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Abstract Given a Riordan array, its vertical half and horizontal half are studied separately

before. In the present paper, we introduce the (m,r, s)-halves of a Riordan array. This allows

us to discuss the vertical half and horizontal half in a uniform context. As applications, we

find several new identities involving Fibonacci, Pell and Jacobsthal sequences by applying the

(m,r, s)-halves of Pascal and Delannoy matrices.
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1. Introduction

Finding some new identities [1–4] is a very important problem in combinatorics. In this

paper, we use Riordan arrays and (m, r, s)-halves of a Riordan array to find some identities.

We begin by reviewing some facts about Riordan arrays. An infinite lower triangular matrix

G = (gn,k)n,k∈N is called a Riordan array if its column k has generating function d(t)h(t)k,

where d(t) =
∑∞

n=0 dnt
n and h(t) =

∑∞
n=1 hnt

n are formal power series with d0 6= 0 and h1 6= 0.

The Riordan array corresponding to the pair d(t) and h(t) is denoted by (d(t), h(t)), and its

generic entry is gn,k = [tn]d(t)h(t)k, where [tn] denotes the coefficient operator. The set of all

Riordan arrays forms a group under ordinary row-by-column product with the multiplication

identity (1, t), called the Riordan group. The multiplication rule of Riordan arrays is given by

(d(t), h(t))(g(t), f(t)) = (d(t)g(h(t)), f(h(t))). (1.1)

If (bn)b∈N is any sequence having b(t) =
∑∞

n=0 bnt
n as its generating function, then for every

Riordan array (d(t), h(t)) = (gn,k)n,k∈N

n∑

k=0

gn,kbk = [tn]d(t)b(h(t)). (1.2)

This is called the fundamental theorem of Riordan arrays [5–8] and it can be rewritten as

(d(t), h(t))b(t) = d(t)b(h(t)). (1.3)
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For example, the Pascal matrix P =
((

n

k

))
n,k≥0

is the element ( 1
1−t

, t
1−t

) of the Riordan

group and Delannoy matrix can be expressed as ( 1
1−t

, t+t2

1−t
) (see [9, 10]), which are registered as

sequence A007318 and A008288 in OEIS [11], respectively. In the sequel, sequences are frequently

referred to by their OEIS number.

Most studies on the Riordan matrices were related to combinatorics [6–8,12–15] or algebraic

structures [5,16–19]. The vertical halves of Riordan arrays and the horizontal halves of Riordan

arrays were introduced in Yang et al. [18, 20, 21] and Barry [6, 9, 16], respectively.

Definition 1.1 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array.

(i) The central coefficients of the Riordan array G are the elements g2n,n;

(ii) The vertical half of G is defined as the infinite lower triangular matrix (vn,k)n,k≥0 with

general (n, k)-th term vn,k = g2n−k,n;

(iii) The horizontal half of G is defined as the infinite lower triangular matrix (hn,k)n,k≥0

with general (n, k)-th term hn,k = g2n,n+k.

The following (m, r)-vertical halves of Riordan arrays and the (m, r)-horizontal halves of

Riordan arrays were introduced in Yang et al. [12, 18, 22].

Definition 1.2 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array and let m > r ≥ 0 be

integers.

(i) The (m, r)-central coefficients of G = (gn,k)n,k∈N are the entries g(m+1)n+r,mn+r;

(ii) The (m, r)-vertical half of G is defined as the matrix G[m,r] with general (n, k)-th term

g(m+1)n+r−k,mn+r;

(iii) The (m, r)-horizontal half of G is defined as the matrix G(m,r) with general (n, k)-th

term g(m+1)n+r,mn+k+r.

Obviously, the (1, 0)-vertical half is the vertical half and the (1, 0)-horizontal half is the

horizontal half. In [18, 22], the following results are obtained.

Lemma 1.3 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array and let f(t) be the generating

function defined by the functional equation f(t) = tq(f(t))m. Then we have

(i) The (m, r)-vertical half of G is given by

G[m,r] = (
tf ′(t)p(f(t))q(f(t))r

f(t)
, f(t)). (1.4)

(ii) The (m, r)-horizontal half of G is given by

G(m,r) = (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, tq(f(t))m+1). (1.5)

In [23, 24], He introduced the vertical half Riordan array operator (VHRAO) Ψ and the

horizontal half Riordan array operator (HHRAO) Ψ̂ as follows:

Ψ : (p(t), tq(t)) → (
tf ′(t)p(f(t))

f(t)
, f(t)), (1.6)

Ψ̂ : (p(t), tq(t)) → (
tf ′(t)p(f(t))

f(t)
, tq(f(t))2), (1.7)



On the (m,r, s)-halves of a Riordan array and applications 255

where f(t) is the compositional inverse of t
q(t) , i.e., f(t) is determined by the functional equation

f(t) = tq(f(t)).

In this paper, we will introduce the (m, r, s)-halvesG(m,r,s) of a Riordan arrayG = (gn,k)n,k≥0,

and the definition will be presented in the next section. We will give characterizations for the

iteration of vertical and horizontal half Riordan array transformation operators by using the

(m, r, s)-half Riordan array. In Section 3, we study (m, r, s)-half Riordan arrays of Delannoy

matrix and show that (m, r, s)-half of Delannoy matrix G = ( 1
1−t

, t+t2

1−t
) can be represented in

terms of the generating function R(t) of (m + 1)-Schröder numbers, which satisfies the equa-

tion R(t) = 1 + tR(t)m + tR(t)m+1. In Section 4, we show that (m, r, s)-half of Pascal matrix

G = ( 1
1−t

, t
1−t

) can be represented in terms of the generating function Bm+1(t) of (m+1)-Catalan

numbers, which satisfies the equation Bm+1(t) = 1 + tBm+1(t)
m+1. Several new identities in-

volving Fibonacci, Jacobsthal and Pell sequences are obtained by applying the vertical halves of

Pascal and Delannoy matrices, respectively.

2. The (m, r, s)-halves of a Riordan array

In this section, we will introduce and study the (m, r, s)-halves of a Riordan array.

Definition 2.1 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array and let m > r ≥ 0 be inte-

gers and s a positive fractional number such that ms is integral number. The (m, r, s)-half of G is

defined as the matrix G(m,r,s) with general (n, k)-th term g(m+1)n+(ms−m−1)k+r,mn+(ms−m)k+r .

Example 2.2 Choosing m = 1 and r = 0, we have G(1,0,s) = (g2n+(s−2)k,n+(s−1)k). In particu-

lar,

(i) G(1,0,1) = (g2n−k,n) is the vertical half of G;

(ii) G(1,0,2) = (g2n,n+k) is the horizontal half of G;

(iii) G(1,0,3) = (g2n+k,n+2k);

(iv) G(1,0,4) = (g2n+2k,n+3k).

Example 2.3 Choosing s = 1 or s = m+1
m

, we have

(i) G(m,r,1) is the (m, r)-vertical half of G;

(ii) G(m,r,m+1

m
) is the (m, r)-horizontal half of G.

Theorem 2.4 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array and let f(t) be the

generating function defined by the functional equation f(t) = tq(f(t))m. Then the (m, r, s)-half

Riodran array of G is given by

G(m,r,s) = (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, tq(f(t))ms) (2.1)

= (
tf ′(t)p(f(t))q(f(t))r

f(t)
, t(

f(t)

t
)s). (2.2)

Proof Considering the relation f(t) = tq(f(t))m and using the Lagrange inversion formula [25],
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we have

[tn]
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
(tq(f(t))ms)k

= [tn]
p(f(t))q(f(t))m+rq(f(t))(ms)k

q(f(t))m −mf(t)q(f(t))m−1q′(f(t))
(

f(t)

q(f(t))m
)k

= [tn]
p(t)q(t)m+m(s−1)k+rtk

q(t)m −mtq(t)m−1q′(t)
q(t)mn−m(q(t)m −mtq(t)m−1q′(t))

= [tn−k]p(t)q(t)mn+m(s−1)k+r

= [t(m+1)n+(ms−m−1)k+r]p(t)(tq(t))mn+m(s−1)k+r

= g(m+1)n+(ms−m−1)k+r,mn+(ms−m)k+r.

Hence the proof follows. 2

Theorem 2.5 Let G = (p(t), tq(t)) = (gn,k)n,k≥0 be a Riordan array. Then we have

(G(m,r,s))−1 = (1, tq(t)ms−m)(
q(t) −mtq′(t)

p(t)q(t)r+1
,

t

q(t)m
), (2.3)

where tq(t)ms−m is the composition inverse of tq(t)ms−m.

Proof Let f(t) be the generating function defined by the functional equation f(t) = tq(f(t))m.

By the above theorem, we can obtain the following decomposition.

G(m,r,s) = (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, tq(f(t))ms)

= (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, f(t))(1, f̄ · q(t)ms)

= (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, f(t))(1,

t

q(t)m
q(t)ms)

= (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, f(t))(1, tq(t)ms−m)

= G(m,r,1)(1, tq(t)ms−m).

Therefore,

(G(m,r,s))−1 = (1, tq(t)ms−m)−1(G(m,r,1))−1

= (1, tq(t)ms−m)(
q(t) −mtq′(t)

p(t)q(t)r+1
,

t

q(t)m
),

where we used the fact [18]

(G(m,r,1))−1 = (
q(t)−mtq′(t)

p(t)q(t)r+1
,

t

q(t)m
).

This completes the proof. 2

Theorem 2.6 Let the VHRA operator Ψ be defined by (1.6) and let Ψm = ΨΨm−1 for m ≥ 2,

with Ψ1 = Ψ. Then, for any Riordan array G = (gn,k)n,k≥0

ΨmG = G(m,0, 1
m

). (2.4)
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Proof We will give an inductive proof for (2.4). From Theorem 2.4 we obtain (2.4) for m = 1.

Assume (2.4) holds for m, that is

ΨmG = G(m,0, 1
m

).

If we denote by hn,k the (n, k)-th entry of ΨmG, then hn,k = g(m+1)n−mk,mn+(1−m)k. Let

Ψm+1G = (ln,k)n,k∈N. Then ln,k = h2n−k,n = g(m+2)n−(m+1)k,(m+1)n−mk. This implies that

Ψm+1G = G(m+1,0, 1
m+1

). Hence, (2.4) is also true for m+ 1, completing the proof of (2.4). 2

Theorem 2.7 Let the HHRA operator Ψ̂ be defined by (1.7) and let Ψ̂m = Ψ̂Ψ̂m−1 for m ≥ 2,

with initial Ψ̂1 = Ψ̂. Then, for any Riordan array G = (gn,k)n,k≥0, we have

Ψ̂mG = G(2m−1,0,1+ 1
2m−1

). (2.5)

Proof The proof is similar to that of Theorem 2.6. 2

3. Halves of Pascal matrix

For any integer m ≥ 0, the m-Catalan numbers or Fuss-Catalan numbers [13, 26–28] are

defined by the formula

C(m)
n =

1

mn+ 1

(
mn+ 1

n

)
, n = 0, 1, 2, . . . . (3.1)

The generating function Bm(t) =
∑∞

n=0
1

mn+1

(
mn+1

n

)
tn satisfies the functional equation

Bm(t) = 1 + tBm(t)m. (3.2)

It can be checked in [15, 27] that the following identities are valid

Bm(t)s =
∞∑

n=0

s

mn+ s

(
mn+ s

n

)
tn, (3.3)

Bm(t)s+1

1− (m− 1)tBm(t)m
=

∞∑

n=0

(
mn+ s

n

)
tn, (3.4)

Bm−s(tBm(t)s) = Bm(t). (3.5)

Theorem 3.1 The (m, r, s)-half of Pascal matrix G = ( 1
1−t

, t
1−t

) is

G(m,r,s) = (
Bm+1(t)

r+1

1−mtBm+1(t)m+1
, tBm+1(t)

ms).

Proof For the Riordan array G = ( 1
1−t

, t
1−t

), p(t) = q(t) = 1
1−t

. If f(t) is determined by

f(t) = tq(f(t))m, then

f(t) =
t

(1− f(t))m
,

f(t)

1− f(t)
=

t

(1− f(t))m+1
,

1

1− f(t)
= 1 +

t

(1− f(t))m+1
.

By (3.2), we have
1

1− f(t)
= Bm+1(t), f(t) = tBm+1(t)

m.
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Let G(m,r,s) = (d(t), h(t)). Then, from Theorem 2.4, we get

d(t) = f ′(t)p(f(t))(
f(t)

t
)

r−m
m =

Bm+1(t)
r+1

1−mtBm+1(t)m+1

and h(t) = t( f(t)
t
)s = tBm+1(t)

ms. From which the conclusion follows. 2

Theorem 3.2 Let G = ( 1
1−t

, t
1−t

). Then

(G(m,r,s))−1 = (1, t(1− t)m−ms)−1((1 − (m+ 1)t)(1 − t)r, t(1− t)m).

Proof From [18], we know that (G(m,r,1))−1 = ((1− (m+ 1)t)(1− t)r, t(1− t)m). Hence, using

Theorem 2.5, we have

(G(m,r,s))−1 = (1,
t

(1− t)ms−m
)−1(G(m,r,1))−1

= (1, t(1− t)m−ms)−1((1 − (m+ 1)t)(1 − t)r, t(1− t)m).

This completes the proof. 2

Corollary 3.3 The (m, 0, k
m
)-half of Pascal matrix G = ( 1

1−t
, t
1−t

) is

G(m,0, k
m

) = (
Bm+1(t)

1−mtBm+1(t)m+1
, tBm+1(t)

k)

and its inverse is given by

(G(m,0, k
m

))−1 = ((m+ 1)Bm−k+1(t)
−1 −m, tBm−k+1(t)

−k).

Corollary 3.4 Denote C(t) = B2(t) =
1−

√
1−4t
2t and (t) = B2(t)

1−tB2(t)2
= 1√

1−4t
. Then, we have

G(1,0,1) = (B(t), tC(t)),

G(1,0,2) = (B(t), tC(t)2),

G(1,0,3) = (B(t), tC(t)3),

G(1,1,1) = (B(t)C(t), tC(t)),

G(1,1,2) = (B(t)C(t), tC(t)2),

G(1,1,3) = (B(t)C(t), tC(t)3).

In [12], by applying G(1,0,2) = (B(t), tC(t)2) and G(1,1,2) = (B(t)C(t), tC(t)2), Brietzke provides

a new proof of some identities obtained by Andrews in [29], namely

Fn =
∞∑

i=−∞
(−1)i

(
n− 1

⌊ 1
2 (n− 1− 5i)⌋

)
, (3.6)

Fn =

∞∑

i=−∞
(−1)i

(
n

⌊ 1
2 (n− 1− 5i)⌋

)
, (3.7)

where Fn are Fibonacci numbers. The Fibonacci numbers (Fn)n∈N (A000045) (see [30]) are

defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

In this section, we use the vertical half of the Pascal matrix to propose and prove some

identities involving the Fibonacci numbers, Jacobsthal numbers and binomial coefficients.
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Theorem 3.5 For n ≥ 0, we have

F3n+1 =

n∑

j=0

(
2n− j

n

)
(F2j + Fj−1), (3.8)

F3n+2 =
n∑

j=0

(
2n− j

n

)
(F2j+1 + Fj), (3.9)

F3n+3 =

n∑

j=0

(
2n− j

n

)
(F2j+2 + Fj+1). (3.10)

Proof Consider the vertical half of the Pascal matrix, it is the Riordan array G(1,0,1) =

(B(t), tC(t)), with (n, k)-th entry being g2n−k,n =
(
2n−k

n

)
. The inverse is given by (G(1,0,1))−1 =

(1− 2t, t(1− t)).

Since

(1− 2t, t(1− t))
1− t

1− 4t− t2
=

(1− 2t)(1− t+ t2)

(1 − 3t+ t2)(1− t− t2)
,

(1− 2t, t(1− t))
1 + t

1− 4t− t2
=

(1− 2t)(1 + t− t2)

(1 − 3t+ t2)(1− t− t2)
,

(1− 2t, t(1− t))
2

1− 4t− t2
=

2(1− 2t)

(1 − 3t+ t2)(1− t− t2)
,

we can get that

(B(t), tC(t))
(1− 2t)(1− t+ t2)

(1 − 3t+ t2)(1− t− t2)
=

1− t

1− 4t− t2
, (3.11)

(B(t), tC(t))
(1− 2t)(1 + t− t2)

(1 − 3t+ t2)(1− t− t2)
=

1 + t

1− 4t− t2
, (3.12)

(B(t), tC(t))
2(1− 2t)

(1 − 3t+ t2)(1− t− t2)
=

2

1− 4t− t2
. (3.13)

From the following partial decomposition

(1− 2t)(1− t+ t2)

(1− 3t+ t2)(1 − t− t2)
=

t

1− 3t+ t2
+

1

1− t− t2
− t

1− t− t2
,

we have

[tn]
(1− 2t)(1− t+ t2)

(1 − 3t+ t2)(1− t− t2)
= F2n + Fn+1 − Fn = F2n + Fn−1.

Thus (1−2t)(1−t+t2)
(1−3t+t2)(1−t−t2) is the generation function of sequence (F2n +Fn−1)n∈N. In the same way

we obtain that (1−2t)(1+t−t2)
(1−3t+t2)(1−t−t2) is the generation function of the sequence (Fn + F2n+1)n∈N

(A087124), and 2(1−2t)
(1−3t+t2)(1−t−t2) is the generation function of the sequence (Fn + F2n)n∈N

(A051450). Hence, from (1.2) and Eqs. (3.11)–(3.13), and using Corollary 3.3, we obtain our

results (3.8)–(3.10), respectively. 2

The Jacobsthal numbers Jn are defined recursively as follows [11]

Jn+1 = Jn + 2Jn−1, n ≥ 1; J0 = 0, J1 = 1.
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The generating function of Jacobsthal sequence is J(t) =
∑∞

n=0 Jnt
n = t

1−t−2t2 . Using the

vertical half of the Pascal matrix, we derive the following identities involving the Jacobsthal

numbers.

Theorem 3.6 For n ≥ 0, we have

J2n+2 =

n∑

j=0

⌊ j

3
⌋∑

i=0

(
2n− j

n

)(
j + 2

3i+ 2

)
; (3.14)

J2n+1 =
n∑

j=0

⌊ j+1

3
⌋∑

i=0

(
2n− j

n

)(
j + 1

3i

)
. (3.15)

Proof It is known [11, 31] that
∑∞

n=0 J2n+2t
n = 1

1−5t+4t2 and
∑∞

n=0 J2n+1t
n = 1−2t

1−5t+4t2 . Let
1

(1−2t)(1−t+t2) =
∑∞

n=0 gnt
n and 1−2t+2t2

(1−2t)(1−t+t2) =
∑∞

n=0 ḡnt
n. Then

gn =

⌊n
3
⌋∑

i=0

(
n+ 2

3i+ 2

)
and ḡn =

⌊n+1

3
⌋∑

i=0

(
n+ 1

3i

)
.

By a straightforward computation we get

(1− 2t, t(1− t))
1

1− 5t+ 4t2
=

1

(1 − 2t)(1− t+ t2)
,

(1− 2t, t(1− t))
1− 2t

1− 5t+ 4t2
=

1− 2t+ 2t2

(1 − 2t)(1− t+ t2)
,

which is equivalent to

(B(t), tC(t))
1

(1 − 2t)(1− t+ t2)
=

1

1− 5t+ 4t2
,

(B(t), tC(t))
1− 2t+ 2t2

(1− 2t)(1− t+ t2)
=

1− 2t

1− 5t+ 4t2
,

from which (3.14) and (3.15) follow. 2

Theorem 3.7 For n ≥ 0, we have
n∑

j=0

(
2n− j

n

)
=

(
2n+ 1

n

)
, (3.16)

n∑

j=0

(
2n− j

n

)
2j = 4n. (3.17)

Proof By using the identities C(t) = 1
1−tC(t) and B(t) = 1

1−2tC(t) , we have

(B(t), tC(t))
1

1 − t
= B(t)C(t), (B(t), tC(t))

1

(1 − 2t)
=

1

1− 4t
.

So the results follow by the fundamental theorem of Riordan arrays. 2

Theorem 3.8 For n ≥ 0, we have

n∑

j=0

(−1)j
(
2n+ j

n+ 2j

)
= 1 +

n−1∑

j=1

(
2j

j − 1

)
. (3.18)
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Proof By using the identities C(t) = 1 + tC(t)2, we have

(B(t), tC(t)3)
1

1 + t
=

B(t)

1 + tC(t)3
=

B(t)

1 + C(t)(C(t) − 1)

=
B(t)

1 + C(t)2 − C(t)
=

B(t)

C(t)2 − tC(t)2

=
B(t)C(t)−2

1− t
.

From (3.4), [ti]B(t)C(t)−2 =
(
2i−2

i

)
. Thus,

[tn]
B(t)C(t)−2

1− t
=

n∑

i=0

(
2i− 2

i

)
= 1 +

n−1∑

j=1

(
2j

j − 1

)
.

By Corollary 3.4, we know that the general entry of (B(t), tC(t)3) is
(
2n+k
n+2k

)
. Then the result

follows by the fundamental theorem of Riordan arrays. 2

Note that the sequence (1 +
∑n−1

j=1

(
2j
j−1

)
)n≥0 is registered as A279561 in OEIS [11], which

counts the number of inversion sequences avoiding the patterns 021 and 120 (see [32, 33]).

Theorem 3.9 For n ≥ 0, we have

n∑

j=0

(−1)j
(
2n+ j + 1

n+ 2j + 1

)
= 1 +

1

2

n∑

j=1

(
2j

j

)
. (3.19)

Proof By using the identities C(t) = 1 + tC(t)2, we have

(B(t)C(t), tC(t)3)
1

1 + t
=

B(t)C(t)

1 + tC(t)3
=

B(t)C(t)

1 + C(t)(C(t) − 1)

=
B(t)C(t)

1 + C(t)2 − C(t)
=

B(t)C(t)

C(t)2 − tC(t)2

=
B(t)C(t)−1

1− t
.

From (3.4), [ti]B(t)C(t)−1 =
(
2i−1

i

)
. Then we can obtain that

[tn]
B(t)C(t)−1

1− t
=

n∑

i=0

(
2i− 1

i

)
= 1 +

n∑

i=1

(
2i− 1

i

)
= 1 +

1

2

n∑

i=1

(
2i

i

)
.

We also have that the general entry of (B(t)C(t), tC(t)3) is
(
2n+k+1
n+2k+1

)
by Corollary 3.4. Thus the

result follows by the fundamental theorem of Riordan arrays. 2

Note that the sequence (1 +
∑n

i=1

(
2i−1

i

)
)n≥0 is registered as A024718 in OEIS [11], which

counts the total number of leaves in all rooted ordered trees with at most n edges [34]. It also

counts the number of UH-free Schröeder paths of semilength n with horizontal steps only at

level less than two [35].

4. Halves of Delannoy matrix

Let p(t) = 1
1−t

and q(t) = 1+t
1−t

. Then G = (p(t), tq(t)) = ( 1
1−t

, t+t2

1−t
) is the Delannoy

matrix [10, 21, 36, 37]. If f(t) = tq(f(t))m, then f(t) = t(1+f(t)
1−f(t) )

m. We let R(t) = 1+f(t)
1−f(t) . Then
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f(t) = tR(t)m and R(t) satisfies the equation R(t) = 1 + tR(t)m + tR(t)m+1. From [38], R(t) is

the generating function of (m + 1)-Schröder numbers. Using this generating function, we have

the following characterization for the (m, r, s)-half of G = ( 1
1−t

, t+t2

1−t
).

Theorem 4.1 The (m, r, s)-half of the Delannoy matrix G = ( 1
1−t

, t+t2

1−t
) is given by

G(m,r,s) = (
(1− tR(t)m)R(t)r

(1− tR(t)m)2 − 2mtR(t)m−1
, tR(t)ms)

and its inverse can be factorized as

(G(m,r,s))−1 = (1, t(
1− t

1 + t
)m−ms)−1(

(1− t)r(1 − 2mt− t2)

(1 + t)r+1
,
t(1− t)m

(1 + t)m
).

Proof Let p(t) = 1
1−t

and q(t) = 1+t
1−t

. If f(t) = tq(f(t))m, then f(t) = t(1+f(t)
1−f(t) )

m. Let

R(t) = q(f(t)) = 1+f(t)
1−f(t) . Then f(t) = tR(t)m and R(t) satisfies the equation R(t) = 1 +

tR(t)m + tR(t)m+1. Therefore, from Theorems 2.4 and 2.5, we get that

G(m,r,s) = (
p(f(t))q(f(t))r

1−mtq(f(t))m−1q′(f(t))
, tq(f(t))ms)

= (
(1− tR(t)m)R(t)r

(1 − tR(t)m)2 − 2mtR(t)m−1
, tR(t)ms),

(G(m,r,s))−1 = (1, tq(t)ms−m)(G(m,r,1))−1

= (1, (
t(1 + t)

1− t
)ms−m)(

(1 − t)r(1− 2mt− t2)

(1 + t)r+1
,
t(1 − t)m

(1 + t)m
)

= (1, t(
1− t

1 + t
)m−ms)−1(

(1− t)r(1 − 2mt− t2)

(1 + t)r+1
,
t(1− t)m

(1 + t)m
),

this completes the proof. 2

Theorem 4.2 The (m, 0, 1
m
)-half of the Delannoy matrix G = ( 1

1−t
, t+t2

1−t
) is given by

G(m,0, 1
m

) = (
1− tR(t)m

(1− tR(t)m)2 − 2mtR(t)m−1
, tR(t))

and its inverse can be factorized as

(G(m,0, 1
m

))−1 = (1, t(
1− t

1 + t
)m−1)−1(

(1 − 2mt− t2)

(1 + t)
,
t(1− t)m

(1 + t)m
).

The Delannoy matrix D = ( 1
1−t

, t+t2

1−t
) has the (n, k)-th entry dn,k =

∑n−k

j=0

(
k
j

)(
n−j
k

)
. It is

well-known that
∑n

k=0 dn,k = Pn+1, where the Pell numbers [39] Pn are defined by

∞∑

n=0

Pnt
n =

t

1− 2t− t2
.

The (1, 0, 1)-half of Delannoy matrix is given by

G(1,0,1) = (
1√

1− 6t+ t2
,
1− t−

√
1− 6t+ t2

2
),

its generic element is d2n−k,n =
∑n−k

j=0

(
n

j

)(
2n−k−j

n

)
and

(G(1,0,1))−1 = (
1− 2t− t2

1 + t
,
t(1− t)

1 + t
).
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Theorem 4.3 For n ≥ 0, we have

P2n+2 =

n∑

k=0

d2n−k,n(2Pk+1 − 2Pk), (4.1)

P2n+1 =

n∑

k=0

d2n−k,n(Pk+1 + Pk−1), (4.2)

where P−1 = P0 = 0.

Proof Since

(
1− 2t− t2

1 + t
,
t(1 − t)

1 + t
)

2t

1− 6t+ t2
=

2t− 2t2

1− 2t− t2
,

(
1− 2t− t2

1 + t
,
t(1 − t)

1 + t
)

1− t

1− 6t+ t2
=

1 + t2

1− 2t− t2
,

we have

(
1√

1− 6t+ t2
,
1− t−

√
1− 6t+ t2

2
)

2t− 2t2

1− 2t− t2
=

2t

1− 6t+ t2
,

(
1√

1− 6t+ t2
,
1− t−

√
1− 6t+ t2

2
)

1 + t2

1− 2t− t2
=

1− t

1− 6t+ t2
.

Hence, from the generating functions

2t− 2t2

1− 2t− t2
=

∞∑

n=0

(2Pn+1 − 2Pn)t
n

and
1 + t2

1− 2t− t2
=

∞∑

n=0

(Pn+1 + Pn−1)t
n,

as well as (1.2), we arrive at the desired results. 2

Theorem 4.4 For n ≥ 0, we have

Q2n =

n∑

k=0

d2n−k,n(Qk −Qk−1 − 0k), (4.3)

Q2n+1 =
n∑

k=0

d2n−k,n(Qk +Qk−1 − 0k), (4.4)

where the Pell-Lucas numbers Qn are defined by
∑∞

n=0 Qnt
n = 1−t

1−2t−t2
, with Q−1 = 0.

Proof Making use of (1.3), we obtain

(
1 − 2t− t2

1 + t
,
t(1− t)

1 + t
)

2− 3t

1− 6t+ t2
=

1− 2t+ 3t2

1− 2t− t2
,

(
1− 2t− t2

1 + t
,
t(1 − t)

1 + t
)

1 + t

1− 6t+ t2
=

1 + 2t− t2

1− 2t− t2
,

which are equivalent to

(
1√

1− 6t+ t2
,
1− t−

√
1− 6t+ t2

2
)
1 − 2t+ 3t2

1− 2t− t2
=

2− 3t

1− 6t+ t2
,
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(
1√

1− 6t+ t2
,
1− t−

√
1− 6t+ t2

2
)
1 + 2t− t2

1− 2t− t2
=

1 + t

1− 6t+ t2
.

It can be verified that the generating functions

1− 2t+ 3t2

1− 2t− t2
=

∞∑

n=0

(Qk −Qk−1 − 0k)tn

and
1 + 2t− t2

1− 2t− t2
=

∞∑

n=0

(Qk +Qk−1 − 0k)tn.

Hence, the results follow from (1.2). 2
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