李振亨,靳一东,白瑞蒲.一类特殊广义Kac-Moody代数虚根决定的反射与Weyl群间的关系(英)[J].数学研究及应用,1999,19(3):501~507 |
一类特殊广义Kac-Moody代数虚根决定的反射与Weyl群间的关系(英) |
Relationship between Reflections Determined by Imaginary Roots and the Weyl Group for a Special GKM Algebra |
投稿时间:1996-07-22 |
DOI:10.3770/j.issn:1000-341X.1999.03.006 |
中文关键词: |
英文关键词:generalized Kac-Moody algebra imaginary root system the Weyl group special imaginary root |
基金项目: |
|
摘要点击次数: 2706 |
全文下载次数: 1130 |
中文摘要: |
对有限型李代数g(A),相应于每个根α的反射rα均在g(A)的Weyl群W中.当g(A)为可对称化的不定型Kac-Moody代数时,若α为一虚根且(α,α)<0,则亦可定义反射rα并有rα∈-W或rα是-W中元与一个图自同构之积(见[3]).本文给出了一类秩为3的广义Kac-Moody代数的虚根系,然后讨论了一类特殊的广义Kac-Moody代数的虚根决定的反射与Weyl群之间的关系. |
英文摘要: |
It's well known that a reflectin rα associated to every root α belongs to the Weyi group of a Lie algebra g(A) of finite type. When g(A) is a symmetrizable Kac-Moody algebra of indefinite type, one of can define a reflection rα for every imzginary root α satisfying (α, α) < 0. From [3] we know rα ∈-W or rα is an element of-W mutiplied by a diagram automorphism . How about the relationship between reflections associated to imaginary root and the Weyl group of a symmetrized Kac-Moody algebra (GKM algebra for short)? We shall discuss it for a special GKM algebra in present paper (see 3). In sections 1 and 2 we introduce some basic concepts and give the set of imaginary roots of a class of rank 3 GKM algebras. |
查看全文 查看/发表评论 下载PDF阅读器 |