郭孝英,沈一兵.关于复射影空间的三维全实极小子流形[J].数学研究及应用,1992,12(1):127~130 |
关于复射影空间的三维全实极小子流形 |
On 3-Dimensional Totally Real Minimal Submanifolds in a Complex Projective Space |
投稿时间:1990-02-08 |
DOI:10.3770/j.issn:1000-341X.1992.01.021 |
中文关键词: |
英文关键词: |
基金项目:国家自然科学基金资助的项目. |
|
摘要点击次数: 2413 |
全文下载次数: 1040 |
中文摘要: |
本文给出复射影空间中三维紧致全实极小子流形的Ricci曲率和数量曲率的鞭些拼挤定理.特别是证得:若M3是CP3的紧致全实极小子流形且它的Ricci曲率大于1/6,则M3是全测地的. |
英文摘要: |
Let CP3+p be a complex (3+p)-dimensional complex projective space with the Fubini-Study metric of constant homomorphic sectional curvature 1, and M3 be a real 3-dimensional totally compact and real minimal submanifold in CP3+p. In this paper, some pinching theorems for the Ricci curvature and the scalar curvature of M3 in CP3+p are given. It is shown that if the Ricci curvature of M3 in CP3 is larger than 1/6, then M3 is totally geodesic in CP3. |
查看全文 查看/发表评论 下载PDF阅读器 |