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Abstract This paper considers the uniform asymptotic tail behavior of a Poisson shot noise

process with some dependent and heavy-tailed shocks. When the shocks are bivariate upper

tail asymptotic independent nonnegative random variables with long-tailed and dominatedly

varying tailed distributions, and the shot noise function has both positive lower and upper

bounds, a uniform asymptotic formula for the tail probability of the process has been established.

Furthermore, when the shocks have continuous and consistently varying tailed distributions, the

positive lower-bound condition on the shot noise function can be removed. For the case that

the shot noise function is not necessarily upper-bounded, a uniform asymptotic result is also

obtained when the shocks follow a pairwise negatively quadrant dependence structure.
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1. Introduction

This paper will consider the following stochastic process

S(t) =
∞
∑

k=1

Xkh(t, τk)1{τk≤t}, t ≥ 0, (1.1)

where {Xk, k ≥ 1} is a sequence of nonnegative and identically distributed random variables,

{τk, k ≥ 1} is another sequence of nonnegative random variables, independent of {Xk, k ≥ 1},

h(t, s) is a nonnegative Borel measurable function and 1A is the indicator function of a set A.

Assume that N(t) = sup{n ≥ 1 : τn ≤ t}, t ≥ 0, is a Poisson process with intensity λ(t) > 0,
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t ≥ 0 and cumulative intensity m(t) =
∫ t

0
λ(s)ds, t > 0. Then S(t) is called a Poisson shot

noise process and h(t, s) is called the shot noise function, which is used to indicate the effect of

each shock Xk, k ≥ 1 on the system up to time t. If {N(t),≥ 0} is a general counting process

then S(t) is generally called a shot noise process. For some other formulations of the shot noise

process with different degree of generality one can see [1–6] and references there in.

Shot noise processes are not a new phenomenon in probabilistic modeling. For example,

in the insurance risk theory, a shot noise process is used to model the aggregate claim of an

insurance company. Weng et al. [5] gave some examples to explain that in this context, Xk is

used to denote the k-th claim size and the shot noise function h(t, s) is imposed to capture the

interest factor, the factor of delay, or both factors simultaneously. The applications of shot noise

process to insurance and financial risk theory can be found in [1, 2, 7–9] and so on. Most of the

above researches require that the shot noise processes have independent shocks. This assumption

does not correspond to the actual circumstances of the insurance and financial business. Weng

et al. [5] considered the dependent shocks. They obtained the tail behavior of the Poisson shot

noise process (1.1), where the shocks Xk, k ≥ 1, are bivariate upper tail independent.

In this paper we will still investigate the Poisson shot noise process (1.1) with dependent

shocks Xk, k ≥ 1. When the shocks Xk, k ≥ 1 have heavy-tailed distributions, we will give the

uniform asymptotics of the tail of the Poisson shot noise process (1.1). The rest of the paper

is organized as follows. Section 2 includes preliminaries and main results. Section 3 gives the

proofs of main results.

2. Preliminaries and main results

Hereafter, all limit relationship is x → ∞, unless stated otherwise. For two positive functions

a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1; write a(x) . b(x) if lim sup a(x)/b(x) ≤

1; write a(x) & b(x) if lim inf a(x)/b(x) ≥ 1; write a(x) = o(b(x)) if lim a(x)/b(x) = 0; write

a(x) = O(b(x)) if lim sup a(x)/b(x) < ∞. Furthermore, for two bivariate functions a(x, t) and

b(x, t), we write a(x, t) ∼ b(x, t) uniformly for all t from some nonempty set ∆ as x → ∞, if

lim
x→∞

sup
t∈∆

|
a(x, t)

b(x, t)
− 1| = 0;

write a(x, t) . b(x, t) uniformly for all t ∈ ∆ as x → ∞, if

lim sup
x→∞

sup
t∈∆

a(x, t)

b(x, t)
≤ 1

and write a(x, t) & b(x, t) uniformly for all t ∈ ∆ as x → ∞, if

lim inf
x→∞

inf
t∈∆

a(x, t)

b(x, t)
≥ 1.

For real numbers x and y, let x ∧ y = min{x, y}.

This paper will investigate the heavy-tailed shocks. For a proper distribution V on (−∞,∞),

let V = 1 − V be its tail. A random variable ξ or its corresponding distribution V satisfying

V (x) > 0 for all x ∈ (−∞,∞) is called heavy-tailed if for all β > 0, Eeβξ = ∞, otherwise, we
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say that the random variable ξ (or V ) is light-tailed. One of the heavy-tailed subclasses is the

class D of distributions with dominatedly varying tails. Say that a distribution V on (−∞,∞)

belongs to the class D, if for any 0 < y < 1,

V (xy) = O(V (x)).

Another important subclass of the heavy-tailed distribution class is the class L of distributions

with long tails. Say that a distribution V on (−∞,∞) belongs to the class L, if for any y > 0,

V (x+ y) ∼ V (x).

A smaller class is the class C of distributions with consistently varying tails. Say that a distri-

bution V on (−∞,∞) belongs to the class C, if

lim
y↑1

lim sup
x→∞

V (xy)

V (x)
= 1,

or, equivalently,

lim
y↓1

lim inf
x→∞

V (xy)

V (x)
= 1.

A subclass of the class C is the class of distributions with regularly varying tails. Say that a

distribution V on (−∞,∞) belongs to the class R−α for some 0 ≤ α < ∞, if

V (xy) ∼ y−αV (x)

holds for all y > 0. Let R denote the union of all R−α over the range 0 ≤ α < ∞. It is well

known that R ⊂ C ⊂ L ∩ D (see [10–13]).

For a distribution V on (−∞,∞), denote its upper Matuszewska index by

J+
V = − lim

y→∞

logV ∗(y)

log y
with V ∗(y) := lim inf

x→∞

V (xy)

V (x)
, y > 1.

From [14, Chapter 2.1], we know that V ∈ D if and only if J+
V < ∞.

When the shocks, Xk, k ≥ 1 are bivariate upper tail independent, Weng et al. [5] obtained

the tail behavior of the shot noise process (1.1) under the following assumptions.

Assumption 2.1 {Xk, k ≥ 1} are nonnegative and identically distributed as a generic ran-

dom variable X with a common distribution F and satisfy the following bivariate upper tail

independent condition:

lim
x→∞

P(Xi > x,Xj > x)

P(Xi > x)
= 0 for all i 6= j ≥ 1.

Before giving the next assumption, we first give the definition of exchangeable random vari-

ables [15, Section 7.2]. Say that n random variables ξ1, . . . , ξn is exchangeable if ξk1
, . . . , ξkn

has

the same joint distribution for all permutation (k1, . . . , kn) of (1, . . . , n). The infinite sequence

of random variables {ξk, k ≥ 1} is said to be exchangeable if every finite subsequence ξ1, . . . , ξn

is exchangeable.

Assumption 2.2 {Xk, k ≥ 1} are exchangeable.



338 Kaiyong WANG, Yang YANG and Kam Chuen YUEN

Assumption 2.3 For a real number t > 0, let Z(t) denote a random variable with density func-

tion λ(s)/m(t), 0 < s < t and {Zk(t), k ≥ 1} are independent copies of Z(t) and are independent

of all other random variables or processes involved in this paper.

Assumption 2.4 For a fixed real number T > 0, the shot noise function h(t, s) : [0,∞)× [0,∞)

→ [0,∞) satisfies these conditions:

(i) There exist two constants a and b with 0 < a ≤ b < ∞ such that a ≤ h(t, s) ≤ b for any

0 < s ≤ t ≤ T ;

(ii) h(t, s) = 0 for s > t.

Assumption 2.4′ For a fixed real number T > 0, the shot noise function h(t, s) : [0,∞)× [0,∞)

→ [0,∞) satisfies these conditions:

(i) There exists a constant b > 0 such that 0 < h(t, s) ≤ b for any 0 < s ≤ t ≤ T ;

(ii) h(t, s) = 0 for s > t.

This paper still investigates the dependent shocks Xk, k ≥ 1 for the shot noise process

(1.1). When the shocks, Xk, k ≥ 1 have a stronger dependence structure, i.e., the bivariate

upper tail asymptotic independent in the following Assumption 2.1′ than the bivariate upper tail

independent in Assumption 2.1, the paper gives the uniform asymptotics of the tail of the shot

noise process (1.1).

Assumption 2.1′ {Xk, k ≥ 1} are nonnegative and identically distributed as a generic random

variableX with a common distribution F and satisfy the following bivariate upper tail asymptotic

independent condition:

lim
x∧y→∞

P(Xi > x,Xj > y)

P(Xi > x)
= 0 for all i 6= j ≥ 1.

The upper tail asymptotic independent structure was proposed by Geluk and Tang [16]. This

dependence structure has been investigated by many researchers, such as [17–20] and so on. From

the definitions in Assumptions 2.1 and 2.1′, the bivariate upper tail asymptotic independence

structure is stronger than the bivariate upper tail independence structure.

Under Assumptions 2.1′, 2.2–2.4, the following theorem gives the uniform asymptotics of the

tail of the shot noise process (1.1) with the shocks Xk, k ≥ 1 coming from the class L ∩D.

Theorem 2.5 Consider the shot noise process (1.1). Suppose that Assumptions 2.1′, 2.2–2.4

are satisfied and that F ∈ L ∩ D. Then

P(S(t) > x) ∼ m(t)P(h(t, Z(t))X > x) (2.1)

holds uniformly for t ∈ (0, T ], where m(t) =
∫ t

0
λ(s)ds, t > 0.

Remark 2.6 Comparing the above result with [5, Theorem 2.1], we have extended the scope

of F in [5, Theorem 2.1] from the class R−α, 0 < α < ∞ to the class L ∩ D under Assumptions

2.1′, 2.2–2.4.

We next aim to remove the lower-bound restriction on the shot noise function h in Assumption
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2.4. In doing so we need to confine the distribution F to the class C.

Theorem 2.7 Consider the shot noise process (1.1). Suppose that Assumptions 2.1′, 2.2, 2.3

and 2.4′ are satisfied and that F ∈ C and is continuous. Then (2.1) holds uniformly for t ∈ (0, T ].

Remark 2.8 When the shocks Xk, k ≥ 1 are bivariate upper tail independent with F ∈ R−α

for some 0 < α < ∞, under Assumptions 2.2, 2.3 and 2.4′, [5, Theorem 2.2] obtained that (2.1)

holds for any fixed t > 0, which is not uniform for t. From Theorem 2.7, we find that for the

bivariate upper tail asymptotic independent shocksXk, k ≥ 1, the equation (2.1) holds uniformly

for t in a finite time interval.

In Theorem 2.7, we still need the shot noise function h to have an upper bound. When the

shocks Xk, k ≥ 1 have a pairwise negatively quadrant dependence structure, which is stronger

than the bivariate upper tail asymptotic independence structure, the following result removes the

upper-bound restriction on the shot noise function h. For this, we firstly give two assumptions.

Assumption 2.1∗ {Xk, k ≥ 1} are nonnegative and identically distributed as a generic random

variable X with a common distribution F and satisfy the following pairwise negative quadrant

dependent condition: for all x ≥ 0 and y ≥ 0

P(Xi > x,Xj > y) ≤ P(Xi > x)P(Xj > y) for all i 6= j ≥ 1.

The negative quadrant dependence structure was introduced by Lehmann [21]. We know

that the negative quadrant dependence structure implies the upper tail asymptotic independence

structure.

Assumption 2.4∗ For a fixed real number T > 0, the shot noise function h(t, s) : [0,∞)× [0,∞)

→ [0,∞) satisfies these conditions:

(i) inft∈(0,T ] h(t, Z(t)) is nondegenerate at zero;

(ii) For some p > J+
F , E(supt∈(0,T ] h(t, Z(t)))p < ∞.

Theorem 2.9 Consider the shot noise process (1.1). Suppose that Assumptions 2.1∗, 2.2, 2.3

and 2.4∗ are satisfied and that F ∈ C and is continuous. Then (2.1) holds uniformly for t ∈ (0, T ].

In Section 3, the proofs of Theorems 2.5, 2.7 and 2.9 are given.

3. Proofs of main results

We first prove Theorem 2.5.

3.1. Proof of Theorem 2.5

Before giving the proof, we will present some lemmas. The first lemma is a combination

of [14, Proposition 2.2.1] and [22, Lemma 3.5].

Lemma 3.1 If V ∈ D, then for each p > J+
V , there exist positive constants C1 and D1 such
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that
V (y)

V (x)
≤ C1(

y

x
)−p

for all x ≥ y ≥ D1 and

x−p = o(V (x)).

The following two lemmas correspond to [23, Lemma 3.2] and [5, Lemma A.5], respectively.

Lemma 3.2 Suppose that {M(t), t ≥ 0} is a renewal counting process with a renewal function

EM(t) > 0 for all t > 0. Then it holds for all T > 0 and all v > 0 that

lim
x→∞

sup
t∈(0,T ]

1

EM(t)
E((M(t))v1{M(t)>x}) = 0.

Lemma 3.3 Suppose that Assumptions 2.2 and 2.3 are satisfied. Then S(t) defined in (1.1) is

identically distributed as
∑N(t)

k=1 h(t, Zk(t))Xk for any t ≥ 0.

Lemma 3.4 Suppose that Assumptions 2.1′ and 2.4 are satisfied. For each real number t > 0,

{ξk(t), k ≥ 1} are nonnegative and i.i.d random variables, which are independent of {Xk, k ≥

1, X}. If F ∈ L ∩ D then for any n ≥ 1,

lim
x→∞

sup
t∈(0,T ]

∣

∣

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
− 1

∣

∣ = 0. (3.1)

Proof We will follow the line of the proof of [5, Lemma A.8]. It is obvious that (3.1) holds for

n = 1. Hereafter, we assume that n ≥ 2.

Since F ∈ L, there exists a positive increasing and slowly varying function l(x) ↑ ∞ such

that l(x)
x → 0 and for any fixed constant c0 > 0,

F (x− c0l(x)) ∼ F (x), (3.2)

which implies that for any 0 < ε < 1, there exists a constant x1 > 0, depending only on F and

ε, such that for all x ≥ x1

l(
x

b
) ≥ (1 − ε)l(x) (3.3)

and

F (x −
l(x)

a(1− ε)
) ≤ (1 + ε)F (x). (3.4)

Since F ∈ D, there exists a constant c > 0 such that for all x > 0,

F (
x

a
) ≥ cF (x).

Since {Xk, 1 ≤ k ≤ n} are bivariate upper tail asymptotic independent and F ∈ D, by Assump-

tion 2.4, there exists a constant x2 ≥ x1, depending only on F , ε and n, such that for all x ≥ x2,

1 ≤ i 6= j ≤ n and t ∈ (0, T ],

P(Xi >
x

b
,Xj >

x

b
) ≤ P(Xi >

x

nb
,Xj >

l(x)

(n− 1)b
) ≤ εF (x) (3.5)

and

P(h(t, ξ(t))X > x) ≥ F (
x

a
) ≥ cF (x). (3.6)
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We firstly estimate the lower bound of P(
∑n

k=1 h(t, ξk(t))Xk > x) for t ∈ (0, T ] as x → ∞.

By Bonferroni Inequality, Assumption 2.4, (3.5) and (3.6), for all x ≥ x2 and t ∈ (0, T ]

P

(

n
∑

k=1

h(t, ξk(t))Xk > x
)

≥ P

(

n
⋃

k=1

{h(t, ξk(t))Xk > x}
)

≥

n
∑

k=1

P(h(t, ξk(t))Xk > x)−
∑

1≤i6=j≤n

P(h(t, ξi(t))Xi > x, h(t, ξj(t))Xj > x)

≥

n
∑

k=1

P(h(t, ξk(t))Xk > x)−
∑

1≤i6=j≤n

P(bXi > x, bXj > x)

≥ nP(h(t, ξ(t))X > x)−
nε

c
nP(h(t, ξ(t))X > x).

Hence,

lim inf
x→∞

inf
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
≥ 1−

nε

c
.

Letting ε ↓ 0, we get that

lim inf
x→∞

inf
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
≥ 1.

Now we estimate the upper bound of P(
∑n

k=1 h(t, ξk(t))Xk > x) for t ∈ (0, T ] as x → ∞.

Since F ∈ L, we use the l(x) in (3.2) to deal with the upper bound. By Assumption 2.4, for all

x > 0 and t ∈ (0, T ], it holds that

P

(

n
∑

k=1

h(t, ξk(t))Xk > x
)

≤ P

(

n
⋃

k=1

{h(t, ξk(t))Xk > x− l(x)}
)

+

P

(

n
∑

k=1

h(t, ξk(t))Xk > x, max
1≤k≤n

h(t, ξk(t))Xk ≤ x− l(x)
)

≤

n
∑

k=1

P(h(t, ξk(t))Xk > x− l(x))+

P

(

n
∑

k=1

h(t, ξk(t))Xk > x,
x

n
< max

1≤k≤n
h(t, ξk(t))Xk ≤ x− l(x)

)

≤

n
∑

k=1

P(h(t, ξk(t))Xk > x− l(x))+

n
∑

i=1

P

(

n
∑

k=1

h(t, ξk(t))Xk > x,
x

n
< h(t, ξi(t))Xi ≤ x− l(x)

)

≤

n
∑

k=1

P(h(t, ξk(t))Xk > x− l(x))+

n
∑

i=1

P

(

∑

1≤k 6=i≤n

h(t, ξk(t))Xk > l(x), h(t, ξi(t))Xi >
x

n

)

≤ nP(h(t, ξ(t))X > x− l(x)) +

n
∑

i=1

∑

1≤k 6=i≤n

P(Xk >
l(x)

(n− 1)b
,Xi >

x

nb
)
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=: nP(h(t, ξ(t))X > x− l(x)) + J(x). (3.7)

Since l(x) is increasing, by Assumption 2.4, (3.3) and (3.4), it holds that for all x ≥

max{b, 1}x1 and t ∈ (0, T ],

P(h(t, ξ(t))X > x− l(x)) =

∫ b

a

F (
x− l(x)

u
)P(h(t, ξ(t)) ∈ du)

≤

∫ b

a

F (
x

u
−

l(x/b)

a(1− ε)
)P(h(t, ξ(t)) ∈ du)

≤

∫ b

a

F (
x

u
−

l(x/u)

a(1− ε)
)P(h(t, ξ(t)) ∈ du)

≤ (1 + ε)

∫ b

a

F (
x

u
)P(h(t, ξ(t)) ∈ du)

= (1 + ε)P(h(t, ξ(t))X > x). (3.8)

For J(x), by (3.5) and (3.6), for all x ≥ x2 and t ∈ (0, T ], we have that

J(x) ≤
n(n− 1)ε

c
P(h(t, ξ(t))X > x). (3.9)

By (3.7)–(3.9), for all x ≥ max{bx1, x2} and t ∈ (0, T ], we get that

P

(

n
∑

k=1

h(t, ξk(t))Xk > x
)

≤ (1 + ε+
(n− 1)ε

c
)nP(h(t, ξ(t))X > x).

Letting ε ↓ 0, it holds that

lim sup
x→∞

sup
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
≤ 1.

This completes the proof of Lemma 3.4. 2

Proof of Theorem 2.5 By Lemma 3.3, we know that S(t) is identically distributed as
∑N(t)

k=1 h(t, Zk(t))Xk for any t ≥ 0. For any integer m ≥ 1
b , t ∈ (0, T ] and x > 0, we divide

the tail probability P(S(t) > x) into two parts:

P(S(t) > x) =
(

m
∑

n=1

+

∞
∑

n=m+1

)

P

(

n
∑

k=1

h(t, Zk(t))Xk > x
)

P(N(t) = n)

=: I1(x, t) + I2(x, t). (3.10)

Since F ∈ D, by Lemma 3.1 for some p > J+
F , there exist C1 > 0 and D1 > 0, such that

F (y)

F (x)
≤ C1(

y

x
)−p (3.11)

for all x ≥ y ≥ D1. Therefore, for I2(x, t), by (3.11) and Markov’s Inequality, it holds for

sufficiently large x and uniformly for all t ∈ (0, T ] that

I2(x, t) ≤
(

∑

m<n≤ x
D1b

+
∑

n> x
D1b

)

P

(

n
∑

k=1

Xk >
x

b

)

P(N(t) = n)

≤
∑

m<n≤ x
D1b

nF (
x

nb
)P(N(t) = n) + P(N(t) >

x

D1b
)
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≤ C1F (x)
∑

m<n≤ x
D1b

n(nb)pP(N(t) = n) + (
x

D1b
)−(p+1)

E(N(t))p+11{N(t)> x
D1b

}

≤ max{C1b
pF (x), (D1b)

p+1x−(p+1)}E(N(t))p+11{N(t)>m}.

Thus, by (3.6), Lemmas 3.1 and 3.2,

lim
m→∞

lim sup
x→∞

sup
t∈(0,T ]

I2(x, t)

m(t)P(h(t, Z(t))X > x)

≤ lim
m→∞

lim sup
x→∞

sup
t∈(0,T ]

max{
C1b

p

c
,
(D1b)

p+1

c
·
x−(p+1)

F (x)
}

1

m(t)
E(N(t))p+11{N(t)>m}

= lim sup
x→∞

max{
C1b

p

c
,
(D1b)

p+1

c
·
x−(p+1)

F (x)
} lim
m→∞

sup
t∈(0,T ]

1

m(t)
E(N(t))p+11{N(t)>m}

= 0. (3.12)

We next deal with I1(x, t). Since m(t) =
∑∞

n=1 nP(N(t) = n), t ≥ 0, by Lemmas 3.2 and

3.4, we get that

lim
m→∞

lim
x→∞

sup
t∈(0,T ]

|
I1(x, t)

m(t)P(h(t, Z(t))X > x)
− 1|

≤ lim
m→∞

lim
x→∞

sup
t∈(0,T ]

|

∑m
n=1[P(

∑n
k=1 h(t, Zk(t))Xk > x)− nP(h(t, Z(t)) > x)]P(N(t) = n)

m(t)P(h(t, Z(t))X > x)
|+

lim
m→∞

sup
t∈(0,T ]

1

m(t)
EN(t)1{N(t)>m}

≤ lim
m→∞

lim
x→∞

sup
t∈(0,T ]

m
∑

n=1

|
P(
∑n

k=1 h(t, Zk(t))Xk > x)

nP(h(t, Z(t))X > x)
− 1|

≤ lim
m→∞

m
∑

n=1

lim
x→∞

sup
t∈(0,T ]

|
P(
∑n

k=1 h(t, Zk(t))Xk > x)

nP(h(t, Z(t))X > x)
− 1|

= 0. (3.13)

By (3.10), (3.12) and (3.13), we have that

P(S(t) > x) ∼ m(t)P(h(t, Z(t))X > x)

holds uniformly for t ∈ (0, T ]. This completes the proof of Theorem 2.5. 2

3.2. Proof of Theorem 2.7

Before giving the proof of Theorem 2.7, we give some lemmas.

Lemma 3.5 Let η be a nonnegative random variable with a continuous distribution V . {ξ(t), t ≥

0} is a nonnegative stochastic process, which is independent of η. Let

f(t, s) : [0,∞)× [0,∞) 7−→ (0,∞)

be a function. If V ∈ C, then for any T > 0,

lim
v↑1

lim
x→∞

sup
t∈(0,T ]

P(vx < f(t, ξ(t))η ≤ x)

P(f(t, ξ(t))η > x)
= 0. (3.14)



344 Kaiyong WANG, Yang YANG and Kam Chuen YUEN

Proof Since V ∈ C and is continuous, by the result of [24] (or the note after [11, Definition

3.2]), we know that logV (es) is uniformly continuous for s ∈ [0,∞) and continuous elsewhere.

Thus, for any ε > 0, there exists a sufficiently small constant δ > 0 such that for all x > 0 and

|1− v| < δ,

|
V (vx)

V (x)
− 1| ≤ ε. (3.15)

Therefore, for the above ε and δ, by (3.15) for all x > 0, |1− v| < δ and t ∈ (0, T ], it holds that

P(vx < f(t, ξ(t))η ≤ x) =

∫ ∞

0

(V (
vx

y
)− V (

x

y
))P(f(t, ξ(t)) ∈ dy)

≤ ε

∫ ∞

0

V (
x

y
)P(f(t, ξ(t)) ∈ dy) = εP(f(t, ξ(t))η > x).

By the arbitrariness of ε, we know that (3.14) holds. 2

When the distributions of shocks Xk, k ≥ 1 belong to the class C, the following lemma

removes the lower-bound restriction on the shot noise function h in Lemma 3.4.

Lemma 3.6 Suppose that Assumptions 2.1′ and 2.4′ are satisfied. For each real number

t > 0, {ξk(t), k ≥ 1, ξ(t)} are nonnegative and i.i.d random variables, which are independent of

{Xk, k ≥ 1, X}. If F ∈ C and is continuous, then for any n ≥ 1, (3.1) holds.

Proof We will use the line of the proof of Lemma 3.4. It is obvious that (3.1) holds for n = 1.

Hereafter, we assume that n ≥ 2. We firstly estimate the lower bound of P(
∑n

k=1 h(t, ξk(t))Xk >

x) for t ∈ (0, T ] as x → ∞. By Assumption 2.1′, for any ε > 0 there exists a constant x3 > x2

such that for all 1 ≤ i 6= j ≤ n, x > x3 and y > x3,

P(Xi > x,Xj > y) ≤ εP(Xi > x). (3.16)

For all x > 0 and t ∈ (0, T ],

P

(

n
∑

k=1

h(t, ξk(t))Xk > x
)

≥ nP(h(t, ξ(t))X > x)−
∑

1≤i6=j≤n

P(h(t, ξi(t))Xi > x, h(t, ξj(t))Xj > x)

=: nP(h(t, ξ(t))X > x)− I3(x, t). (3.17)

By (3.16), for all x > bx3 and t ∈ (0, T ],

I3(x, t) ≤
∑

1≤i6=j≤n

P(h(t, ξi(t))Xi > x,Xj >
x

b
)

=
∑

1≤i6=j≤n

∫ b

0

P(Xi >
x

y
,Xj >

x

b
)P(h(t, ξi(t)) ∈ dy)

≤ ε
∑

1≤i6=j≤n

∫ b

0

P(Xi >
x

y
)P(h(t, ξi(t)) ∈ dy)

≤ n2εP(h(t, ξ(t))X > x).
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By the arbitrariness of ε, we have that

lim sup
x→∞

sup
t∈(0,T ]

I3(x, t)

nP(h(t, ξ(t))X > x)
= 0. (3.18)

Thus, we get that

lim inf
x→∞

inf
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
≥ 1.

We next estimate the upper bound of P(
∑n

k=1 h(t, ξk(t))Xk > x) for t ∈ (0, T ] as x → ∞.

Similarly to (3.7), for any 0 < v < 1, x > 0 and t ∈ (0, T ],

P(

n
∑

k=1

h(t, ξk(t))Xk > x)

≤ nP(h(t, ξ(t))X > vx) +

n
∑

i=1

n
∑

j=1
j 6=i

P(h(t, ξi(t))Xi >
x

n
, h(t, ξj(t))Xj >

(1 − v)x

n− 1
)

≤ nP(h(t, ξ(t))X > vx) +

n
∑

i=1

n
∑

j=1
j 6=i

P(h(t, ξi(t))Xi >
(1− v)x

n
, h(t, ξj(t))Xj >

(1− v)x

n− 1
)

=: I4(x, t) + I5(x, t). (3.19)

By Lemma 3.5, we know that

lim
v↑1

lim
x→∞

sup
t∈(0,T ]

I4(x, t)

nP(h(t, ξ(t))X > x)
= 1. (3.20)

Note that, by F ∈ C ⊂ D, we have that for any ω > 0,

lim sup
x→∞

sup
t∈(0,T ]

P(h(t, ξ(t))X > ωx)

P(h(t, ξ(t))X > x)

= lim sup
x→∞

sup
t∈(0,T ]

∫ b

0
F (ωx

y )P(h(t, ξ(t))X ∈ dy)
∫ b

0 F (xy )P(h(t, ξ(t))X ∈ dy)

≤ lim sup
x→∞

sup
z≥x/b

F (ωz)

F (z)
< ∞, (3.21)

which, together with (3.18), implies that for any 0 < v < 1,

lim sup
x→∞

sup
t∈(0,T ]

I5(x, t)

nP(h(t, ξ(t))X > x)
= 0. (3.22)

Plugging (3.20) and (3.22) into (3.19), we obtain that

lim sup
x→∞

sup
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, ξ(t))X > x)
≤ 1.

This completes the proof of Lemma 3.6. 2

Proof of Theorem 2.7 The proof of Theorem 2.7 is analogous to that of Theorem 2.5 by

replacing Lemma 3.4 by Lemma 3.6. We omit the details. 2

3.3. Proof of Theorem 2.9
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We firstly present a lemma before giving the proof of Theorem 2.9.

Lemma 3.7 Suppose that Assumptions 2.1∗ and 2.4∗ are satisfied. For each real number t > 0,

{ξk(t), k ≥ 1} are nonnegative and i.i.d random variables with the same distribution as Z(t),

which are independent of {Xk, k ≥ 1, X, Z(t)}. If F ∈ C and is continuous, then for any n ≥ 1,

(3.1) holds for ξ(t) = Z(t).

Proof Similarly to the proof of Lemma 3.6, we only need to estimate Ii(x, t), i = 3, 4, 5 in (3.17)

and (3.19).

For I3(x, t), since E(supt∈(0,T ] h(t, Z(t)))p < ∞ for some p > J+
F , we know that

sup
t∈(0,T ]

h(t, Z(t)) < ∞ a.s.

By Assumption 2.1∗ and Markov’s Inequality we get that

lim sup
x→∞

sup
t∈(0,T ]

I3(x, t)

nP(h(t, Z(t))X > x)

= lim sup
x→∞

sup
t∈(0,T ]

∑

1≤i6=j≤n

∫∞

0

∫∞

0 P(Xi >
x
u , Xj >

x
v )P(h(t, ξi(t)) ∈ du)P(h(t, ξj(t)) ∈ dv)

nP(h(t, Z(t))X > x)

≤ lim sup
x→∞

sup
t∈(0,T ]

∑

1≤i6=j≤n

∫∞

0
P(Xi >

x
u )P(h(t, ξi(t)) ∈ du)

∫∞

0
P(Xj >

x
v )P(h(t, ξj(t)) ∈ dv)

nP(h(t, Z(t))X > x)

≤ lim sup
x→∞

sup
t∈(0,T ]

nP(h(t, Z(t))X > x) ≤ lim sup
x→∞

nP( sup
t∈(0,T ]

h(t, Z(t))X > x) = 0. (3.23)

Hence, by (3.17), we get that

lim inf
x→∞

inf
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, Z(t))X > x)
≥ 1.

For I4(x, t), by Lemma 3.5 we know that (3.20) still holds. We next deal with I5(x, t). We

will firstly prove (3.21) holds. By Markov’s Inequality and Lemma 3.1, for some v > 1 such that
p
v > J+

F , we get that for sufficiently large x

P

(

sup
t∈(0,T ]

h(t, Z(t)) > x
)

≤ x−p
E

(

sup
t∈(0,T ]

h(t, Z(t))
)p

= (xv)−
p
v E

(

sup
t∈(0,T ]

h(t, Z(t))
)p

= o(F (xv)). (3.24)

Since inft∈(0,T ] h(t, Z(t)) is nondegenerate at zero, there exists some ∆ > 0 such that

P

(

inf
t∈(0,T ]

h(t, Z(t)) > ∆
)

> 0. (3.25)

Then, for any ω > 0, by F ∈ D, (3.24) and (3.25), it holds that

lim sup
x→∞

sup
t∈(0,T ]

P(h(t, Z(t))X > ωx)

P(h(t, Z(t))X > x)

≤ lim sup
x→∞

(

sup
t∈(0,T ]

∫ x
1

v

0
F (ωx

u )P(h(t, Z(t)) ∈ du)

∫ x
1

v

0 F (xu )P(h(t, Z(t)) ∈ du)

+ sup
t∈(0,T ]

∫∞

x
1

v
F (ωx

u )P(h(t, Z(t)) ∈ du)
∫∞

∆ F (xu )P(h(t, Z(t)) ∈ du)

)
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≤ lim sup
x→∞

(

sup
z≥x1−

1

v

F (ωz)

F (z)
+ sup

t∈(0,T ]

P(h(t, Z(t)) > x
1

v )

F ( x
∆ )P(h(t, Z(t)) > ∆)

)

≤ lim sup
x→∞

(

sup
z≥x1−

1

v

F (ωz)

F (z)
+

P(supt∈(0,T ] h(t, Z(t)) > x
1

v )

F ( x
∆ )P(inft∈(0,T ] h(t, Z(t)) > ∆)

)

=: lim sup
x→∞

(

sup
z≥x1−

1

v

F (ωz)

F (z)
+ I6(x, t)

)

(3.26)

= lim sup
x→∞

sup
z≥x1−

1

v

F (ωz)

F (z)
< ∞. (3.27)

Thus, by (3.23) and (3.27), we get that (3.22) holds. Using (3.19), (3.20) and (3.22), we obtain

that

lim sup
x→∞

sup
t∈(0,T ]

P(
∑n

k=1 h(t, ξk(t))Xk > x)

nP(h(t, Z(t))X > x)
≤ 1.

This completes the proof of Lemma 3.7. 2

Proof of Theorem 2.9 We will use the line of the proof of Theorem 2.5 and we only need to

estimate Ii(x, t), i = 1, 2 in (3.10). By using Lemmas 3.2 and 3.7, similarly to the estimation of

I1(x, t) in (3.13), we can get that

lim
m→∞

lim
x→∞

sup
t∈(0,T ]

∣

∣

I1(x, t)

m(t)P(h(t, Z(t))X > x)
− 1

∣

∣ = 0. (3.28)

For I2(x, t), since F ∈ C ⊂ D, (3.11) still holds. For some v > 1 such that p
v > J+

F , using (3.26)

for ω = 1
n , by (3.11) and Markov’s Inequality, it holds that for all x > 0 and t ∈ (0, T ]

I2(x, t) ≤

∞
∑

n=m+1

P

(

n
⋃

k=1

{h(t, Zk(t))Xk >
x

n
}
)

P(N(t) = n)

≤
∑

m<n≤x1−
1

v /D1

nP(h(t, Z(t))X >
x

n
)P(N(t) = n) + P(N(t) > x1− 1

v /D1)

≤
∑

m<n≤x1−
1

v /D1

nP(N(t) = n)P(h(t, Z(t))X > x)
(

sup
z≥x1−

1

v

F ( zn )

F (z)
+ I6(x, t)

)

+

(x1− 1

v /D1)
− p

1−v−1 E(N(t))
p

1−v−1 1
{N(t)>x1−

1

v /D1}

≤
∑

m<n≤x1−
1

v /D1

nP(N(t) = n)P(h(t, Z(t))X > x)(C1n
p + I6(x, t))+

x−pD
p

1−v−1

1 E(N(t))
p

1−v−1 1{N(t)>m}

≤ P(h(t, Z(t))X > x)E(C1(N(t))p+1 + I6(x, t)N(t))1{N(t)>m}+

x−pD
p

1−v−1

1 E(N(t))
p

1−v−1 1{N(t)>m}

=: I21(x, t) + I22(x, t). (3.29)
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By Lemma 3.2, (3.24) and (3.25), we get that

lim
m→∞

lim sup
x→∞

sup
t∈(0,T ]

I21(x, t)

m(t)P(h(t, Z(t))X > x)

≤ lim
m→∞

sup
t∈(0,T ]

C1
1

m(t)
E(N(t))p+11{N(t)>m}+

lim sup
x→∞

sup
t∈(0,T ]

I6(x, t) · lim
m→∞

sup
t∈(0,T ]

1

m(t)
EN(t)1{N(t)>m} = 0. (3.30)

For I22(x, t), by Lemma 3.3 (ii) of Yang et al. (2012),

lim inf
x→∞

inf
t∈(0,T ]

P(h(t, Z(t))X > x)

F (x)
≥ lim inf

x→∞

P( inf
t∈(0,T ]

h(t, Z(t))X > x)

F (x)
> 0. (3.31)

Thus, by Lemmas 3.1 and 3.2 and (3.31),

lim
m→∞

lim sup
x→∞

sup
t∈(0,T ]

I22(x, t)

m(t)P(h(t, Z(t))X > x)

≤ D
p

1−v−1

1 lim
x→∞

x−p

F (x)
· lim sup

x→∞
sup

t∈(0,T ]

F (x)

P(h(t, Z(t))X > x)
·

lim
m→∞

sup
t∈(0,T ]

1

m(t)
E(N(t))

p

1−v−1 1{N(t)>m} = 0. (3.32)

By (3.10), (3.28)–(3.30) and (3.32), we get that (2.1) holds uniformly for t ∈ (0, T ]. This

completes the proof of Theorem 2.9. 2
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