邱司纲,刘振红.加权BMO函数空间上的Littlewood-Paley算子(英文)[J].数学研究及应用,1991,11(3):401~407 |
加权BMO函数空间上的Littlewood-Paley算子(英文) |
Littlewood-Paley Operators on the Space of Functions of Weighted Bounded Mean Oscillation |
投稿时间:1989-09-02 |
DOI:10.3770/j.issn:1000-341X.1991.03.019 |
中文关键词: |
英文关键词: |
基金项目: |
|
摘要点击次数: 2330 |
全文下载次数: 936 |
中文摘要: |
Littlewood—Paley算子(g—函数,s—函数与λ*—函数,λ>3)作为BMOw或(BMO)w上的算子都是“有界的”,确切地说,我们证明了:若f∈BMOw或(BMO)w且|{x:Tf(x)≠∞}|>0,则Tf也属于BMOw或(BMO)w并且存在与f无关的常数C使‖Tf‖BMOw< |
英文摘要: |
Littlewood-Paley operators, g-function, s-function and gλ*-function (λ>3),considered as operators on the space of functions of weighted bounded mean oscillation BMOw ((BMO)w), are "bounded operators". Exactly, we proved that if f BMOw((BMO)w) and | {x:Tf(x)≠∞|>0; then Tf is also in BMOw((BMO) and there is a constant C independent of f such that ‖Tf‖BMOwBMOw(‖Tf‖BMOw(BMO)w),where T is one of those Littlewood-Paley operators. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|