r=−∞

(−1)rxrq(
r

2) = (x, q/x, q)∞.

Define Ja,m := j(qa; qm), Ja,m := j(−qa; qm) and Jm := Jm,3m, where a and m are integers with

m positive.

From the definition of j(x; q), we have

j(x; q) = j(q/x; q) = −xj(x−1; q) (2.2)

and

j(qnx; q) = (−1)nq−(
n

2)x−nj(x; q), (2.3)

where n ∈ Z.
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Let x, z ∈ C∗ = C \ {0} with neither z nor xz an integral power of q. The Appell-Lerch sum

is defined by

m(x, q, z) :=
1

j(z; q)

∑

r

(−1)rzrq(
r

2)

1− qr−1xz
.

The following property [20, Theorem 3.3] of the Appell-Lerch sums m(x, q, z) will be used: For

generic x, z, z0 ∈ C∗,

m(x, q, z) = m(x, q, z0) +
z0J

3
1 j(z/z0; q)j(xzz0; q)

j(z0; q)j(z; q)j(xz0; q)j(xz; q)
. (2.4)

The Hecke-type double sums are defined by

fa,b,c(x, y, q) :=
(

∑

r,s≥0

−
∑

r,s<0

)

(−1)r+sxrysqa(
r

2)+brs+c(s2),

which is an indefinite theta series when ac < b2. Here we assume a, c > 0.

In [20], in order to convert from the Hecke-type double sums to Appell-Lerch sums, Hickerson

and Mortenson defined

ga,b,c(x, y, q, z1, z0) :=

a−1
∑

t=0

(−y)tqc(
t

2)j(qbtx; qa)m(−qa(
b+1

2 )−c(a+1

2 )−t(b2−ac) (−y)a
(−x)b , q

a(b2−ac), z0)+

c−1
∑

t=0

(−x)tqa(
t

2)j(qbty; qc)m(−qc(
b+1

2 )−a(c+1

2 )−t(b2−ac) (−x)c
(−y)b , q

c(b2−ac), z1). (2.5)

The following term “generic” means that the parameters do not cause poles in the Appell-

Lerch sums or in the quotients of theta functions.

Lemma 2.1 ([20, Theorem 1.6]) Let n be a positive integer. For generic x, y ∈ C∗,

fn,n+1,n(x, y, q) = gn,n+1,n(x, y, q, y
n/xn, xn/yn).

Lemma 2.2 ([20, Theorem 1.9]) Let n be a positive odd integer. For generic x, y ∈ C
∗,

fn,n+2,n(x, y, q) = gn,n+2,n(x, y, q, y
n/xn, xn/yn)−Θn,2(x, y, q),

where

Θn,2(x, y, q) :=
y(n+1)/2J2n,4nJ4(n+1),8(n+1)j(y/x; q

4(n+1))j(qn+2xy; q4(n+1))j(q2n/x2y2; q8(n+1))

q(n2−3)/2x(n−3)/2j(yn/xn; q4n(n+1))j(−qn+2x2; q4(n+1))j(−qn+2y2; q4(n+1))
.

3. Proofs of Theorems 1.1 and 1.2

We first prove Theorem 1.1.

Proof For (1.4), substituting the Bailey pair (1.1)–(1.3) into Bailey’s lemma (2.1) with ρ =
√
q,

σ = −√
q, we have

−2q
1
2M1(q) =2

∑

n≥0

(−1)n(q; q2)nβn =
(q; q2)∞
(q2; q2)∞

∑

n≥0

(−1)nαn
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=
(q; q2)∞
(q2; q2)∞

(

∑

n≥0

α2n −
∑

n≥0

α2n+1

)

=
(q; q2)∞
(q2; q2)∞

(

−
∑

n≥0

q4n
2−2n+ 1

2

n−1
∑

j=−n

q−2j2−j +
∑

n≥0

q4n
2+2n+ 1

2

n−1
∑

j=−n

q−2j2−j−

∑

n≥0

q4n
2+2n+ 1

2

n
∑

j=−n

q−2j2+j +
∑

n≥0

q4n
2+6n+ 5

2

n
∑

j=−n

q−2j2+j
)

.

On the right-hand side of the above identity, replacing n with −n in the second sum and n with

−n− 1 in the fourth sum and letting n = (r + s+ 1)/2, j = (r − s− 1)/2 in the first two sums

and n = (r + s)/2, j = (r − s)/2 in the latter two sums, we arrive at

−2q
1
2M1(q) =

(q; q2)∞
(q2; q2)∞

{

−
(

∑

r, s ≥ 0

r 6≡ s (mod2)

−
∑

r, s < 0

r 6≡ s (mod2)

)

q
1
2
r2+3rs+ 1

2
s2+ 3

2
r+ 1

2
s+ 1

2−

(

∑

r, s ≥ 0

r ≡ s (mod2)

−
∑

r, s < 0

r ≡ s (mod 2)

)

q
1
2
r2+3rs+ 1

2
s2+ 3

2
r+ 1

2
s+ 1

2

}

=− (q; q2)∞
(q2; q2)∞

(

∑

r,s≥0

−
∑

r,s<0

)

q
1
2
r2+3rs+ 1

2
s2+ 3

2
r+ 1

2
s+ 1

2

=− q
1
2 (q; q2)∞
(q2; q2)∞

f1,3,1(−q2,−q, q).

With the help of Lemma 2.2, (2.2), (2.3) and (2.5), we deduce

f1,3,1(−q2,−q, q) = q−1j(−q; q)m(−1, q8, q) + j(−q; q)m(−q4, q8, q−1)−Θ1,2(−q2,−q, q),

so we have

M1(q) = q−1m(−1, q8, q) +m(−q4, q8, q−1) +
J2,4J8,16J2,8J4,16

J1,1J1,8J3,8

.

For (1.5), we take the Bailey pair (1.1)–(1.3) into Bailey’s lemma (2.1) with ρ = −1, σ → ∞
to give

−q 1
2M2(q) =

∑

n≥0

(−1)nq
(n+1

2 )βn =
(−q)∞
(q)∞

∑

n≥0

2q(
n+1

2 )

1 + qn
αn

=
2(−q)∞
(q)∞

(

∑

n≥0

q2n
2+n

1 + q2n
α2n +

∑

n≥0

q2n
2+3n+1

1 + q2n+1
α2n+1

)

=
2(−q)∞
(q)∞

(

−
∑

n≥0

q6n
2−n+ 1

2

n−1
∑

j=−n

q−2j2−j +
∑

n≥0

q6n
2+n+ 1

2

n−1
∑

j=−n

q−2j2−j+

∑

n≥0

q6n
2+5n+ 3

2

n
∑

j=−n

q−2j2+j −
∑

n≥0

q6n
2+7n+ 5

2

n
∑

j=−n

q−2j2+j
)

.

On the right-hand side of the above equation, replacing n with −n in the second sum and n with

−n− 1 in the fourth sum and setting n = (r + s+ 1)/2, j = (r − s− 1)/2 in the first two sums



232 Jizhen YANG, Hanfei SONG and Zhizheng ZHANG

and n = (r + s)/2, j = (r − s)/2 in the latter two sums, we get

−q 1
2M2(q) =

2(−q)∞
(q)∞

{

−
(

∑

r, s ≥ 0

r 6≡ s (mod2)

−
∑

r, s < 0

r 6≡ s (mod 2)

)

qr
2+4rs+s2+3r+2s+ 3

2+

(

∑

r, s ≥ 0

r ≡ s (mod2)

−
∑

r, s < 0

r ≡ s (mod2)

)

qr
2+4rs+s2+3r+2s+ 3

2

}

=
2(−q)∞
(q)∞

(

∑

r,s≥0

−
∑

r,s<0

)

(−1)r+sqr
2+4rs+s2+3r+2s+ 3

2

=
2q

3
2 (−q)∞
(q)∞

f1,2,1(q
4, q3, q2).

In view of Lemma 2.1, (2.3) and (2.5), we have

f1,2,1(q
4, q3, q2) = −q−1j(q; q2)m(q2, q6, q−1),

so we arrive at

M2(q) = 2m(q2, q6, q−1).

This completes the proof. 2

Next, we prove Theorem 1.2.

Proof In [20], Hickerson and Mortenson expressed classical mock theta functions in terms of

the Appell–Lerch sums and theta series. Namely,

φ(q) = 2m(q, q3,−1), (3.1)

σ(q) = −m(q2, q6, q),

µ(q) = 2m(q2, q6,−1)− J1,2J1,3

2J1,4

,

γ(q) = 3m(q, q3,−q) +
J2
1,2

J1,3

,

φ−(q) = −m(q, q3, q)− q
J
3

3,12

J1J1,4

.

In view of (2.2) and (2.4), we get

m(q2, q6, q−1) = m(q2, q6,−1) +
J3
6J

2

1,6

J0,6J2,6J2
1,6

.

Combining (1.5) with (3.1) yields the first equality of Theorem 1.2. The proofs of the remaining

identities are similar, so we omit them. 2
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