郭学军,宋光天.APT环上幂等阵的对角化[J].数学研究及应用,2001,21(1):21~26 |
APT环上幂等阵的对角化 |
On Diagonalization of Idempotent Matrices over APT Rings |
投稿时间:1998-04-13 |
DOI:10.3770/j.issn:1000-341X.2001.01.004 |
中文关键词: |
英文关键词:Abelian ring APT ring idempotent matrix. |
基金项目: |
|
摘要点击次数: 2372 |
全文下载次数: 1012 |
中文摘要: |
设R是一阿贝尔环(R的所有幂等元都在中心里),A是R上的一幂等阵.本文证明了以下结果:(a)A相抵于一对角阵当且仅当A相似于一对角阵;(b)若R是一APT(阿贝尔投射平凡)环,则A在相似变换之下可唯一地化为对角形diag{e1, ..., en},这里ei整除ei+1;(c)R是APT环当且仅当R/I是APT环,这里I是环R的一幂零理想.由(a),还证明了分离的阿贝尔正则环是APT环. |
英文摘要: |
Let R be an abelian ring ( all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar to a diagonal matrix. (b). If R is an APT (abelian projectively trivial) ring, then A can be uniquely diagonalized as diag{e1, ..., en} and ei divides ei+1. (c). R is an APT ring if and only if R/I is an APT ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular ring is an APT ring. |
查看全文 查看/发表评论 下载PDF阅读器 |