李江波.半实轴上的非线性最佳逼近[J].数学研究及应用,1993,13(2):293~298 |
半实轴上的非线性最佳逼近 |
Approximation by Nonlinear Families on [0, +∞] |
投稿时间:1991-03-27 |
DOI:10.3770/j.issn:1000-341X.1993.02.028 |
中文关键词: |
英文关键词: |
基金项目: |
|
摘要点击次数: 2041 |
全文下载次数: 1470 |
中文摘要: |
设h(x)为严格下降于零的连续函数.并且h(0)=1.设f、g∈C[0,+∞),定义距离为d(f,g)=(?)(x)(|f(x)-g(x)|)/(1+|f(x)-g(x)|).本文在这个距离空间中引进了D中间性集和弱D中间性集的概念,并且考虑了在这两类集上的最佳逼近问题,建立了最佳逼近元的一些特征刻划. |
英文摘要: |
Let C[0,+∞) be the space of continuous functions on [0, +∞). For f,g ∈C[0,+∞), their distance is defined by d(f,g)=(?)(x)(|f(x)-g(x)|)/(1+|f(x)-g(x)|), where h(x) is a strictly decreasing continuous function and h(0, 1), (?)h(x)=0.Here, we consider approximation by the familieэ with the D betweeness property or the weak D betweeness propert. The characterzations of best approximation are studied. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|