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Abstract The linear elastic problem with weak symmetric stress obtained by Lagrange multi-

plier method is discussed by using the stabilization method. The stress and displacement of the

variational problem are approximated by linear element and piecewise constant. By adding stabi-

lization terms G1(·, ·), G2(·, ·) and G3(·, ·), the corresponding mixed discrete variational problem

satisfies the weak inf-sup condition. Then the error estimation between the solution of the varia-

tional problem and the stabilized mixed finite element solution is studied in detail. Finally, two

numerical examples are used to verify the effectiveness of the theoretical analysis.
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weakly symmetric stress
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1. Introduction

Stabilized method can circumvent the restriction of inf-sup condition without introducing

errors. It is known, the coercivity of the bilinear form may be conditional upon the choice of

parameters in three different stabilized items. In order to gain the optimal error, one needs

to properly choose stabilization parameters. There are many different stabilized methods, such

as the Galerkin least-squares method [1], the bubble function method [2], the subgrid scale

method [3,4], the pressure gradient projection method [5,6], the local pressure gradient projection

method [7,8]. Among these references, [1,7] discuss the elasticity problem based on the displace-

pressure formulation. [3] studies the Helmholtz problem and shows the relation of the bubble

function methods and the stabilized methods.

There are some researches which use different variational principle to deal with linear elastici-

ty problem. To solve the equation directly based on the Hellinger-Reissner variational formulation

by finite element method, the crux could keep the stress space to be symmetric. Some rectangular

and simplex elements which can keep the symmetry of stress tensor well have been constructed
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in 2D and 3D. The first finite element formulation for linear elasticity problem was constructed

in [9] and after that many other conforming and nonconforming element formulations had been

constructed, such as rectangular elements [10–14] and simplex elements [9, 15–17]. In [14], the

rectangular element formulations are anisotropic convergent and the number of freedoms tends

to least.

The stabilized method allows us to use the simple linear element for stress, which will lead to

less degrees of freedom than other elements. Due to these advantages, the stabilized method has

wide applications in practical computations. The stabilization was also used to solve Hellinger-

Reissner variational formulation in [18–20]. Two classes of mixed finite elements were proposed

in [18] for linear elasticity of any order, with interior penalty for nonconforming symmetric stress

approximation. [19] proposed mixed finite element spaces using C0 continuous arbitrary degree

polynomial to approximate the stress and displacement. In [20], two classes of stabilized mixed

finite element methods were designed on simplified grids. [21] proposed a framework for unified

analysis of mixed methods, which was based on a commuting diagram in the weakly symmetric

elasticity complex and extends a previous stability result. The stable methods are obtained by

combining Stokes stable and elasticity stable finite elements [21].

In this paper, we first employ the Hellinger-Reissner variational formulation with imposed

weakly symmetric stress through a Lagrange multiplier which was proposed by Fraeijs de veubeke

[22], and find the solution of this variational formulation characterizing as a saddle point of a

Lagrangian function involving both displacement and stress imposed weakly symmetric condition

through a Lagrange multiplier. We next put three stabilization items G1(·, ·), G2(·, ·) and G3(·, ·)

on the either side of the original equation, and introduce the jump value of displacement and the

divergence of stress as the new special stable item to make the bilinear form of mixed stabilized

discrete variational formulation continuous and coercive. Considering the Lagrange finite element

spaces are very popular in the engineering practice, we adopt the P 2×2
1 and P 2

0 polynomial space

to approximate stress and displacement, respectively. We investigate the detailed error estimate

between the exact solution and the mixed finite element solution, and use two numerical examples

to verify the validity of theory analysis, at last.

The remainder of this paper is organized as follows, we introduce some basic concepts and

signals used in the paper, and review the variational formulation of plain elasticity equation in

Section 2. A weaker form inf-sup stability condition is given in Section 3. We construct a stable

mixed method for this formulation and derive its error estimate in Sections 4 and 5, respectively.

The numerical examples show the feasibility of this method and coincide with the theoretical

analysis well in last section.

2. Notations and preliminaries

Denote by Ω the convex polygonal domain, and T the subdomain of Ω. We define the Sobolev

space Hs(T ) (s = 1, 2, . . .) as usual, with semi-norm and norm as

|u|s, T =
(

∑

|α|=s

‖Dαu‖20,T

)
1
2

, ‖ u ‖s, T=
(

∑

0≤|α|≤s

‖Dαu‖20,T

)
1
2

,
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where Dαu is the weak partial derivative of function u. For T = Ω, we write semi-norm and

norm simply as | · |s and ‖ ·‖s, respectively. L
2(T ) is the usual square integrable space with norm

‖ · ‖0. The subspace of Hs(T ) consisting of functions vanishing on ∂Ω is denoted by Hs
0(T ).

We also use the underline to distinguish between scalar, vector and tensor. For any space

X , define X and X to be the two dimensional vector and second-order matrix respectively with

components in X . If X is the norm space, the associated norms are defined by

‖v‖X =
(

2
∑

i=1

‖vi‖
2
X

)
1
2

, ‖τ‖X =
(

2
∑

i,j=1

‖τij‖
2
X

)
1
2

.

We use the same notation ‖ · ‖s,T to denote the norms in Hs(T ), Hs(T ) and Hs(T ). Define

Pk(T ) (k = 0, 1) to be the space of the polynomials at most degree k on T . And P k(T ), P k(T )

represent the vector and matrix polynomials space, respectively.

The space H(div, T ) consists of matrix fields with square-integrable divergence, associated

with norm ‖ · ‖H(div, T ) as

‖ τ ‖2H(div, T )=‖ τ ‖20, T + ‖ div τ ‖20, T .

For function η, vector function v = (v1, v2) and matrix function τ = (τij)1≤i,j≤2, we introduce

the following differential operators

curl η = (
∂η

∂y
, −

∂η

∂x
), curl v =









∂v1
∂y

−
∂v1
∂x

∂v2
∂y

−
∂v2
∂x









,

rot v = −
∂v1
∂y

+
∂v2
∂x

, div τ =

(

∂τ11
∂x

+
∂τ12
∂y

,
∂τ21
∂x

+
∂τ22
∂y

)

,

grad v =









∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y









, ε(v) =









∂v1
∂x

1

2
(
∂v1
∂y

+
∂v2
∂x

)

1

2
(
∂v1
∂y

+
∂v2
∂x

)
∂v2
∂y









.

Let the scalar product of tensor be τ : σ =
∑2

i,j=1 τijσij . The trace and asymmetry of τ are

denoted by tr(τ ) = τ11 + τ22 and as(τ ) = τ : χ with χ =
(

0 −1
1 0

)

.

The linear elasticity problem considered in this paper is














div σ = f, inΩ,

A(σ)− ε(u) = 0, inΩ,

u = 0, on∂Ω,

(2.1)

where the displacement is the vector function u : Ω → R
2 and u ∈ H1(Ω). The stress is denoted

by σ : Ω → S and σ ∈ H1(Ω, S). S denotes the space of symmetric matrices on R
2.

The compliance tensor is denoted by

A(σ) =
1

2µ
(σ −

λ

2µ+ 2λ
tr(σ)δ) with δ =

(

1 0

0 1

)

,
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which is a bounded, symmetric, positive definite tensor over Ω. The given load is denoted by the

vector function f : Ω → R
2.

Setting φ = 1
2 rotu, and noting that ε(u) = gradu−φχ. Taking ε(u) into the second equation

of (2.1), we can get
1

2µ
σ −

λ

4µ(µ+ λ)
tr(σ)δ − gradu+ φχ = 0. (2.2)

Supplementing this equation with the equilibrium condition of (2.1), the symmetric condition

of σ and the fixed boundary condition, we get















div σ = f, inΩ,

as(σ) = 0, inΩ,

u = 0, on ∂Ω.

(2.3)

The systems of (2.2) and (2.3) are equivalent to the following weak formulation [23] that is

to find a triple (σ, u, γ) ∈ H(div,Ω)× L2(Ω)× L2(Ω) such that



























a(σ, τ) + b(τ ; (u, γ)) = 0, ∀ τ ∈ H(div,Ω),
∫

Ω

div σ · vdx = (f, v), ∀ v ∈ L2(Ω),
∫

Ω

as(σ)ηdx = 0, ∀ η ∈ L2(Ω),

(2.4)

where

a(σ, τ ) =

∫

Ω

[
1

2µ
σ : τ −

λ

4µ(µ+ λ)
tr(σ)tr(τ )]dx,

b(τ ; (u, γ)) =

∫

Ω

div τ · udx+

∫

Ω

as(τ )γdx.

3. The weaker Inf-sup condition

Suppose the bilinear a(·, ·) is continuous and coercive, which means there exist two constants

α1, α2 > 0 such that

a(σ, τ) ≤ α1‖σ‖0 ‖τ‖0, a(τ , τ ) ≥ α2‖τ‖
2
0. (3.1)

Theorem 3.1 Let 0 < µ0 < µ1, µ ∈ [µ0, µ1], λ ∈ [0, ∞), and f ∈ L2(Ω). Then there exists a

unique triple (τ ; (u, γ)) ∈ H1(Ω)× (H2(Ω) ∩H1
0(Ω))×H1(Ω) satisfying (2.4). Moreover, there

exists a constant C depending only on Ω, µ0 and µ1 such that

‖σ‖1 + ‖u‖2 + ‖γ‖1 ≤ C‖f‖0. (3.2)

Note that the constant C in the above theorem is independent of λ. For the case of λ → ∞,

it corresponds to a nearly incompressible material. For a proof of this aspect of the theorem

see [24, 25].

Throughout this paper, we denote by c generic positive constants not necessarily identical

at different places but always independent of the discretization parameters of interest (such as

mesh size h).
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Let Th be a shape regular decomposition of Ω. For each T ∈ Th, T is a triangular or

rectangular element. We set the finite element space as follows

Σh = {τ ∈ H1(Ω)|τ |T ∈ P 1(T )},

Vh = {v ∈ L2(Ω)|v |T ∈ P 0(T )},

Sh = {η ∈ H1(Ω)|η |T ∈ P1(T )}. (3.3)

On the stress space Σh, we define the Clément interpolation jh : H1(Ω) → Σh which has the

following properties

‖τ − jhτ‖0, T ≤ ch‖τ‖1, T , ‖jhτ‖1, T ≤ c‖τ‖1, T , ‖jhτ‖H(div, T ) ≤ c‖τ‖1, T . (3.4)

Let Ih : L2(Ω) → Vh and Ph : L2(Ω) → Sh be the L2 projection operators.

Then we have

‖Ihu‖0 ≤ C‖u‖1, ∀u ∈ H1(Ω),

‖Phγ‖0 ≤ C‖γ‖1, ∀ γ ∈ H1(Ω),

‖u− Ihu‖0 ≤ Ch‖u‖1, ∀u ∈ H1(Ω),

‖γ − Phγ‖0 ≤ Ch‖γ‖1, ∀ γ ∈ H1(Ω). (3.5)

Let e be the boundary of the element and Eh be the set of e on Ω. Define

‖[v h]‖Eh
=
(

∑

Eh

∫

e

[v h]
2ds
)

1
2

. (3.6)

Lemma 3.2 Let Σh, Vh, Sh be the finite element spaces defined by (3.3). Then for some

(v h, ηh) ∈ Vh × Sh, there are positive constants k1, k2 and k3 satisfying

sup
∀τ h∈Σ h

b(τ h; (v h, ηh))

‖τ h‖H(div,Ω)
≥ k1(‖v h‖0 + ‖ηh‖0)− k2h

1
2 ‖[v h]‖Eh

− k3h‖ηh‖0. (3.7)

Proof For a given (v h, ηh) ∈ Vh×Sh, there exists τ
1 ∈ H1(Ω), which satisfy div τ 1 = v h. And

there holds

‖τ 1‖1 ≤ c‖v h‖0. (3.8)

Thus, we have

‖τ 1‖H(div,Ω) ≤ ‖τ 1‖1 ≤ c‖v h‖0. (3.9)

Choosing K = 1
|T |

∫

T
[ηh − as(τ 1)]dx gives

‖K‖0 ≤ c(‖ηh‖0 + ‖τ 1‖0). (3.10)

Let β = ηh − as(τ 1)−K. It is obvious that the mean value of β is zero. And it is easy to find

q ∈ H1
0(Ω) such that div q = β. Take

τ 2 = τ 1 + curl q +
K

2
χ. (3.11)

It is easy to conclude that

div τ 2 = div τ 1 = v h. (3.12)
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From the regularity and the norm of ‖ · ‖H(div,Ω), we have

‖τ 2‖H(div,Ω) ≤ ‖τ 2‖1 ≤ c(‖v h‖0 + ‖ηh‖0). (3.13)

Then, for any α ∈ Sh,
∫

Ω

as(τ 2)αdx =

∫

Ω

as(τ 1 + curl q +
K

2
χ)αdx

=

∫

Ω

(as(τ 1) + div q +K)αdx =

∫

Ω

ηhαdx. (3.14)

From (3.11)–(3.14), we deduce that
∫

Ω

div τ 2 · vhdx+

∫

Ω

as(τ 2)ηhdx

=

∫

Ω

v2hdx+

∫

Ω

η2hdx = ‖vh‖
2
0 + ‖ηh‖

2
0

≥ c(‖vh‖0 + ‖ηh‖0)(‖vh‖0 + ‖ηh‖0)

≥ c‖τ 2‖1(‖vh‖0 + ‖ηh‖0), (3.15)

which derives that
∫

Ω
div τ 2 · v hdx+

∫

Ω
as(τ 2)ηhdx

‖τ 2‖1
≥ k1(‖v h‖0 + ‖ηh‖0). (3.16)

Recalling the definition of jh ahead, we have

sup
∀τ h∈Σh

b(τ h, (v h, ηh))

‖τ‖H(div,Ω)
= sup

∀τ h∈Σh

∫

Ω div τ h · v hdx +
∫

Ω as(τ h)ηhdx

‖τ‖H(div,Ω)

≥

∫

Ω div jhτ
2 · v hdx+

∫

Ω as(jhτ
2)ηhdx

‖jhτ2‖H(div,Ω)

≥

∫

Ω div τ 2 · v hdx+
∫

Ω as(τ 2)ηhdx

‖τ2‖1
−

∫

Ω
div (τ2 − jhτ

2) · v hdx+
∫

Ω
as(τ2 − jhτ

2)ηhdx

‖τ2‖1
. (3.17)

Let n = (n1, n2) be the unit normal vector with respect to the edge e of T . By using the Green

formula, we get
∫

Ω

div(τ2 − jhτ
2) · v hdx

= −

∫

Ω

(τ2 − jhτ
2) : ε(v h)dx+

∑

Eh

∫

e

(τ2 − jhτ
2)n · v hds (3.18)

≤
∑

Eh

‖τ2 − jhτ
2‖0, e‖[v h]‖0, e (3.19)

≤ ‖τ2 − jhτ
2‖Eh

‖[v h]‖Eh
. (3.20)
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Furthermore, according to the trace theorem and (3.4), we get

‖τ2 − jhτ
2‖2Eh

≤ c‖τ2 − jhτ
2‖0 ‖τ

2 − jhτ
2‖1 ≤ ch‖τ2‖21,

which means

‖τ2 − jhτ
2‖Eh

≤ k2h
1
2 ‖τ2‖1, (3.21)

then
∫

Ω

as(τ2 − jhτ
2)ηhdx ≤ ‖ηh‖ 0 ‖τ

2 − jhτ
2‖0 ≤ k3h‖ηh‖ 0‖τ

2‖1. (3.22)

Combining (3.17)–(3.22), we can get the result of (3.7). 2

Lemma 3.3 Let Π1 : L2(Ω) → P 1 ∩H1
0(Ω) and Π1q h ∈ C0(Ω). Then there holds

ch
1
2 ‖[q h]‖Eh

≤ ‖q h −Π1q h‖0 ≤ c‖q h‖0, ∀ q h ∈ P 0. (3.23)

Proof From the definition of interpolation and inverse inequality, it is easy to know [Π1q h]|∂T =

0, and

ch‖[q h]‖
2
Eh

= ch
∑

Eh

‖[q h −Π1q h]‖
2
e

≤ ch‖[q h −Π1q h]‖
2
Eh

≤ ‖q h −Π1q h‖
2
0. (3.24)

Considering the operator Π1 is continuous, we get

‖(I −Π1)q h‖0 = ‖q h −Π1q h‖0 ≤ c‖q h‖0. (3.25)

Combining (3.24) with (3.25) derives (3.23) immediately. 2

4. The stabilized method

From the mixed variation formulation of elasticity problem, we rewrite Eq. (2.4) as follows.

Find (σ; (u, γ)) ∈ H(div,Ω)× L2(Ω)× L2(Ω), such that

Q((σ; (u, γ)), (τ ; (v, η))) = (f, v), (4.1)

where

Q((σ; (u, γ)), (τ ; (v, η))) = a(σ, τ ) + b(τ ; (u, γ)) + b(σ; (v, η)). (4.2)

Let

Q((σ h; (u h, γh)), (τ h; (v h, ηh)))

= a(σ h, τ h) + b(τ h; (u h, γh)) + b(σ h; (v h, ηh)). (4.3)

By (3.1) the discrete bilinear form satisfies

a(σ h, τ h) ≤ α1‖σ h‖0 ‖τ h‖0,

a(τ h, τ h) ≥ α2‖τ h‖
2
0. (4.4)

Based on the analysis of Lemma 3.2, we introduce the stabilization items as

G1(u h, v h) = −γ1
∑

Eh

∫

e

h[u h] · [v h]ds,
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G2(γh, ηh) = −γ2

∫

Ω

h2γhηhdx,

G3(σ h, τ h) = γ3

∫

Ω

div σ h · div τ hdx. (4.5)

And we set

Q̃h((σ h; (u h, γh)), (τ h; (v h, ηh)))

= Q((σ h; (u h, γh)), (τ h; (v h, ηh))) +G1(u h, v h) +G2(γh, ηh) +G3(σ h, τ h).

Fh(vh) = (f, v h) + γ3

∫

Ω

f · div τ hdx. (4.6)

The stabilized discrete equation of (4.1) is to find (σ h; (u h, γh)) ∈ Σh × Vh × Sh such that

Q̃h((σ h; (u h, γh)), (τ h; (v h, ηh))) = Fh(vh). (4.7)

Define the norm on the space Σh × Vh × Sh as

9 (τ h; (v h, ηh))9
2
h = ‖τ h‖

2
H(div,Ω) + ‖v h‖

2
0 + ‖ηh‖

2
0 + h‖[v h]‖

2
Eh

. (4.8)

From the definition of (3.6), we derive the inverse inequality

‖[q h]‖Eh
≤ ch− 1

2 ‖q h‖0, ∀ q h ∈ P 0(T ). (4.9)

Next we discus the continuity of Q̃h defined by (4.6). For any (τ h; (v h, ηh)) ∈ Σh × Vh × Sh,

Q̃h((σ h; (u h, γh)), (τ h; (v h, ηh)))

≤ α1‖σ h‖0‖τ h‖ 0 + ‖div τ h‖0‖u h‖0+

‖γ h‖0‖as(τ ) h‖0 + ‖div σ h‖0‖v h‖0 + ‖σ h‖0‖ηh‖0+

γ1h‖[u h]‖Eh
‖[v h]‖Eh

+ γ2h
2‖γh‖0‖ηh‖0 + γ3‖div σ h‖0‖div τ h‖0

≤ C(‖σ h‖
2
0 + ‖div σ h‖

2
0 + ‖u h‖

2
0 + ‖γh‖

2
0 + h‖[u h]‖

2
Eh

)
1
2 ·

(‖τ h‖
2
0 + ‖div τ h‖

2
0 + ‖v h‖

2
0 + ‖η h‖

2
0 + h‖[v h]‖

2
Eh

)
1
2

≤ C 9 (σ h; (u h, γh)) 9h 9(τ h; (v h, ηh)) 9h . (4.10)

The following theorem shows the coercive of the bilinear form Q̃h.

Theorem 4.1 Let Σh, Vh, Sh be the finite element spaces defined by (3.3). Then for any

(σ h; (u h, γh)) ∈ Σh × Vh × Sh, there holds

sup
∀(τ h;(v h,ηh))∈Σh×Vh×Sh

Q̃h((σ h; (u h, γ h)), (τ h; (v h, ηh)))

9(τ h; (v h, ηh))9h

≥ C 9 (σ h; (u h, γh)) 9h . (4.11)

Proof For given (u h, γh) ∈ Vh × Sh, considering Lemma 3.2, we can choose ρ̄ h ∈ Σh to match

(3.7). Then, taking ρ h = ‖u h‖0+‖γh‖0

‖ρ̄ h‖H(div,Ω)
ρ̄ h, and from the norm definition of the divergence space,

we have

‖ρ h‖H(div,Ω) = ‖u h‖0 + ‖γh‖0. (4.12)
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Then for any (σ h; (u h, γh)) ∈ Σh × Vh × Sh, we can look for special (τ h; (v h, ηh)) to satisfy

(4.11).

Taking (τ 1
h; (v

1
h, η

1
h)) = (σ h; (−u h,−γh)) and from (4.4), we have

Q̃1
h((σ h; (u h, γh)), (τ

1
h; (v

1
h, η

1
h)))

= Q̃h((σ h; (u h, γh)), (σ h; (−u h,−γh)))

= a(σ h, σ h) + γ1
∑

Eh

∫

e

h[u h]
2ds+ γ2

∫

Ω

h2γ2
hdx+ γ3

∫

Ω

(div σ h)
2dx

≥ α2‖σ h‖
2
0 + γ1h‖[u h]‖

2
Eh

+ γ2h
2‖γh‖

2
0 + γ3‖div σ h‖

2
0

≥ C1‖σ h‖
2
H(div,Ω) + γ1h‖[u h]‖

2
Eh

+ γ2h
2‖γh‖

2
0, (4.13)

where C1 = min{α2, γ3}.

Taking (τ 2
h; (v

2
h, η

2
h)) = (ρ h; (0, 0)) and from Lemma 3.2 and (4.12), we have

b(ρ h, (u h, γh)) =

∫

Ω

u h · div ρ hdx+

∫

Ω

γh · as(ρ h)dx

≥ ‖ρ h‖H(div,Ω)(k1(‖u h‖0 + ‖γh‖0)− k2h
1
2 ‖[u h]‖Eh

− k3h‖γh‖0)

= (‖u h‖0 + ‖γh‖0)(k1(‖u h‖0 + ‖γh‖0)− k2h
1
2 ‖[u h]‖Eh

− k3h‖γh‖0)

≥ k1(‖u h‖0 + ‖γh‖0)
2 −

l1
2
(‖u h‖0 + ‖γh‖0)

2 −
1

2l1
(k2h

1
2 ‖[u h]‖Eh

+ k3h‖γh‖0)
2

≥ (k1 − l1)(‖u h‖
2
0 + ‖γh‖

2
0)−

1

l1
(k22h‖[u h]‖

2
Eh

+ k23h
2‖γh‖

2
0)

a

= M, (4.14)

which leads to

Q̃2
h((σ h; (u h, γh)), (ρ h; (0, 0)))

= a(σ h, ρ h) +

∫

Ω

u h · div ρ hdx+

∫

Ω

γh · as(ρ h)dx+ γ3

∫

Ω

div σ h · div ρ hdx

≥ −α1‖σ h‖0‖ρ h‖0 − γ3‖div σ h‖0‖div ρ h‖0 +M

≥ −θ(‖σ h‖0‖ρ h‖0 + ‖div σ h‖0‖div ρ h‖0) +M

≥ −θ(
1

2l2
‖σ h‖

2
H(div,Ω) + 2l2(‖u h‖

2
0 + ‖γh‖

2
0)) +M

= −
θ

2l2
‖σ h‖

2
H(div,Ω) +m(‖u h‖

2
0 + ‖γh‖

2
0)−

k22h

l1
‖[u h]‖

2
Eh

−
k23h

2

l1
‖γh‖

2
0, (4.15)

with θ = max{α1, γ3}, we can choose proper l1, l2 such that m = k1 − l1 − 2l2θ ≥ 0. Let

(τ h; (v h, ηh)) = (τ 1
h; (v

1
h, η

1
h)) + δ(τ 2

h; (v
2
h, η

2
h)) = (σ h + δρ h; (−u h,−γ h)).

From (4.13) and (4.15) it follows

Q̃h((σ h; (u h, γh)), (τ h; (v h, ηh))) = Q̃1
h + δQ̃2

h

≥ C1‖σ h‖
2
H(div,Ω) + γ1h‖[u h]‖

2
Eh

+ γ2h
2‖γh‖

2
0 + δ(−

θ

2l2
‖σ h‖

2
H(div,Ω)+
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m(‖u h‖
2
0 + ‖γh‖

2
0)−

k22h

l1
‖[u h]‖

2
Eh

−
k23h

2

l1
‖γh‖

2
0)

= (C1 − δ
θ

2l2
)‖σ h‖

2
H(div,Ω) + δm(‖u h‖

2
0 + ‖γh‖

2
0) + (γ1 − δ

k22
l1
)h‖[u h]‖

2
Eh

+

h2(γ2 − δ
k23
l1
)‖γh‖

2
0. (4.16)

We can take the proper δ to keep the coefficient of (4.16) positive.

Take C2 = min{C1 − δ θ
2l2

, δm, γ1 − δ
k2
2

l1
}, then the (4.16) becomes

Q̃h((σ h; (u h, γh)), (τ h; (v h, ηh))) ≥ C2 9 (σ h; (u h, γh)) 92
h . (4.17)

At last, by the definition of ρ h, we have ‖ρ h‖ 0 ≤ ‖u h‖0 + ‖γh‖0, then

9 (τ h; (v h, ηh))9h = 9(σ h + δρ h; (−u h,−γh))9h

= (‖σ h + δρ h‖
2
H(div,Ω) + ‖u h‖

2
0 + ‖γh‖

2
0 + h‖[u h]‖

2
Eh

)
1
2

≤ (2‖σ h‖
2
H(div,Ω) + (2δ2 + 1)‖u h‖

2
0 + (2δ2 + 1)‖γh‖

2
0 + h‖[u h]‖

2
Eh

)
1
2

≤
1

C3
9 (σ h; (u h, γh))9h (4.18)

with 1
C3

= max{2, 2δ2 + 1).

Let C = C2C3. Combining (4.17) and (4.18) derives (4.11) directly. 2

5. Error estimate

In this section, we will give the error between the exact solution and the mixed finite element

solution.

Theorem 5.1 Let (σ; (u, γ)) and (σ h; (u h, γh)) be the solution of (4.1) and (4.7), respectively.

Then there holds

‖σ − σ h‖H + ‖u− u h‖0 + ‖γ − γh‖0 ≤ ch‖f‖0. (5.1)

Proof Since the finite element space is conforming, we use (τ h; (v h, ηh)) to replace (τ ; (v, η))

in (4.1) and subtract (4.6). In addition from the (2.1) and div τ h ∈ L2(Ω), we have

(f, div τ h) = (div σ, div τ h). (5.2)

The error equation is as follows

Q̃h((σ − σ h; (u− u h, γ − γh)), (τ h; (v h, ηh))) = γ1
∑

Eh

∫

e

h[u] · [v h]ds+ γ2

∫

Ω

h2γη hdx. (5.3)

From the conclusion of Theorem 4.1, we can get

9 (σ h − Jhσ; (u h − Ihu, γh − Phγ))9h

≤ sup
∀(τ h;(v h,ηh))∈Σh×Vh×Sh

Q̃h((σ h − Jhσ; (u h − Ihu, γh − Phγ)), (τ h; (v h, ηh)))

9(τ h; (v h, ηh))9h
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= sup
∀(τ h;(v h,ηh))∈Σh×Vh×Sh

Q̃h((σ − Jhσ; (u− Ihu, γ − Phγ)), (τ h; (v h, ηh)))

9(τ h; (v h, ηh))9h

−

γ1
∑

Eh

∫

e

h[u] · [v h]ds+ γ2

∫

Ω

h2γη hdx

9(τ h; (v h, ηh))9h

:= sup
∀(τ h;(v h,ηh))∈Σh×Vh×Sh

∑10
i=1 Li

9(τ h; (v h, ηh))9h

, (5.4)

where

L1 = a(σ − Jhσ, τ h), L2 =

∫

Ω

(u − Ihu) · div τ hdx,

L3 =

∫

Ω

(γ − Phγ)as(τ h)dx, L4 =

∫

Ω

div (σ − Jhσ) · v hdx,

L5 =

∫

Ω

as(σ − Jhσ)ηhdx, L6 = γ3

∫

Ω

div (σ − Jhσ) · div τ hdx,

L7 = −γ2

∫

Ω

h2(γ − Phγ)ηhdx, L8 = −γ1
∑

Eh

∫

e

h[u− Ihu] · [v h]ds,

L9 = −γ2

∫

Ω

h2γηhdx, L10 = −γ1
∑

Eh

∫

e

h[u] · [v h]ds.

Next, we estimate the bound of Li (i = 1, . . . , 10) one by one

|L1| =

∫

Ω

A(σ − Jhσ) : τ hdx ≤ α1‖σ − Jhσ‖0‖τ h‖0 ≤ Ch‖σ‖1‖τ h‖0,

|L2| ≤ ‖u− Ihu‖0‖divτ h‖0 ≤ Ch‖u‖ 1‖divτ h‖0,

|L3| ≤ ‖γ − Phγ‖0‖τ h‖0 ≤ Ch‖γ‖ 1‖τ h‖0,

|L4| ≤ ‖σ − Jhσ‖0‖v h‖0 ≤ Ch‖σ‖1‖v h‖0,

|L5| ≤ ‖σ − Jhσ‖0‖ηh‖0 ≤ Ch‖σ‖1‖ηh‖0,

|L6| ≤ γ3‖div(σ − Jhσ)‖0‖divτ h‖0 ≤ Chγ3‖σ‖2‖divτ h‖0,

|L7| ≤ γ2h
2‖γ − Phγ‖0‖ηh‖0 ≤ Cγ2h

3‖γ‖ 1‖ηh‖0.

Using the inverse inequality (4.9) and Lemma 3.3 successively, we have

|L8| ≤ γ1h‖[u− Ihu]‖Eh
‖[v] h‖Eh

≤ Ch
1
2 γ1‖[u− Ihu]‖0‖[v]h‖Eh

≤ Chγ1‖u‖1‖v h‖0,

|L9| ≤ Cγ2h
2‖γ‖1‖ηh‖0.

For any u ∈ H1(Ω), the jump value of displacement is zero, i.e., |L10| = 0. So we have

9(σ h − Jhσ; (u h − Ihu, γh − Phγ))9h ≤ Ch(‖σ‖1 + ‖u‖1 + ‖γ‖1),

from the conclusion of Theorem 3.1, we can get the desired result. 2



A stabilized formulation for linear elasticity equation with weakly symmetric stress 361

6. Numerical example

We consider the elasticity problem in 2D for [0, 1]2. The equations of linear elasticity can be

written as a system of equations of the form














div σ = f, in Ω,

A(σ) = ε(u), in Ω,

u = 0, on ∂Ω,

(6.1)

where the Lamé constants are µ = 1/2 and λ = 1.

For numerical simulation, we take the displacement of the vector function u in (6.1), as

u 1 =

(

4x(1 − x)y(1− y)

−4x(1− x)y(1 − y)

)

and u 2 =

(

e(x−y)(1− x)y(1 − y)

sinπx sinπy

)

and set Error = 9(σ − σ h; (u− u h, γ − γh))9h.

Mesh n× n 4× 4 8× 8 16× 16 32× 32 64× 64

Error 0.403297 0.19841 0.0818765 0.0324603 0.0135391

Order of convergence - 1.0234 1.2770 1.3348 1.2615

Table 1 The error and the order of convergence for u 1

Mesh n× n 4× 4 8× 8 16× 16 32× 32 64× 64

Error 0.178351 0.164165 0.0822141 0.0344859 0.0137398

Order of convergence - 0.1196 0.9977 1.2534 1.3276

Table 2 The error and the order of convergence for u 2

We construct a sequence of n× n meshes with n uniform subintervals in the x-axis direction

and the y-axis direction, respectively. Here the (σ; (u, γ)) and (σ h; (u h, γh)) are the original

solution and the stabilized mixed finite element solution, respectively. Since γ is of higher

convergence order and its absolute error is bigger than that of u and σ , we find that the order

of convergence is higher than that in the conclusion of Theorem 5.1 from the results showed in

Tables 1 and 2.
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