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The Spectral Properties of p-Sombor (Laplacian)
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Abstract The Sombor index, which was recently introduced into chemical graph theory, can
predict physico-chemical properties of molecules. In this paper, we investigate the properties of
(p-)Sombor index from an algebraic viewpoint. The p-Sombor matrix S,(G) is the square matrix

of order n whose (4, j)-entry is equal to ((d;)” + (dj)p)ll) if v; ~ v;, and 0 otherwise, where d;
denotes the degree of vertex v; in GG. The matrix generalizes the famous Zagreb matrix (p = 1),
Sombor matrix (p = 2) and inverse sum index matrix (p = —1). In this paper, we find a pair
of p-Sombor noncospectral equienergetic graphs and determine some bounds for the p-Sombor
(Laplacian) spectral radius. Then we describe the properties of connected graphs with k distinct
p-Sombor Laplacian eigenvalues. At last, we determine the Sombor spectrum of some special
graphs. As a by-product, we determine the spectral properties of Sombor matrix (p = 2), Zagreb
matrix (p = 1) and inverse sum index matrix (p = —1).

Keywords p-Sombor matrix; p-Sombor Laplacian matrix; p-Sombor spectrum

MR(2020) Subject Classification 05C09; 05C50

1. Introduction

Let G = (V,E) be a simple graph with vertex set V(G) = {v1,v2,...,v,} and edge set
E(G). The degree d(v;) (or d;) of vertex v; denotes number of edges connecting with vertex v;.
We use e = v;v; to denote edge connecting vertex v; and vertex v;. Let K, Sy, Kn, nay Snins
denote complete graph, star graph, complete bipartite graph, and double star graph, respectively.
G\ {e} denotes deleting the edge e in graph G. We refer to [1] for all notations and terminologies
utilized but not defined in this article.

As we know, the adjacent matrix A(G) = [aij]nxn is defined as
1, vv; € BE(G),
ij = .
0, otherwise.

Let Ay > Ao > -+ > A, be the adjacent eigenvalues of the graph G.
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The (adjacent) energy of a simple graph is introduced by Ivan Gutman [2]

£(G) = Zw.

The Laplacian matrix is defined as follows: L(G) = D(G) — A(G), where D(G) is the degree
of diagonal matrix. Let uy > po > --- > p, be the Laplacian eigenvalues of the graph G.

Recently, Gutman proposed the novel index, Sombor index [3], which is defined as

SO(@) = ). B+
ViV EE(G)

The Sombor index can help to exert modest discriminative potential and predict physico-chemical
properties of molecules [4]. We can also see [5-8] for more details about Sombor index.

Soon after, Réti, Dosli¢ and Ali introduced the p-Sombor index [9], which is defined as

SO,(G) = > ((di)" + (d;)P)7.
ViV GE(G)

The p-Sombor matrix [10] is defined as S, = S,(G) = [s];]nxn (p # 0), where

o ) (d)P+(d)P)7, viv; € E(G);
0, otherwise.

Let 01 > 0 > --- > 0, be the eigenvalues of S,. The p-Sombor matrix generalizes the famous
Zagreb matrix (p = 1), Sombor matrix (p = 2) and inverse sum index matrix (p = —1). The

spectral properties of these matrices can be found in [11-14].

The p-Sombor energy [10] is defined as
n
SpE(G) = [64].
i=1
The p-Sombor Laplacian matrix [10] is defined as

‘Cp(G) = Dp(G) - SP(G)a

where
n

D,(G) = Diag(Zs’fj,ngj, .. .,Zsﬁj).
=1 =1

j=1
Let 1 > n2 > -+ > n, be the eigenvalues of £,(G). By giving a direction of every edge of G,
we can obtain the directed graph D. Let Sr(G) = [Sie]nxm be the association matrix of directed
graph D, where

)
1 3
)?P, e =vvj;

Y2l
2
@
!
!
—
—
IS
5
=
< +
+
G
=
kS

0, otherwise.

Thus, we always have £,(G) = Sr(G)[Sr(G)]T.
Much work about the weighted adjacency matrix [15] had been considered, such as ABC

matrix [16], sum-connectivity Laplacian matrix [17], extended adjacency matrix [18], p-Sombor
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matrix [10]. Motivated by above results, it is also interesting to obtain more spectral properties

of p-Sombor (Laplacian) matrix.

2. Bounds of p-Sombor spectral radius

In [10], Liu et al. obtained the upper bounds of p-Sombor spectral radius (p > 1) among
trees with n vertices. It should be noted that in [10, Theorem 4.7], they missed the condition
p=>1

Theorem 2.1 ([10]) Let G € T,, and 01(G) be the p-Sombor spectral radius of G. If p > 1,
then 61(G) < 01(Ky n,—1) with equality iff G = K ,,—1.
Let C = (¢ij), D = (d;j) be real matrix. If ¢;; < d;; for 1 <4,j < n, we denote C' < D. In the

following, we consider more bounds of p-Sombor spectral radius 6, (G) with given parameters.

Theorem 2.2 Let G € U, with maximum degree A. Then 0,(G) < 2%+1(n — 1)v/A —1 with
equality iff G = Cs.

Proof By the properties of p-Sombor matrix, S, < 2% (n—1)A, thus 6, < 9% (n—1)A1. Since G €
Un, then \;(G) < 2¢/A — 1, with equality iff G = C), (see [19]). Thus 6; < 2%+1(n —1)vVA -1

If G = Cy, then 01(Cs) = 2572 = 25+ (n — 1)yA — 1. If 0,(G) = 25 (n — 1)y/A — 1, then
G = C,, then d, = 2 for u € V(G). Then 25+ (n— 1) = 6,(C,) = 25 '\ (C,) = 272, thus
n=3ie,G=Cs. O

Theorem 2.3 Let G be a connected graph with |V(G)| = n, |E(G)| = m. Then 6; <
25 (n — 1)v/2m — n + 1 with equality iff G = K,,.

Proof By the properties of p-Sombor matrix, S,(G) < 2v (n —1)A(G), thus 6; < 2v (n—1)\1.
Since Ay < v2m —n+1 with equality iff G & K;,_1 or G = K, (see [20]). Thus 6; <
2%(71 —1)y/2m + 1 — n with equality iff G = K,,. O
Lemma 2.4 ([10]) Let G be a graph with maximum degree (resp., minimum degree) A (resp.,
d). Then 2%5)\1 <0 < Q%A)\l with equality iff G is regular graph.

Since § < A\; < A, by Lemma 2.4, we immediately have

Corollary 2.5 Let G be a graph with maximum degree (resp., minimum degree) A (resp., §).
Then 27 §2 <6; < 25 A? with equality iff G is regular graph.
Let Uy denote the collection of unicyclic even graphs. Uf_4 = Cy - S,—3 is the graphs

obtained from cycle C4 and star S,,_3 by identifying one vertex of C4 and the central of S,,_3.

Lemma 2.6 ([21]) Let G € U} (n > 4). Then \(G) < M\ (UP™*), where A\, (U}™?) is the
maximal root of polynomial x* — nx? + 2n — 8.
By Lemma 2.6, we have 6,(G) < 2%(71 - 1M(G) < 2%(71 — DA\ (UF). Thus

Theorem 2.7 Let G € U} (n > 4). Then we have 0; < 2%(71 — DA\ (U™ with equality iff
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G = Cy. And \(U}™*) is the maximal root of polynomial * — nz? + 2n — 8.

Let U(l, A) be the graphs obtained by connecting A — 2 pendent edges to every vertex of Cj.

Lemma 2.8 ([22]) Let G € U(I,A). Then \i(G) =1+ VA —1.
Since 61(G) < 25 A\ (G), by Lemma 2.8, we have

Theorem 2.9 Let G € U(l,A). Then 6,(G) < Q%A(l + VA — 1) with equality iff G = Cj.

3. The p-Sombor equienergetic graphs

The joint graph G VG is derived from vertices of G1, G2 and connecting each of the vertices
of GG1 and the vertices of Gs.

Theorem 3.1 Let Gy be an ri-regular graph with |V (G1)| = n1, G be an ro-regular graph
with |V (G2)| = na. Then the p-Sombor eigenvalues of G1 V Gy are
27 (11 +n2)Xi(G1), i=2,3,...,n1;
25 (ry + n1)Ni(Ga), i=2,3,..., na;
2%71((% +ro)re + (ng +r1)r)+

2_ 2
\/QP 2((n1 4 r2)re — (ng 4 r1)71)2 + nung((ny + r2)P + (g +71)P) 7.
Proof By the definition of p-Sombor matrix, we have

27 (r1 + n2) A(G1) ((r1 4 n2)? + (rg 4+ 11)P) % Ty xms ) .

Sp(G1V Ga) = | /
(G 2) <((r1 +n2)P + (ra +n1)P)? Jnysens 27 (rg +n1)A(Ge)

Thus, by the properties of quotient matrix, the p-Sombor eigenvalues of G V G2 are
(7“1 + nQ))\i(Gl), 1=2,3,...,n1;

(7“2 + nl))\i(Gg), 1=2,3,...,n9;

2%_1((711 +79)re + (no +11)r) L

1
2»

1
2»

<o
O

\/2%_2((711 +r2)re — (N2 +r1)r1)? + nina((ng +12)P + (ng +1r1)P)».

By the definition of p-Sombor energy and Theorem 3.1, then

Theorem 3.2 Let Gy be an ri-regular graph with |V (G1)| = n1, G be an ro-regular graph
with |V (G2)| = na. Then the p-Sombor energy of G V Gy is

25 (11 + n2)E(G1) + 27 (ra + n1)E(Ga) — 27 (r1 + n2)r1 — 27 (ra + ny)ro+

\/2%((711 +72)ra — (ne 4+ r1)r1)? + dnyna((ng + r2)P + (ng + 7“1)”)%-

We call G and G’ (non-isomorphic) equienergetic if |V(G)| =n = |V(G')|, G' and G have no
identical spectra and they have the same energy. Similarly, we call G and G’ (non-isomorphic)
p-Sombor equienergetic if |V(G)| = n = [V(G’)|, G’ and G have no identical p-Sombor spectra

and they have the same p-Sombor energy. We find some p-Sombor equienergetic graphs.
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Theorem 3.3 The graphs G V K; and G2 V K; are p-Sombor equienergetic graphs, where G
and G are depicted in Figure 1.

Gl GZ

Figure 1 Two equienergetic 4-regular graphs

Proof The graphs G, Gy are 4-regular equienergetic graphs which was introduced in [23].
E(Gs) =16 = £(G1), S,E(Gy) = 257° = §,E(G;). By Theorem 3.2,

S,E(Gy V K;) =S,E(Gy V Ky) =3 x 2 2(t 4+ 4) + 25 (¢ + 8)(t — 1)+

\/2% (2 + 3t — 24)2 + 36t((t + 4)P + (t + 8)P) 5.
Thus, the graphs G1 V K; and G2 V K; are p-Sombor noncospectral equienergetic graphs. O

Corollary 3.4 (i) The p-Sombor spectrum of K, ,, is {04221+ /miny(n? + ng)% 1.
(ii) The p-Sombor spectrum of S,, is {0" =21, £/n — 1((n — 1)P + 1)% }.
(iii) The p-Sombor spectrum of C'Sy, p—w = Ky V K,—_y (i€., complete split graph) is

{O[nflfw]7 72% (TL o 1)[w71]7 2%_1(?1) _ 1)(n — ]_):l:

\/2%—2(w —1)2(n — 1)2 + w(n — w)(wP + (n — 1)P)7 }.
By Corollary 3.4, we can obtain the p-Sombor energy of these special graphs.

Corollary 3.5 (i) The p-Sombor energy of K, 5, is 2y/nina(n} + ng)%
(ii)) The p-Sombor energy of S,, is 2v/n — 1(1 + (n — 1)”)%.
(iii) The p-Sombor energy of C'Sy n—w is

25 (w—1)(n— 1) + 2\/2%—2(w —1)2(n — 1)2 + w(n — w)(wP + (n — 1)P)7.

Note that when p = 2, we can obtain the Sombor spectrum, Sombor energy of S,, and K, »,
which is the results of [24, Theorem 2.8 and 2.6].

Note that K, \ {e} = CS,_22 for any e = uv € K,,. By Case (iii) of Corollary 3.5, we can
calculate the Sombor energy of K,, \ {e}. We have Sy F(K,) = 2v/2(n — 1)? and

S2B(Kn \ {e}) = V2(n = 3)(n — 1) + v2/(n = 3)2(n — 1)2 + 4(n — 2)((n — 2)> + (n — 1)?).

Thus SoE(K,,) > S2E(K,\{e}) (n > 3). We partially answer the problem proposed by Ghanbari
in [24] about what is the relationship between Sy E(G) and SaE(G \ {e}).
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4. Spectral properties of p-Sombor Laplacian matrices

In the following, we determine some spectral properties of p-Sombor Laplacian matrices.
Proposition 4.1 The p-Sombor Laplacian matrix £,(G) is a positive semi-definite matrix.
Proof Let £, = D, — S, where Dp,(G) = Diag(3_7_; 87,201 8555+, 251 Snj)-

1
((do)? + (dj)P)?,  wviv; € E(G);
0, otherwise.

Let ¢ = (p(v1),p(v2),...,¢(vs))T be the unit column vector with respect to vertices V(G) =
{v1,v2,...,v,}. There exists a real number X such that Ap(z) = (£,(G)g)(x). Since

e Ly (G)o = ¢ " Dy(G)p — 0" Sp(G)e,
0TS (G)e = > sLio(vi)e(v)),

PTG =Y (D)) = 3 (P ) + 93 (wy)).
=1 k=1 Vi~V

Thus
1Ly (G)p = 5(p(vi) = (v;))? 2 0. O
p Apl)p 5,5 (P\V; plv)) =Y.
Vi~V
By Proposition 4.1, we have that the multiplicity of zero among p-Sombor Laplacian eigen-
values is equal to the number of connected components.

Similar to the incidence matrix R(G), for matrix Sg(G), we also have

Lemma 4.2 Let G be a connected graph with |V (G)| = n. Then rank(Sgr(G)) =n — 1.

Proof Let x = (z1,%,...,7,) be a vector, such that 27 Sr(G) = 0. Then for any v; ~ v;,
and v; — v; in the digraph D, we have —z;(d} + d?)% + x;(df + df)% = 0. Thus z; = z; for
v; ~ vj. Since G is a connected graph, we have 1 = xo = -+ = x,. Then z = k(1,1,..., T,

Thus rank(Sg(G)) > n — 1. By the definition of Sg(G), we know the rows of Sg(G) are linearly
dependent, such that rank(Sg(G)) < n — 1. Thus we have rank(Sr(G)) =n—1. O

By Lemma 4.2, rank(£,(G)) = rank(Sg(G)[Sr(G)]T) = rank(Sr(G)) = n — k, where k
denotes the number of connected components. Thus, multiplicity of 0 as an eigenvalue of £, is
equal to the number of components in G.

In the following, we describe the properties of connected graphs with £ distinct p-Sombor

Laplacian eigenvalues. The proof is similar to that of [16, Lemma 2.2], the detail is omitted.

Theorem 4.3 Let G be a connected graph with |V(G)| = n. Then L,(G) hask (2 <k <n)

distinct eigenvalues iff there exist k — 1 distinct non-zero numbers t1,ta,...,t;_1 such that
k—1 L
. t;
H(EP(G) - tZI) = (_1)]9*1@{],
n

i=1

where J denotes all-one matrix, I is a unit matrix.
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An (s,t)-semiregular bipartite graph is a bipartite graph (X,Y") with |X]| = s, |X| =t and

the degree of each vertex in the same partite set is the same.

Theorem 4.4 (i) If G is a k-regular graph, then n;(G) = Q%kui(G), 1=1,2,...,n. Specifically,
if G is Ky, nn(K,) =0,

If G = C,, then
HKQJ:2#HG7C%7T% i=0,1,...,n— 1.

(ii) If G is an (s, t)-semiregular bipartite graph, then n;(G) = (s”—i—t”)iui(G), i=1,2,...,n.
Specifically, if G is Kqp (a +b=mn,a > ),

m(Kap) =n(a? +0°)7, 12(Kap) = 13(Kap) = - = my(Kap) = ala? + bP)7,
41 (Kap) = a2 (Kap) =+ = 01 (Kap) = b(a? + bP)»
and 0, (Kqp) = 0.

Proof (i) Since G is a k-regular graph, then £,(G) = Q%kL(G), thus n; = Q%kui. If G =K,,
then puy(Ky) = po(Ky) = -+ = pn-1(Kn) = n, un(K,) = 0. If G =2 C,, then p;(Cyp) =
2(1 —cos#), i =0,1,...,n—1.

(i) If G is an (s,t)-semiregular bipartite graph, then £,(G) = (s + tp)%L(G), thus
7 (G) = (s? + tp)i,ui(G), i=12,....n. 1 G = Kup (a+b=n,a>b), then n = p1(Kap),
po(Kap) = p3(Kap) = -+ = m(Kap) = a, o1 (Kap) = por2(Kap) = -+ = pn—1(Kap) = b
and pn(Kqp) =0. 0

Theorem 4.5 Let G be a graph with |V (G)| =n. Then G has exactly one p-Sombor Laplacian

eigenvalue iff G = nkKj.

Proof Since £,(G) is a positive semi-definite matrix (by Proposition 4.1), then 7,,(G) = 0. If G
has one p-Sombor Laplacian eigenvalue, 1 =02 = --- =1, = 0, then £,(G) = 0, thus G = nKj;.
If G =2 nK;, then £,(G) =0, thuspy = =---=mn,=0.0

Theorem 4.6 Let G be a connected graph with |V (G)| = n(> 2). Then G has two distinct

p-Sombor Laplacian eigenvalues iff G = K,,.

Proof By Theorem 4.3, we know G has two distinct p-Sombor Laplacian eigenvalues iff there
exists non-zero number ¢ such that £,(G) — ¢/ = —%.J. Then off-diagonal entries of £,(G) are
not 0, thus G = K,,. It G 2 K,,, by Theorem 4.4, K,, has two p-Sombor Laplacian eigenvalues
0 and 2%(71 —1)n. O

Lemma 4.7 ([10]) Let G be a connected graph with |V(G)| = n. Then SO, < 2%_171(71 —1)2
with equality iff G = K,.
By Lemma 4.7, we can obtain the sharp bounds of the second minimal p-Sombor Laplacian

eigenvalue 7, 1.
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Theorem 4.8 Let G be a connected graph with |V(G)| = n. Then n,_1 < 2%(71 — 1)n with
equality iff G =2 K,,.
Proof Since 7, + 37} i = 250,(G), then n,_; < —2-50,(G). By Lemma 4.7,

SO,(G) < ()27 (n—1) = 27 'n(n — 1)2.

Thus 7,1 (G) < Q%n(n — 1) with equality iff G = K,,. O

5. The Sombor spectrum of some special graphs

In the following, we introduce a way of matrix decomposition introduced in [25]. Let M be
an n X n symmetric matrix given in (5.1) where block F € R**!, block v € R**® block F € R¥*¢,
block @ € R*** and n = zs + t, z denotes number of copies of F. Denote by o(X) spectrum of
matrix X, and ¢*(X) the multiset with k copies of o(X).

Eoy vy oy
VFE Qo Q

M=|" Q@ F Q (5.1)
VT Q Q --- F

Lemma 5.1 ([25]) Let M be the matrix in (5.1). Then

(i) The spectrum o(F — Q) C o(M) with multiplicity z — 1, where z denotes the number of
copies of the block in matrix M.

(ii) The spectrum o(M) \ 0"~ 1(F — Q) = o(M’) is the set of remaining s + t eigenvalues of

M, and
vyl F+(z-1)Q

The conclusion of Lemma 5.1 means that o(M) = o> 1 (F — Q) Jo(M').
In the following, we consider the Sombor spectrum of the graphs star plus an edge S;", double
star Spyme (N1 +n2 4+ 2 =n) and Ky, », \ {e}.

Theorem 5.2 The Sombor spectrum of S, consists of 0l"=4 and the zeros of polynomial
xt — (n® = 3n? +4n +12)2? — 4y/2(n? — 2n + 5)x + 8(n — 3)(n? — 2n + 2).

Proof The Sombor matrix of S is

0 2v/2 Vin—=12+4 0 0 0
2v/2 0 Vin—1)2+4 0 0 0
Vin—12+4/(n—1)2+4 0 Vin—=124+1/(n—12+1--- \/(n—1)2+1
0 0 (n—1)241 0 0 0
0 0 (n—1)241 0 0 0
I 0 0 (n—1)2+1 0 0 0 |
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Let
0 2V/2 Vin—-1)2+4
E= 2V2 0 Jo—12+4|’

Vin=12+4/(n—1)2+4 0

0
7= 0
(n—1)2+41

F =0 and Q = 0. By Lemma 5.1, 0 is the Sombor eigenvalues of S;" with multiplicity n — 4.
For the remaining Sombor eigenvalues, we need to consider the following matrix

0 2v/2 (n—1)2+4 0
2v/2 0 (n—1)2+4 0 (5.2)
Vin—12+4/(n—1)2+4 0 Vn=3y/(n—-1)2+1
0 0 Vn=3y/(n—-1)2+1 0

It is easy to calculate the characteristic polynomial of (5.2). The remaining four Sombor eigen-
values are zeros of * — (n® — 3n? 4+ 4n +12)2? — 4/2(n? — 2n + 5)z + 8(n — 3)(n? — 2n+2). O

Theorem 5.3 The Sombor spectrum of S, n, consists of 0lm1+72=21 and the zeros of polyno-
mial #* — ((n1 +1)3 + (n2 + 1)3 + n1 + n2)z? + nina((n1 + 1)% + 1)((ng + 1)% + 1).

Proof The Sombor matrix of Sy, », is

0 u Vi + 10241 /(ni +1)2+1 0 0 T
u 0 0 0 Ve +1)2+1- /(ne+1)2+1
(n1+1)2+1 0 0 0 0 0
\/(n1+1)2+1 O O
0 (ne+1)2+1 0
L 0 Vinz+1)2+1 0 0 0 0 |

where u = /(n1 + 1)2 + (n2 + 1)2. Let

Vi +1)24+me+1)2/(m +1)24+1---

0
V(1 +1)2 + (ng + 1)2 0
E= (ni+1)2+1 0
Vi +1)2+1 0

0

0
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and

0
(n2+1)2—|—1

0
F =0and @ =0. By Lemma 5.1, 0 is the Sombor eigenvalues of Sy, », with multiplicity n, — 1.
For the remaining Sombor eigenvalues, we need to consider the following matrix

0 Vi 124+ (e + 12/ (m +1)2+1---/(nn + 1)2 + 1 0 1
V(1 +1)2 + (ng + 1)2 0 0 0 Vizy/(n2 +1)2 +1
(n1+1)2+1 0 0 0 0
(i +1)2+1 0 0

0
L 0 a/ngx/(ng—‘rl)Q—l—l 0 0

(5.3)

We do a primary row transformation and column transformation for the matrix of (5.3), and obtain the
following matrix (5.4)

0 V(1 +1)2 + (ng + 1)2 0 Vi +10)2+1y/(m+1)2+1
V(1 +1)2 + (ng + 1)2 0 Vnzy/(na +1)2 +1 0 0
0 Viay/(ns + 1)2 +1 0 0 0
(n1+1)2 41 0 0 0 0

(ni +1)2+1 0 0 0 0 |

(5.4)

By Lemma 5.1, 0 is the Sombor eigenvalues of Sy, n, with multiplicity n1 —1. For the remaining Sombor
eigenvalues, we need to consider the following matrix

0 V(n1 +1)2 4 (n2 + 1)2 0 Vi (ni+1)2 +1
Vi F 124 (n2 + 1)2 0 Vizy/(ne +1)2 + 1 0 (5.5)
0 Vizy/(ne +1)2 +1 0 0
ATy + 12 +1 0 0 0

It is easy to calculate the characteristic polynomial of (5.5). The remaining four Sombor eigenvalues are
zeros of z* — ((n1 + 1) + (n2 + 1) + n1 +n2)z? + ninz((n2 + 1) + 1)((n + 1)% +1). O
Similar to the proof of Theorems 5.2 and 5.3, we also have the following result.

Theorem 5.4 The Sombor spectrum of Kn, », \ {€} consists of 0"1*"2=4 and the zeros of polynomial
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e —{(n = 1)(nf +n3)(n2 — 1) + (n1 = 1)(n3 + (m1 — 1)*) + (nf + (n2 — 1)*)(n2 — 1) }a® + (n1 — 1)(nf +
(n2 = 1)*)(n2 — 1)((n1 — 1)* + nj).
By Case (i) of Corollary 3.5, we have

S2E(Knyny) = 2¢/ninzy/n? + ni.

Suppose that 4z, +z2 are zeros of z* — {(n1 — 1)(nf + n3)(nz — 1) + (n1 — 1)(n3 + (n1 — 1)%) +
(3 + (n2 — 1)) (ne — D}z + (n1 — 1)(nf + (n2 — 1)?)(n2 — 1)((n1 — 1)® 4+ n3) of Theorem 5.4. Then

23+ 2 = (n1 — 1)(n? + ng)(ng — 1)+ (n1 — 1)(n§ + (n1 — 1)2) + (n? + (n2 — 1)2)(712 —1).
z1 25 = (n1 — 1)(n] + (n2 — 1)*)(n2 — 1)((n1 — 1)* 4+ n3).
Thus
(S2E(Kny ny \ {€}))* = 4(|J21] + [a2])
— 4f(n1 — 1)(n2 + nd)(m2 — 1) + ((m1 — D +nd)(ma — 1) + (2 + (nz — 1)?)(m2 — 1)+
2/(m = (02 + (n2 = 1?)(n2 = D((m = 1)? + nd)}.

It is difficult to compare the S E(Kn; n,) and S2E(Kn, n, \ {€}) for any n; and ns. But for special
n1 and ng, we can compare them. For example, we let G =2 K; 3. Then

S2E(K1,3) = 2V3V10 = 2V/30,
S2B(K1,3\ {e}) = 2V/10,

thus
SoBE(Ki1,3) > S2E(K1s\ {e}).

Problem 5.5 Whether it is true that SoE(Kny ny) > S2E(Kn, m, \ {€}) for any Ky, n,-
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