干丹岩.对合的分解[J].数学研究及应用,1991,11(1):52~56 |
对合的分解 |
Decomposition of Involutions |
投稿时间:1990-09-27 |
DOI:10.3770/j.issn:1000-341X.1991.01.012 |
中文关键词: |
英文关键词: |
基金项目:国家自然科学基金资助项目. |
|
摘要点击次数: 1998 |
全文下载次数: 984 |
中文摘要: |
|
英文摘要: |
Using the notion of biconnected sum we define the biconnected sum (T1, M1)§(T2,M2) of two involutions (T1M1) and (T2,M2) which is an involution on the biconnected sum M1,§M2. A connected involution is said to be reducible if it can be expressed as a biconnected sum of two connected involutions.Theorem Each connected involution (T, M) can be decomposed into a bi-connected sum of connected irreducible involutions (T, M)=(T1, M1)§…§(Tq,Mq),and (?) where the coefficients of Hn_1(M) are in Z/2 Z if M is unoriented, in Z if is oriented . |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|