夏大峰,徐森林,祁锋.非正截曲率的完备Riemann流形在无穷远截曲率趋于零的条件[J].数学研究及应用,1999,19(4):747~752 |
非正截曲率的完备Riemann流形在无穷远截曲率趋于零的条件 |
Condition of Sectional Curvature Tend to Zero at to infinity about Complete Riemannian Manifold with Non-Positive Curvature |
投稿时间:1997-06-09 |
DOI:10.3770/j.issn:1000-341X.1999.04.023 |
中文关键词: 正规测地线 Jaboci场 截曲率 |
英文关键词:normal geodesic Jacobi field sectional curvature. |
基金项目: |
|
摘要点击次数: 2233 |
全文下载次数: 862 |
中文摘要: |
本文给出并证明了定理;设M为具非正截曲率的完备Riemann流形,T:[0,+∞)→M为M上的正规测地线,U是沿T且初值为零的非平凡正常Jacobi场,若存在a>0,t0>0,使得当t≥t0时. |
英文摘要: |
In this paper, we give and prove the following theorem: If M is a complete Riemannian manifold with non-positive curvature, r: [0,+∞ )→M be a normal geodesic on M, U bea non-trivial normal Jacobi field along r and U (0) = 0, and if there is a a> 0,t0>0 so that(?). |
查看全文 查看/发表评论 下载PDF阅读器 |