马京京.关于具有多项式约束的I-环[J].数学研究及应用,1991,11(3):325~331 |
关于具有多项式约束的I-环 |
On Lattice-Ordered Rings with Polynomial Constraints |
投稿时间:1989-08-07 |
DOI:10.3770/j.issn:1000-341X.1991.03.002 |
中文关键词: |
英文关键词: |
基金项目: |
|
摘要点击次数: 1887 |
全文下载次数: 902 |
中文摘要: |
|
英文摘要: |
In this paper, it is shown that an l-prime lattice-ordered ring in which the square of every element is positive must be a domain provided it has non-zero f-elements and be an l-domain provided it has a left (right) identity ele-ment or a central idempotent element .More generally,the same conclusion follows if the condition a2≥0 is replaced by p(a)≥0 or f(a,b)≥0 for suitable polyno-mials p(x) and f(x, y) . It is also shown that an l-algebra is an f-algebra provided it is archimedean, contains an f-element e>0 with r1(e)=0, and satifies a polynomial identity p(x)≥0 or f(x,y)≥0 (for suitable f(x,y)). |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|