程志斌.Am×n矩阵的加边矩阵的奇异性问题[J].数学研究及应用,1982,2(3):19~22 |
Am×n矩阵的加边矩阵的奇异性问题 |
On Singularity of Bordered Matrix of any Matrix Am×n |
投稿时间:1981-06-06 |
DOI:10.3770/j.issn:1000-341X.1982.03.005 |
中文关键词: |
英文关键词: |
基金项目: |
|
摘要点击次数: 2284 |
全文下载次数: 1080 |
中文摘要: |
给定m×n阶矩阵A,我们给出了它的加边矩阵M=[A B C O] (1)为非奇的充分必要条件。其中O为r1×r2阶零矩阵。把M的逆矩阵记为分块形式M-1=[A1 B2 C3 O4]其中C1为n×m、C2为n×r1、C3为r2×m、C4为r2×r1阶矩阵。在一定条件下,我们证明了其中的C1为A的广义逆矩阵A 。 |
英文摘要: |
In this paper the sufficient and necessary conditions of the nonsingularity of M are to be given.M=[A B C O] is the bordered matrix of any m x n order matrixA, where O is the zero matrix. The inverse matrix of M is experessed as theblocked fcrm: M-1=[A1 B2 C3 O4], where C1 is n ×m order matrix, C2 is n×r1 ordermatrix, C3 is r2× m order matrix, C4 is r2×r1 order matrix. Under certain conditions, we prove that C1 is the generalized inverse matrix of A, which defined as A . |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|